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Introduction

In [8] a classification of subforms of diagonal forms (symmetric bilinear over
an algebraically closed field or else alternate) in dimensions less than §-o was
obtained. Trying to push the classification up to dimension §,0, and böyond,
one discovers that the recursive methods developed for dimensibns below §,o
get stuck.

The reason is the following. The classification (up to isometry) of subforms of
diagonal forms @ is equivalent to the classification of certain descending chains
of subspaces in the vector space ä that carries @ (the second classification is
modulo the action of the orthogonal group of the quadratic space (E, @)). Now,
if dimr>§.o then these chains are infinite and, with infinite descending chains,
a variety of new difficulties makes its appearance. Some of these difficulties are of
a metric nature, others are of a projective kind, and still others are of an entirely
topological character. We shall show that these aspects are largely independent
one from the other.

A somewhat similar situation is encountered in the classification theory of
abelian groups (Ulm's Theorem) in the uncountable case. However, the analogy
does not carry very far. The group structure is trivial in the vector space case;
on the other hand there are various additional structures originating with the form.

The classification of subforms of diagonal forms is a special case of a mapping
problem which has been the source of many new results during recent years (refer
to [5, 8, 10, 15, 17]). we begin our paper by formulating a projective version of
this mapping problem and by giving a solution (Theorem l) of it when no infinite
descending chains interfere.

AMS (Mos) subject classification (1970). primary l0c0l, 15A63, 5l D25, 5l F20.
Secondary 20 E 15, 2OII2O, 51 F 25. Key phrase: infinite chains of subspaces.
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Next we construct a series of examples which illustrate the various kinds of

difficulties met in the classification of infinite descending chains € undet the action

of GL (E) and certain of its subgroups. The examples are such that the orbits

of 6 split into proper suborbits as we pass from one classification to the next'

We then treat cases where the mapping problem in the metric setting can be

solved even in the presence of infinite descending chains (Theorems 6 and 7)' We

apply the results to the classification of subforms of diagonal forms ("prediagonal

få.ms,,;. We mention in particular Theorem 11 which gives a topological charac-

terization of the isometry types of prediagonal spaces of small uncountable dimen-

sions.

In order to make our constructions as perspicuous as possible we stick to the

simplest cases suitable for our purposes. This means restriction to the consideration

of äo-chains. We are aware of the fact that more gadgets can be thou-eht up for

longei chains; however, a firm grasp of the aro-chains is pre-eminent. We shall

consider chains of the sort

(6 -- t\)r(o,6) Vr=tr|*r, dimVilY+t: f i < cDtr(0)

where the Yi arelinear subspaces in a vector space Ä of dimension §r. (2no when-

ever more convenient) in which case we shall assume that ),Vi:(O) ("reduced

chain"), or else in a space ,E' of dimension §ro in which case we set V *:- ), V 
''

Furthermore, we shall use the following notations:

E vector space over a commutative field of arbitrary characteristic.

g(E) lattice of all linear subspaces of E,

f sublattice of 9(E),
q descending chain in g(E),

DCC descending chain condition,
g filter in g(E),

o(9), O«q the linear topology on ,E with zero-neighbourhood filtet basis '9 ' 
( 

'
respectivelY,

qX closure of XcE with respect to the topology g'

(8, A) @ symmetric or antisymmetric bilinear form on "L'

d.E external orthogonal sum of d copies of (E. Q), d any cardinal.

tr(1D),or(iD)certain linear topologies on E, related by ornt(D):t.,'(iP), ^/ any

ordinal,
rrX, orX closure of X cE
E completion of the

Refer to [9] for terminology and basic facts on inflnite dimensional sesquilinear

forms.

with respect to r^,,(.Q), o^,(Q), respectively.

uniform space (ä,to(@)) -(8, or(@)).
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I. A mapping problem of projective geometry

L l. The Problem (henceforth ref-erred to as "the mapping problem"). Let
E be an infinite dimensional vector space and

17: '//' * {'
a lattice isomorphism between sublattices of 9(E). When is 4 induced by an ele-

ment of GL (,8) (the group of linear automorphisms of .E)? An obvious require-

nrent is that q preserve rank, i.e. all "indices" dim YIX for XcY in ^//'; cf.

Remark 8. It is furthermore no restriction to assume {,{' at t}e outset to be

complete as sublattices of 9(E). Quite often we shall assume "l'' to be a subset

in 9(E'), E' a vector space isomorphic to E which makes for more systematic

notations.

1.2. The lattices admitted. We shall study the mapping problem for various

classes of Iattices. In order to concentrate on the difficulties with descending chains

we shall always restrict ourselves to the consideration of distributiue lattices {';
they will be subjected to one more condition below (namely (a). We assume further-
nrore that (O)ry- and E("/'.

I.3. The recursiue setupJbr the.rolution. It is natural to visualize the required

mapping T:E*E' as the union of partial mappings. We therefore introduce the

family %o:fro?i of all linear isomorphisms E:X*X',X€g(E),X'(g(E'),
which satisfy the condition

(1) q(XaA): X'r'tqA for all AC{.

One then looks for chains (<lr: Xr*Xi)ye r in 3o with

The limit map of such a chain solves the mapping problem.

1.4. Solution oJ' the problem Jbr lattices with the descending chain c'ondition

(DCC). In the case of certain lattices it is possible to restrict oneself to the subfamily

\Oi ot all (E: X*X')(fro(a) with the two properties:

(2) U X,: E, U X;: E,
rI-

(3)

( 3',)

(X+ A)n(X+ B) - X+(AaB);
(X'1- A')n(X'+ B') : X'+(A'aB'):

A, B€IT

A" B r Etr't

This is shown by

Lemma l. Let "/" be a complete and distributiue sublattice of 9(E) (dim.E :o,)
which satisfies DCC. Then there exists a set of generators (x,),.., of E with

the following property: If X,::span {x,lv=z} then for all x<o)d and all
A, B€{' we haue (X"+ A)^(X"+ B):y*|1AoB).
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Thus, if there is a solution to the mapping problem at all then it can be obtained
as a limit map of a chain in %r(q).

Proof of Lemma l. Let (ei)^.." be a basis of .8. Assume that for v<x
x, is defined such that (3) holds fbr all Xu,1t<x. Let ,i be the smallest index
with e^§X*. The set

"y'l 
:./t (e p X*) :: {A({ le #X"+ e)

is a filter by the induction assumption, hence a principal filter by DCC, say lt:(D).
First case: D is *-irreducible so .d/ is a prime filter). We decompos€ €;.,

et":d*x where d€D and xQX,. Set x,::d; one verifies just as in [9,p. ll8]
that (3) holds again for X:Xx+r. Second case: D is *-reducible. It is here that
we need a consequence of DCC, namely

(4) compact elements are joins of join-irreducibles*)

The caseisnow reduced to the former as in [9,p. 119] :onefinds.\;,,x,+r,...,r,+,rr
such that the finitely many X,*r, ...; Xx+m+L satisfy (3) and such that e;.(X,a,,q1.

Conversely, we now show that a solution of the mapping problem always
exists under the provisos stated:

'fheorem 1. Let {,{' be complete, distributioe sublattices o.f 9(E) and
g(E') satisfying DCC and (4); here E,E' are oector spqces of arbitrary (equal)
dimension ouer the same field. Each rank preseroing lattice isomorphism 4'. "l'-"1''
comes from a projectiuity, i.e. is induced by a linear biiection T: E*E'.

Proof. The union of any ascending chain of elements in 4@) belongs to

\Qi again ("chain-property"). Furthermore, \Ql) enioys the "Ping Pong-
property" (PP): for each (E:XtX')€\(q) and each xCE (x'(E') there exist
(cpr: xr*yilegr(q) with x€xr @'(xi) and Er2E. Starting with the zero map
(90: (0)*(0))<4Qi we may therefore, by transfinite recursion, obtain a chain
(Er: Xr*Xi)re r in %Qi that satisfies (2) just as in the denumerable case [9.
Chapter IVl.

Remark I. The core of the preceding proof is the (PP) property ot' 31Q):
one has to extend a partial mapping E: X*X' such that the extension satisfies (l).
According to [9, Chapter IV] this is always possible if the filter

(5) "//(x,X):: {AQ{IxQX+A\
happens to be a principal filter. If, in the following, we also succeed with the re-
cursive setup (I.3) in some cases where the lattices do not satisfy DCC then, in-
variably, it is because we have discovered a way to monitor the course of recursion

-) F"" *mplete sublattic,es of 9(E1 distributivity togsther with (4) is equivalent to complete
distributivity. A proofis outlined in [9, Chapter IV, Section 2].
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in such a manner that, at each step, the arising filters "/l turn out to be principal
filters.

I.5. Infinite descending chains lead to new inuariants. Let Gqg@) be a

descending a;o-chain and q(G) the linear topology on ,E with 6 as a zero neigh-

bourhood basis. Assume that the lattice { in our mapping problem contains

such a G; then bV (1) each elementin %o(D is a homeomorphism with respect

to p(G) and p(tl6); Iikewise, each linear isomorphism T:E*E' which induces

ry is a homeomorphism (E,g(G))=(E',e0ft)). Hence the importance of the

topologies q(6) (for all G c"/') for our mapping problem.
We first convince ourselves that there are enough such chains in 9(E) for

our discussions.

Lemma2. Let the k-space E haue dimension a::lftl§o and let O*r=@o
be fixed. In 9(E) there are precisely lkl' chains G with property (0) and such

that (i) the spaces (2, e@)) are mutually non-homeomorphic, (ii) if E is the comple'

rion of the unifornt space (8, q(G)) then dimElE:r for all these G.

ProoJ'. We begin by estimating the number of G' such that (O, p1W'1) is

homeomorphic to a nxed (.E, o$)). Let (ft,),=, be a basis of a lqo-dimensional
k-space H. In the algebraic dual H* pick a subspace .E such that the chain
Gr:G :-(Vi)i<.o, Vii: {e(El(e,hr):.. :(e, hi):O\ satisfies (0). Let E' cH*
and G':GL be analogous objects. The weak linear topology o(E,.FI) of the

pairing <8, H> is precisely q(G). One now proves with the usual arguments that
cach linear homeomorphism

J, (8, q(g)) --* (E', Q$')) has the form f'- S*lu,

where g*€ GL(ä*) is the adjoint of a 7€.GL(H).

The adjoint g**: H***H** then maps the r-dimensional orthogonals -Ercä**,
E'rcH)(* onto each other. Hence the number of (.E, p(G')), homeomorphic to
a fixed (A, e$)), is less or equal to lGt 1H11:q. On the other hand there are

precisely lklo=2o=a subspaces YcH** of fixed dimension r. If we think of
ff* as a subspace of H**, thenwecan also pick lkl' such Iz which, in addition,
satisfy ynH :(0). These Y appear as orthogonals -Ea of suitable subspaces

EcH, i.e. E such that the chains 6, which they define all satisfy (0). Hence

the assertion of the lemma.

I.6. A linear homeomorphism (8, q(G))=(E, g(G')) does not imply that G and

%" are in the same orbit under GL (E). In other words, the projective classification

of the chains G c 9(E) is finer than the classification via their associated topologies
g(G). We shall prove

Theorem 2. Let E and E be as in Lemma 2 antl dimElE:|. We can

spactfy G,G' with property (0) such that (E,p(6)) and (n,S(g')) are linearly
lrcmeomorphic but no T(GL (E) can map G onto G'.

{7)
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Proof. Let (hr)i=r,(h2i-1)i=r be bases of two §o-dimensional k-spaces H *,H -.
We set H::H-OHa and choose in its algebraic dual H*-H\@Hf a hyper-

plane E::H!@L,LcH\ in such a way that the chain G:(Vt)r=o with
V,::{e<El(e,hr):...:(e,h1):O} satisfies (0). Let C€GL(H) be the operation
which interchanges hri and hrr-r. We set E':: g*(E),

E':M@HI , M -g*(r)c H:.

Obviously, the chain G'::(V')i=o, defined in analogy to € above, satisfies (0)

as well and, according to the criterion (7), we have a linear homeomorphism
(n, q1v»=(n', e(G')). Next we show:

(8) If there is a linear bijection f :E*E' with f(y):tt{1t=01 then it is of
the form f:l*\", where /*(GL(H*) is the adjoint of a /€GL(11) and the

matrix of / relative to (å;);=, is triangular.

Indeed,let ur€Zr-Nn(i>l). Construct a dual basis (w,),=, of H by induction,
(ui,wi):öi, G, j=l). We have w,,:d,1h1la2hr+...+anhn with 0=u,,(k. If
now f(Yr):y! (r=0) for some linear bijection f:E*E' then ui::f(u)(
V;-SV|. Let (wi)t=, be the dual basis of (oi)p, in H. Let lcGL(H) be the

map with w'i*wi (r=1). One readily verifles that f:l*la and that the matrix of
/ has the desired diagonal shape.

By way of contradiction assume that there exists an / enjoying (8). Let
p:H-H- be the projection along H*,q;H**H! the projection alon-e H\,
1::polla!. Then the adjoint of t is 1*-qol*la!. Now t*: H* *äi is bijective,
for the matrix of r (relative to (hrr-r)r3r) is obtained from the matrix of / by
cancelling rows and columns of even index and, therefore, is a trian-eular matrix
with nonzero diagonal coefficients. Ergo t and t* are invertible. We now obtain
a contradiction as follows. Pick lr€äi\M. There is z€H! with t*(z): y by
the invertibility of /*; thus z€8. Furthermore y:qol*(z) so that l+(z):y*x
for some x(H\. Therefore f(z):l*(z)48', acontradiction.

Remark 2. By abuse let us say that Xc(E,q(G)) is closetl |f and only if
the image of X under the projection E*EloG is closed in the associated (haus-

dorff) quotient topology Q of g(G). We see that X is closed if and only if the

frlters d/(x, X) in (5) are principal for all x€8. Unfortunately, there are no "nice"
cases (.E, p(G)) where all subspaces X would be closed; e.g. S::9,=r§,, where
V1@Si:l/.-, (i=1), is always dense in (A,S@)). Now, in the case of countable
dim E one never runs into trouble with Q(G) because such spaces E can be ex-

hausted by finite dimensional X which are, of course, always closed. (In lieu of
our distributivity (3), (3') above it was possible in [9, p. 114] to postulate a stronger
distributiv§ which required in particular g-closedness for the domains of all
partial mappings considered I I 8].)
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II. The mapping problem in orthogonal geometry

ll. l. On the problem. We now assume the vector space .E' to be equipped
with a nondegenerate (orthosymmetric) sesquilinear form iD: EXE*k Let
0:A(8, @)cGL(,E) be the subgroup of elements with respect @ (orthogonal
group or group of isometries E*E). we are now looking for a T(a which induces
the given lattice isomorphism 4:"f *./r' of I.l.

In order to make evident t}te novelty of geometric situations encountered
in dimensions > §o we repeat a fact mentioned in [8]: Whereas in each dimension
= §o there is precisely one isometry class of nondegenerate symmetric bilinear
forms over C there are 2§'3§z isometry classes of such forms in dimension gr.
Similar results hold for nondegenerate alternating forms which, in dimensions

=§s, är0 considered to be without gestalt.
In particular, the abundance of isometry classes of alternate forms in dimensions

- §o testifies to the extent of geometric complications that have notåing to do
with the arithmetic of the base field.

Everything that follows could be phrased for symmetric forms over any field
k which has the property of allowing for only one isometry class of nondegenerate
forms in dimension so. In [9, Appendix I to Chapter II] many classes of such
k are listed. However, in order to stress the new geometric features of the un-
countable we stay mostly with the simplest case, to wit, alternate forms. A few
definitions will be stated for arbitrary forms. (In [5] and [17] the lattice method
is applied to anisotopic forms; in [5] the lattices are infinite. [10] and [15] treat of
bilinear forms in characteristic 2. Dimensions are invariably §6.)

11.2. The prediagonal fonns. Let (8, @) be a sesquilinear space and y an
ordinal. we call (8, o) y-diagonal if there exists an orthogonal decomposition
E:@*8, with dim4=§, for all ti a sesquilinear space which is isometric
to a subspace of a y-diagonal space is caTled y-prediagonal; 7-diagonal spaces are
also 0-diagonal and, trivially, the other way round; hence for ?€{0, l} we simply
speak of diagonal and prediagonql forms or spaces. A diagonal space is always
an orthogonal sunr oflines and planes [9, p. 63]. The basic theory about 7-diagonal
and prediagonal forms can be found in [4].

The classification of prediagonal spaces is solved in [8] for dimensions =§oo
Theorems 8, 10, 1l below will treat of certain cases of larger dimensions.

II. 3. The diagonal hull. Let (E, o) be a sesquilinear space, nondegenerate
and of dimension sn (a=0), a an ordinal. The linear topology or(ib) on ,E is
defined by the 0-neighbourhood filter basis

{XLIX(g(E) and dim X = §r} (y = 0),

whereas the linear topology zr(@) on ä is delined by the basis

{X tlx€g(E) and dim X = N,,} (y 
= 0).



74 HBRsrnr Gnoss and HnNs A. Krun

We have rr(i|):or+r(D); for the closure orX of a subspace X c(A, or(O))

we have, in the case of a limit number,

(e) lim Q) * o;X: O^ o, X * O.trX.
y<7

If o is nondegenerate then or(il),rr(i[) are hausdorff; or(@) (or rr(@))

is discrete when y=a (y>a, respectively). Each (7*l)-diagonal space is complete

in the topology rr(@). Conversely, we have the beautiful Theorem 116, p. 2451:

Let 7>0 be a fixed ordinal and (8, @) a nondegenerate (r*l)-prediagonal space.

Then there exists, uniquely determined up to isometry, a smallest (7*1)-diagonal

overspace (8, ö);,8 is the completion of the space (ä, rr(o)); the completion

topology tr(@) coincides with rr(6) and dim E:dim E.

11.4. Further conditions on the lattices. Each T€0(8, o) operates on 9(E)
and commutes with the operations I (taking the orthogonal) and z, (forming

the zr(@)-ciosure) for all y>0. It is therefore appropriate to consider in the

mapping problem II. 1 but lattices {' that are stable under these operations

(cf. [l1]). For V€g(E) we define {(v) to be the complete sublattice of 9(E),
stably generated by (O),V,E under tJre operations +, n, l, tr(t=0).

Examples. Let E be diagonal, E':(0), dimE:§o. In the cases a:0, 1,2

the lattice ^1":/'(V) is distributive and finite, l{l=t+ if a:0 [12, p. 11],

l{l=Z+ if oc:1 ([1], [2]), l{l=88 if a:2 ([S]); the bounds indicated are reached

for suitable V. The lattices "/.(V) are unknown for a>3.*\ (See Problems 1, 2 in

II. 7.) However, "[(V) is known for arbitrary a when Y is q(iF)-dense in '8,

it is the q*2 charn

(10)

fr - tr - otV ?- orv 2... 6*0V26*o*rv2... v 
= 

(0).

lL 5. How can one classify prediagonalforms? The uniqueness of the diagonal

hull easily yields the following fundamental fact: If Z is isometric to a prediagonal

V' then there exists an isometry 7 from E:t onto -E':7' which maps the

chain '{'(V) onto {(V'), i.e' T induces a lattice isomorphism 4i{(V)*l/(Vt)
which, obviously, preserves rank and commutes with I and all closure operators

ty, o!. Thus we see that the classification of l\,o-dimensional prediagonal forms is

equiualent to soluing our mapping problemll. I for {,{' descending chains of the

kind (lO). (Cf. Remark 11.) These chains are infinite when e>coo. As already

mentioned in the Introduction we shall discuss only the typical case fl:o.. The

case fl<coo is solved in [8]. We begin by showing that the chain (10) can be entirely

arbitrary:

11.6. The chain (10) of closures of a prediagonql v has no special properties.

*)Note added in proof. When a:3 the latrice is known and l*'i=gSl (t201). If a>4 we

know that l{l:* (191); the lattices are not known.

2 orl/ 
=... 

?
= 

oov2
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For the sake of clarity in the description of our construction we restrict our-
selves to proving the following theorem only. It can easily be generalized.

Theorem 3. Let (E, o) be nondegenerate and of dimenion §.0, @ symmetric
and admilting an orthogonal basis. Assume that we are gioen ai orthogonal de-
composition E:LV$H, dim I/:§r, and an ao-chainin W,W :Wo)l7r=Wr_t ...
,'eith dimWJWn+t:l, O,..n W,:(0). In E there exists a subspace V such that
its r,(iD)-closures are

r,,Y: V@V/, (n = co).

Remark 3. From Lemma 2 and rheorem 3 one gathers that the cardinals
obtained from (10) by taking dimensions of quotients are a long way from pinning
down the isometry type of Z when d>@o.

1I.7. ProoJ' of Theorem 3. lt will be divided into seyeral paragraphs.

7 .l . In each LV,, we choose a basis
W, +r,\Lf,, * 1,* 1 for all T < @a.

{r,,,,,l0 = T <lrer} such that }r',,. -€

7 .2. H is spanned by an orthogonal basis 14, p. 1578 Theorem 41. we introduce
orthogonaldecompositions: If:Oa{H,ln-<ra,n},dimIl,:§na1,11,: @L{H,,,,1y=cor}
dim I1,,,,:§,11. In each Hn,, wechoosean orthogonal basis {e,,,r(),)10=i<@,+r}.

7.3. Let V bethe span of all

wr,^,*e,,,r{7), 0 S )- *,*r, 0 = I = cor, 0 < n < u.ro.

7.4. We set D,,r::span {e,,r().)-e,,.,,(p)11, !-@,+t}, D,,::6t{D,,riT-*r).
Hence D,rcHnaY.

7.5. We define spaces C,,,-cHn for all n,m with e=n=ry<ao. To each
linear combination Zrcrwn,, which falls into the space w* we assign - with the
same scalars c, - the element Zrcre,,r(OlqHni Cn,,, is defined as the span of
these assigned elements. It is evident that

C,,*2C,,m+t ? ...;dim Cn,^f Cn,^*1 : 1,

O C,,. : (0), Cn,*nD,,: (0).

7.6. We assert that the t,(@)-closures of V are given by

toV:WogH : E,

t nv : wo@fco,, eaol 6 1G,, Olrl 6 . .. O [c,, _ 1,,, oD, _ J
A Hne)Hu+r@Hn*r@...

O span {wo 
ro + eo, o (0), wo,, * eo,1 (0), ..., wo,,_, * eo,, _r (0),

wr,u+ er,o(0), ..., wr,r_z * er,n- r(0),

wr..r,o*er-t,6(0)).
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7.7.\n order to justify the direct sum between "span {...}" and the rest in

the expressio n for r,V in 7.6 one makes systematic use of the normalization made in

7.1 for those w,,,, with 7=roo.

7,8. On the inclusion 2 in 7.6: Because dimä,,r=§,, each wo,r('W, is

a z,(@)-clusterpoint of V, WnctnV. Thus Hncr,,V' Likewise, H^crnV for all

m>n. Nontrivial are only the inclusions C,,,ctnV for r=n' Let

Jf - Zrr^,€r,y(0)e Cr,,r,

by 7.5. Er-eo

x - ) c r(w,, r+ e,,, (0)) : - Z, c rr,, r(W,,, x(W,* V cr nV'

7.9. We show next that

WnV: (0), WmnV:Wn (n - l).

fhe first assertion follows directly from the definition in 7.3. Let then rr>l and

y(Wor,V. lf X:W@Ho@...@I/,-r then (J::XL-l{n@Hna1@"' is a t,(@)-

neighbourhood, (y*u)av*0. Pick z€tl with y*u(v. By 7.3 there is w€w,

such that 'w*uCV. Thus we obtain y-w€WoV:(0) so y:w(ll/,,'

7.10. On the inclusion e in7.6: Let x(tnV. By 7'8 we may modify "v and

assume *:w+Zi=i Zrc1,re1,r(O) for certain scalars cr,r. Fix a pair (i ),)'

Bythechoiceofthebasis' iit,r,...,'tvi,yt...) in 7.1 thereexist, for T=n-i, scalars

dr," (O=s<n-i-l) such that
tr- i -1

tv i,r- Zu 
di,"Yti,"(Wn,

SO
' n-j-l

e;,r(0)- j dr,"e;,"(0)(Ci., e r,,V'

We may thus assume without loss of generality that ci,r:O lf y>n-j' In the space

span {ws,6*eo,o(0), ...,wn-1,s*€,-r,o(O)}cZ (compare 7'6) there exists therefore

urectLr 7 such that x-y€W. Since x-y(rnV also,we have x-y€WiroY:W,,'
This establishes the inclusion e ]n 7 .6 and the proof of 7.6 is complete.

7.11. From 7.6 we obtain by counting that

dimr^Vfr,*yV:l (n - oro).

7.12. Since Y@WnZr*V and Y@Wo:l/@W:E:toV and because

dim(v@w,)l(v@w*+):l:dim rnvftn*1Y by 7.11, we obtain inductively that

Y@W,:z,V. This terminates the proof of Theorem 3'

Remark 4. Let E be an orthogonal sum of §,0 nondegenerate finite dimen-

sional spaces E,*(0),9d, a basis in E,,4di:U,fi,' The hyperplane Y::
{spanb-b,lb,b'€g} has r,,v:E for all n<0)0. By taking external orthogonal

so Z , ,rf ,, ^t(W 
^
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sums of rl copies of this example one obtains examples of prediagonal V with

V: orY : o-oV: Z : (0), dim o.oYfV : d.

By using this example and Theorem 3 to form orthogonal sums one can obtain
many new examples (Cf. III. 5).

Problem l. Show that {(V) is infinite when a >4 (see II. 4 for the definition
of "1"(y)). A possible line of attack would be to use the technique of the proof of
Theorem 3 to "produce" four previously fixed "independent" elements inside

{(V); they would generate an infinite sublattice under + and n alone. See also

[13], [14].**)

Problem 2. 7"(V) when a<3.xx)

II.8. The orbit of a chain under the group GL(E) is larger than the orbit
under 0(E, @). Let (8, O') be an orthogonal sum of 2No hyperbolic planes and let
the base field /c have lftl<2§,. We are going to construct reduced chains

6:(Vi)i..o,G':(Vi)i.," in 9(E) with property (0) and such that

0) for each ordinal 7=0 with tt?<2§o the spaces V,,Y{ are tr(@)-dense
in .E (i<oo),

0j) (4 q(G)) and (e, s(«)) are complete.

The natural lattice isomorphism 4: G -6' preserves rank, obviously, and commutes

with all operations xy,oy (cf. II. 3). Furthermore, by (j) it is clear that 4 is

induced by an element T(GL (E). We assert

Theorem 4. Thereare chains G,6' with (0),0), Ql such that ry is induced

by an element T€GL(E) but not by any element o/ 0(E, O).

Proof. For a fixed chain € with (0) and (jj) we construct two forms @, P
on ,E such that fi) holds for either form and such that both (8,@) and (E,V\
are orthogonal sums of hyperbolic planes. Further, no T(GL(E) with TV-
Vi$=oto\ will be an isometry (E,O)*(8, y). If E:tE,A)*(E,V) is any fixed

isometry and '6'::EG:(EV)i..,, thep one obtains the assertion of the theorem.

The number of mappings T€GL(E) with TVt:y, (i<roo) is precisely

§o::lftlno-2no' for these maps are describable by triangular soXso-matrices
(cf. the proof in l. 6). Let E : {Trl0= (=aro} be an enumeration of these 7.

We define recursively vectors xg,ig(E, O.<(=an. To this end we subdivide

the roo-sections of rrrn into adjacent intervals of four elements each: we demand

(i) (xde ,(f6)6 are linearly independent families,
(ii) for all limit numbers 7=ao we have -y7...4,,,.,eV,\Vu+t

(for all n<ooi r:0, L,2,3),

{'*) Note added in proof. Problem t has been solved along the line indicated. For a>3 the

lattices are infinite, in general, but their structure is not known (t19, 200.
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(li) for all limit numbers )"-=ao we have x-r*n,*,€4\2,*,
(for all n<@oi r:0, l, 2, 3),

(iii) for all limit numbers ),-tpo and all n-ao we have

T71 nlX7y4a.1, - *),+4n+, (r:0, 1,213).

Assume that xq, *E for 1=)"+4n ate already constructed, and let F::
span {x6, T;},(xil(=A*4n}, dim F-dim.E. Because dim span (2,\I1*r):tt,
linearly independent elenrents !o, !t, !2, !a(tr1,\tr1,*, can be found such that
Fnspan {yo, yr, !2, !s):(0). Set x'+Ln+rt:!r, *i+h+,i:T^+n(x^*on*r), (r:
A, 1,2,3). By construction (i), (ii), (iii) are satisfied I (ii) is satisfied because Vn, Vn+r

are invariant under T^*n. On X::span (x6)6.,, and X::span (x6)6.,, we
define forms (D, V according to the table

( iv)

Q(x^*4tt; xl,++n+t) : 1

'D(xt*4n*» xA1 4n*B) : 1

all other products zero

Y' (rr. * 4tr s X ;.*+rr+ z) : I

Y (xl,*4n*t, Ii,*4n*e) : 1

all other products zera

One may always carry out the construction of the xs in such a way that dimElX,
dim0lX are of equal infinite dimension; hence iD and Y may each be extended
to a nondegenerate symplectic form on all of E by letting X,X be orthogonal
summands.

It is evident that no T(GL (E) with TVi:lt, (i<a;o) can be an isometry
(E, iD)*(E, Y).

In order to verify fi) let be given y=a, V,, z(E and a tr(@)-neighbourhood
z*Ur (dimU=§r). There is a limit number ^ qo)z such that xq(Ut for all(>)..
By (ii) there is a linear combination

u : a,ox 7* d.rX l.* e,* ... * a.u - tX l. + E(u - r)

such that z-uQV,i so (z*UL)nV,+$ as was to be shown. The argument for
rr(Y) is mutatis mutandis the same.

I1.9. The orbits under GL(,E) are larger than the orbits under the group

/f(8, O) of all linear ro(D)-homeomorphisms E-E. The technique used in II.8.
can be t-urther developed: we can show

Theorem 5. Let k, E, iD be as inll.8. There are chains G, G' with (0), (J), 0j)
such that q is induced by an element TQGL (E) but not by any element of tr(E, iD).

Proof. As in the foregoing proof we fix a given chain with properties (0) and

0j) and construct two symplectic forms @ and Y on E.
Let ao:Ur..,P, be a fixed partitioning of crrn such that lP,l:*n and each

P, is a union of some coo-sections of coo. Let E be as in II.8.
We then construct (x6)E, (x6)6 with (i.1, (ii), (ii) just as before; instead of

(iii) however we demand that
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(iii*) for all limit numbers ),=<a)o and all n<a), we have

TlixTa4nay n I,.*4u*, (r : 0, 1,2,3)

where P6)2+4n*r. In order words, whereas in the previous proof each Ta€E
was used to map one quadruple of x's only, we will here use each 7, to map
§, many quadruples.

The form @ is defined on ä as before (Il.S 1iv).
The form V is defined as follows. Let fi|::{x^*n,,*,1,r:0, l; i+ n+r€Pr},

fi'{::{i^*n,+,lr:2,3; ).*4n*r(P). Define V'a on span0'a to be the trans-
ported form: Y!(x, y)::iD(TgtI,T;'y) for all €=an. (This part is to guarantee
that (j) will hold for Y as well.) In order to define Yi on span @'!, transform
the §n elements of 0! by some invertible matrix that is row-finite but has non-

denumerably many non-zero entries in some of its columns. Let är:1X1xcnA;l
be the resulting basis of span 98'{. The xs naturally come in pairs (as transforms
of pairs *r,*n +r, *t,*nn*r). We declare these pairs of x's to form a symplectic
basis of span 0{ thereby defining Yt. The upshot is the following: If @ is
transported under 7, onto span 9i then this form will make the basis -0, o ron-
continuous ro-basis [3, p. 30 Satz 1l].

Because (x6)6.,,:U a...Oiv%[ is a disjoint union we can form the external
orthogonal sum of all V'a, Yi and obtain the required symplectic form Y on all
.E as in the proof of Theorem 4.

By the very construction it is clear that no element T(E is a homeomorphism
(E, ro(a) =-(E, ?o(Y)).

Problem 3. Study the orbits under 0(E, aD), /f(E, O) of the chain G given
in (10) in the special situation: d:o)o and dimooVfo,*rV:1 (n<a) and
(2, S@)) is complete. (The last assumption implies that all such chains G fornr
just one single orbit under GL (ä).)

Theorems 4 and 5 nicely dernonstrate that the classification problems in the
metric situation are not merely shadows of projective or affine problems; the1,

certainly have their own status. The mapping problems I. I and II. I are of equal
standing. The solution of one does not solve the other.

III. Solution of the mapping problem in special metric cases

lJJ.l. On the lattice methodin the presence of descending chains. The recursive
method developed in [8] in order to solve the mapping problem II.1. for finite lattices
is not, in general, adequate if the lattice contains infinite descending chains.
This fact clearly manifests itself already in the simplest case when {' is a chain
G:(Vi)i..o, reduced or not, with property (0) and dimä:§r. For, the partial
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maps E whose limit ought to induce a lattice isomorphism

4: G *€'

are homeomorphisms with respect to p(G), S(G') by (1). Further, whatever course

the recursion may take, after countably many steps supplements of Vi*1 in Vi

for all f will, by necessity, be contained in dom E; i.e. dom E will be g(7)-dense

in ä. Hence, the limit map, if such there is, will be uniquely determined modulo n7
by this partial map E.

Therefore, in order that the recursion will not be hopelessly stuck after the

first few steps when dimElo€=§0, additional assumptions on the chains are

mandatory.
In [8] the class of finite (distributive) lattices was treated. By the same arguments

the class of (distributive) counlable lattices with DCC can be taken care of.

ln the following we shall solve the mapping problem for two more classes of
Iattices. As these allow for infinite descending chains of a certain kind, the ran-ee

of applicability of the results is greatly increased.

111.2. Almost principalfilters. We say that a filter 9c{ is almost a principal
filter if
(ll) min {dim Gla, lGC9} < No.

In this section we treat of complete lattices {c9(E) all of whose filters

I satisfy condition (l l) and the well-known condition (4). We assert

Theorem 6. Let (8, A) be a diagonal alternate nondegenerate space of dimen-

s/on §o, A<a<(Dt,'/' a countable, complete, distributiue sublattice of 9(E) satisfy-

ing (4) and stable under the operations L and zr(?=a). Let '/r' be another lattice

o.f the same kind in 9(E) and
r7:"//- *'/r'

a lattice isomorphism preseruing rank a,nd commuting tvith L and r, (!=u). Irt
order that 4 be induced by an isometry T(O(E, ib) it is suficient that all fikers
9c{ satisfy condition (lt). Thus, in the class of complete distributiue lattices

with (4) and (11) described here, the orbits under the orthogonal group are characterized

by cardinal inuariants (namely the family of indices dim AlB, A=B in { ).

The proof of Theorem 6 follows essentially the line of the proof of [8, Theorem

21. We refrain here from describing the details. We should rather like to stress

some points of major interest.

lll.3. Remarks about Theorent 6. 5. The reasons for the condition "a-(Dt"
are described in [8, Remarks 1,9]. The discussion of this other great barrier §,.
will not be taken up here.
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Remark 6. (The role of condition (11).) One tries to follow the setup in
1.4 and construct the required isometry T as a limit of partial maps E: X*X'
of a suitable subfamily gr(q)cgr?). Let x€ä\X. The fact that the filter

.//(x,X)= {AQ{lx€x+A}

be principal is crucial for the possibility of extending E to X@(x). That this will
indeed be the case is taken care of as follows. In countably many steps we first
construct a (q,,:X**X'*)(gL(ry) with the following properties:

(a) dimX*=§,, b) tf E is a filter in '{ and D::ag then X**D=G
for some G(9. h is then clear that for any extension (E:X*X')EF, of e* the
filter "4{(x,X) is principal. Set frr(t»:-{rpe4@)lElE*}. We are left to show
how g* is found.

For each filter 9c{ let D:=a9;by (11) there is S(9(E) with dim^S<go
such that G :: D + S€8. As lr''l= xo the number ofall possible pairs (D, G)<{ x7/
is countable. If, for each I9"/r, we pick such an .S, then their sum §* is of
countable dimension. We require ^S*cdom E*; E* can be obtained as the limit
of a chain (Ei:Xi*X{)i<,0 in fi(fi with dimX,=- throughout. For finite
dim X; the filter .,{4(x, X,) is invariably principal.

lll.4. Compatible pairs ({,O). Let (8,@) be a sesquilinear space and
{c9(E) a sublattice. "/" and iD are said to be compatible, if (.8, @) admits
at least one orthogonal decomposition E:@[E,, dim.E,<§6, such that the
following condition is satisfied:

(12) If E+:@tE, witll. JcI and l.rl<l1l and 9c{ is afilter thenthe p(9)-
closure of .E+ is E+*n9 (i.e. the image of ,E+ in Elng is closed in the
(hausdorff) quotient topology Q associated with p(9)).

Remark 7. It is not true that, for a compatible pair ('/', @), condition (12)
holds for euery orthogonal decomposition E:@E,(dim4=§J of E; for this
would mean that each orthogonal summand F of E(E:F*FL) would be
g-closed, and to this one can find counterexamples.

ff (4 q is a nondegenerate prediagonal space of a dimension §,, n <c)0,
then the lattice (chain) {(V) in 9(V) is finite, hence ({(tt),6) is a compatible
pair. Less obvious examples will be considered in Sections III.5, III.6.

TheoremT. Let (E,Q), {,{' be as in Theorem 6 and let q:"{*'/r'be
a lattice isomorphism that commutes with I and r, (y-.a) and that presentes

dimXlXo foreachcompactjoin-irreducible X+(0) in { andits (unique) antecedent
Xn. In order that r7 be induced by an isometry T(0(8, A) il is sufficient that '//','//''
are compatible with Q.

The proof of Theorem 7 follows the general scheme detailed in [8]. Difficulties
caused by the presence of infinite descending chains are offset by compatibility
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which forces the crucial filters -&(x, X) to be principal. Preservation of rank

is needed only in Section 2.5 of [8] and only for pairs X, Xo as indicated in Theorem 7.

Remark 8. Theorem 7 is an instance where preservation of rank follows from

equality among certain selected indices by virtue of compatibility. Does this mean

that, in the compatible case, well ordered descending chains {c9(E) neces-

sarily have additivity of supplements in the sense of the following definition?

Definition 1. The well ordered descending chain "//':(X,)o=,., in g(E)
enjoys additivity of supplements if and only if there exists a family (^S,)o=,., with

(13) X,+.@S,:X, (0=r=l)
and such that for arbitrary v<lt<y we have

(14) *r* 
"p*uS, 

: X,'

Remark 9. Given a family (§,), with (13) it is sometimes believed that the

fact whether or not the equality (14) holds is a property of {-. This is of course

not so: in dimension §o each chain (X,)6=r<@o+1 admits some families (,S,),

with (13) that make (14) true and others with (13) that falsify (14).

Problem 5. Answer the question enunciated in Remark 8 (for the particular

chains {':{(Y) considered in Theorem 8 below the answer is affirmative).

Problem 6. Classify compatible pairs ({, iD).

lll.5. Examples of compatible pairs (orthogonal decompositions). We describe

here a particularly simple brand of prediagonal spaces V that have the property

that their lattices (chains) {(V) (lO) are compatible with the form on the diagonal

hull V:E. As we shall be able to prescribe indices Theorem 7 will be applicable:

the examples offer themselves as normal forms (see the following section).

Let d, (1<r<«) be arbitrary cardinals with 0=4=§,; let furthermore

U, be any prediagonal space of dimension §, (7=0) with

(15) dimlrf U, : l, r,(J, : A, for all 0 < v = 7,

(there are such spaces by Remark 4). We form external orthogonal sums

(16) V:: @L d,.U,.

then read off:

rrV: au+LY: r1}, 
dr'Ur@ 

r9=- 
d,'4, (0 = 1' < a),

,?, 
rnV : o 

^V 
- ,J+\ ^d,. 

(.r,* 
,9=, 

d,.A (tim (i) ). = d),

dim onYf o,+LV - d, (2 = v+ 1 € a),

dimouVfo,V- Z d, (1 5l"r<vsa),
&*t <v

lim o.VlV - d,.

We

(r7)

(18)

(1e)

(20)

(2r)
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It would be very easy, but cumbersome, to write the last three formulae in
terms of the r's. We finish by establishing compatibility: As for E:@!,.,.E,
we choose a decomposition which is obtained by throwing together similar decompo-
sitions of the ro(@)-completions of the single summands of V in (16), dim.E,=§0.
We consider a subspace E+:@F, with F,cE, and a limit number,l with
0=)"=a. We shall show that

E+ +otV 2 ,),.(!+ +o,V1.

Since the converse inclusion is trivial this tells that E+ is "closed" under
o((o,V)s"=). Let p be an element.of the intersection. There is ro<1 such that
p:pt*pz, prCL::@,=,oE,, pz(@,=,E, We have p2(o7V by (18), hence p,
is also an element of the intersection (g-closure of E+). Let n: E*L be the projec-
tionalong Zl. As F,cE" wehave nE+cE+,nrnVc.cnV. For each y<1, there
is a decomposition pr:x(v)+y(v) with x(v)CE+,y(v)(o,V. Ergo pt:npr:
nx@)-lny(v)€(,8+nI)*(onVnL). We fix a r, 4<y <.), and find by (17) onVaL:
@,=,od,. U,; thus pr(E+ aV. Altogether p:pr+p2€E+ +o^V.

Ill.6. Normal forms of prediagonal spaces. Let E (dim E: §,) be any diagonal
space; it can be written as an orthogonal sum of lines and planes

(22)

Choose any basis g 
<

(23)

E,: OaFf , 1= dim F*=2.
of F€ and set #:-v%e. If 9=0 then the hyperplane

(f ,:- span {b-b'lb, b'€g}

is prediagonal and not diagonal U,p. 104, Satz I and its obvious generalization
to the case of hyperbolic planesl; it is the simplest specimen of its kind. Since it
enjoys property (15) it can be used in (16). We obtain:

Theorem 8. Let (V, A) be a nondegenerate prediagonal alternate space o.f
dimension §n (0=a-arr). The statements (i) and (ii) are equioalent:

(i) The chain ^l"(Y)cS(t) (rl (10» is compatible with the form (5 on f.
(ii) Y has the form (16), with (J, as in (2r, V:@,=ud..E,, with uniquely

determined cardinals d" (l=tsa) giuen by (19) and (21).

Proof. "(ii)+(i)" is the content of III.5. Conversely, given the chain "f(V)
we can make the d, in (16) equal to the indices of corresponding neighbouring
elements in /'(V). An application of Theorem 7 yields "(i)'+(ii)".

Corollary. Let (V, <D) be as in (i) of Theorem 8. Then we haue additioity
of supplements in the sense of Definition I (RemarkS) ; in particularwehaoe"addilioity
of indices" in the smse of (20).

Remark 10. By using Theorem 3 we can easily give examples of prediagonal
Z such that {'(V) fails to have additivity. In these cases {(V) cannot be com-
patible with the form on V. Sy Theorem 8, these V cannot be orthogonally de-
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composed into the building blocks U, . Of cours e, d.=o)o in these cases. In contrast,

if a<(Do the requirement of compatibility is empty and we have

Theorem 9. Euery nondegenerate prediagonal alternate space V of dimension

§,, n<o)6, is either diagonal or of the shape

v: dt urö ... 6 d,.U, (dim u,:51-y,

and its diagonal hull E:V is

E: dt är ö ... 6 dn.E*,

where E,>Ui is giuen by (22), (23). Futthermore,

di: dimr;-1Vf r;V (l < i < n), dn: dimr,-rvfY;

the n cardinals 0=di=t\n, together with dim Z:§n, form a conrplete set o./'

independent inoariants for the isometry class of V.

lf (fV),6) is compatible for V, a nondegenerate alternate prediagonal

space of dimension §o (a=arr), then we learn from Theorem 8, (17), (18) and

from the explicit shape of the U" in (22), (23) that with (10) there is associated an

ascending chain (,S,)1=,.o*, of totally isotropic "supplements" with

(24) o,V,@S":Z V@So+t:/, ^S, is oo(6) closed in 7

(and hence o.(6)-closed and thus or(6)-complete), 1 < t = al7.

Problem 6. Does each nondegenerate alternate prediagonal space admit

a totally isotropic supplement in its diagonal hull?

A solution of Problem 6 is important for practical calculations; e.g., there is

the following lemma which we mention without proof:

Lemma 3. Let W be any nondegenerate prediagonal space and W its

p-diagonal hull, 1t>g a fixed ordinal. Let UcW be a p-diagonal nondegenerate

subspace which is maximal in the sense that dimW lU is minimal. If W admits

a totally isotropic supplements in W then dimWlW:dimW lU.

If F is anisotropic in Lemma 3 we may very well have dim WllV<dimW lU:
see [7, p. 110, Satz 5].

111.7. Topological characterization of the isometry classes of certain prediagonal

spaces. From an isometry (E,@)-(E',iD') between two arbitrary sesquilinear

spaces we obtain of course a homeomorphism (4r.(o))=(E',co(D')). When

do we have the converse?

(2s) (E, ro(O)) = (E', ro(A')).r=>. (E, A) :z (E', Q').

That there are interesting instances of (25) is demonstrated by Theorem 8 and

The o r em 10. If (V, O) and (Y' , iD') are alternate spaces of the shape described

in (16) then the implication Q5) is ualid. In particular, for the nondegenerate, alternate,
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prediagonal spaces of dimension §, with n<roo isometry classes andro-homeomorphy
classes coincide.

Proof. If (Y,zu(o7)=(V','cu(@')) holds for a particular value of p, then it
holds for all larger values as we1l. Thus, if it holds for p:6 we obtain equality of
all indices, dim ouV f ou+rV:dim orV'f or+rV'. Hence the assertion.

In [3, p. 37,IY.2] an example of a homeomorphism (,E, q(Q))-(E',zo(@'))
is given with one space (.E, @) prediagonal and not the other. A newer result by
Bäni [6] tells that, in contrast to ?s, the topology oo o'decides" on prediagonality:
if under a homeomorphism (Z,oo@))=(d',oo(o')) one space is prediagonal
then so is the other, whence

Theorem 11. Let (V,O) be a nondegenerate alternate prediagonal space

such that the chain 1''(V) is compatible with the form ö on the diagonal hult t.
Let (V', iD') be any alternate space ( ooer the same base field) such that (V, oo(O))=
(V', on(D')). If dim 7<§,, then there is an isometry (V, iD)=(V', iD').

If we do not assume compatibility (which means passing to dimensions -§,0)
then there are results which point to quite different directions. We give just one
illustration:

(26) There are prediagonal spaces (E,Q), (E',Q') of dimension §@o such that
all closures 'c,8, x,E' (0<l<oo) are isometric yet (E, @) and (E', @') are not
isometric.

Problem 7. What classes of spaces (other than that described in Theorem 10)

satisfy the implication (25)?

Remark 11. Theorem l0 is particularly satisfying in that there is no reference

to the diagonal hull of the spaces to be classified. We are aware of the fact that
behind our treatment of prediagonal spaces f/ (IL 5) tlere lurks the possibility
to treat these spaces from within, i.e. without plunging them into their hulls. One
should first try to compute the invariants dim o,Yfo"*rV inside Z by expressing

them as generalized defects in the spirit of [7, Chapter III].
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