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UPPER ESTIMATES FOR SUPERPOSITIOI\
OPERATORS AND SOME APPLICATIONS

J. APPELL

The application of many principles of nonlinear analysis to the study of dif-

ferent types of equations requires upper estimates for the operators which are gen-

erated by given functions. Such estimates are usually obtained (by elementary means)

from analogous estimates that are true for these functions. In this connection it is

tacitly assumed that the estimates for the operators and those for the corresponding

functions are equivalent (at least in a weak sense), and this is in fact true for many

types of operators in the space C of continuous functions. However, for operators

between the spaces Lo and In such an equivalence does not even hold for the

simplest nonlinear opeiator, the superposition operator (Nemytskij operator). It is

the aim of this paper to describe and discuss this situation in Z, spaces. As appli-

cation, certain necessary and sufficient conditions for the differentiability and asym-

ptotic differentiability of the superposition operator are given. '

l. The ca;se P:q-L

To begin with, let us recall the following well known theorem of M. A. Kras-

nosel'skii ([3], see also [2], [8]): Given an open subset OqRN and a Carath6odory

function /: OXR*R, the superposition operator

Fx(s)::/(s, x(s))

maps the space lr(o) into itself if and only if there is a pait (a,b) of positive

numbers such that

(1) lf(t, u)l = a(s)+blal (s€O, z€R)

forsomefunction a(L{Q) with llallr=a. (Inthiscase F isautomatically bounded

and continuous.) Denote the set of such pairs (a, å) associated with / by T(f)
and let

(2) vr(o):- inf {o*bQ: @, bW(f)l (8 = 0).
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Moreover, we associate with the operator F a function p" which is defined by
(3) pr(Q):: sup {llrxll, :llxl[ = e] (e = 0)

and describes the growth of F on balls centered at the origin.

Theorem l. The functions p" and t1 are equiualent in the sense that

pr@)= vr(s)= 2pr(d.
Proof: Given (a, »(fU), one has immediately for llxllr<q

llrxll, = llallr+bllxll, < a *bs
andconsequently pr"(g)=v7(c). On the otherhand, given g>0 define Es: OXR*R
by
(4) eo(s, u):: max {0, l./(s, u)l- prk) irl s-'},
fix a function x€21(o), and let o+ denote the set of all points s€e for which
gfs, x(s)) is positive. Now choose n €N and 0([0, 1) such that

/lrf.lt ds: (n+o)Q,
gr+

and divide O+ into subsets Q{,..., O}*, such that

/lrtrlt ds= Q (i:1, ...,n*t).
Qr*

From the definition of the function p it follows then that

Ilt\,x(s))lds = pr(e) (i : 1, ..., n+t)
ar+

and therefore

{ tr'G 
:;?r-:;ä:#;;= ;l:''' "

such that the function an(s)::sup {En@,u): zz€R} lies in Lr(e),

lf§, u)l= aog)+bnlul,

and an::llunl|=lto(Q), bn::pr(S)S-'. Altogether we have shown that lbr each

Q>0 there exists a pair (an,b)(T(fl satisfying ar*bnQ-ttr(e)fpu(s)s-rg:
2pu@). From this the inequality vs@)=2tt (q) follows immediately. tr

Theorem I shows that the problem of obtaining upper estimates for the operator
F reduces to studying the set T(f). lf a pair (ao, åo) belongs to this set, then so
do all pairs (a,b) with a>a, and b=bo, and this point set in R2 is bounded
from below by some function 0r, namely

(5) 01().):: inf {c: (a, \<rff)}.
The following lemma which we cite without proof recalls the well known cor-

respondence between the functions y:v/ and 0:0r:
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Lemma l. The functions v and 0 satisfy the relations

v(s) : inf {g(1)+2e; Q <,1 < -},
eQ) : suP {v(s)-,tq: o = q = -}'

Moreouer, t, is nonnegatiue, nondecreasing, and ConcAoe, whereAs 0 is nonnegAtitte,

nonincreasing, and conuex.

Let us consider some examples. If, for instance,

v(p):: Mq" (M >0, 0=a= 1),

then
0()') : (L-$u-n Uo-P) Af 1a-t+B-1 : 1);

conversely, if
0(),):: N),a (N=0, -@'<f =0),

then
v(q) : (t+ fr)P-"N(1-a)na (a-taB-t : 1;.

Another example is provided bY

v(g) :: log (e+ 1)

for which one has
0(7): max {0, )"-l-logl)'

As a corollary of the preceding results we get the following two lemmas:

L e m m a 2. The foll owing four s t atement s are equioalent (0 = a = l, a-t a B -1 : 11 1

(a) llFxll' : o(llxllfl (llxllr *0 or llxllr *-),
(b) pr(d : o(P") (q*o resP' Q*-),
(c) v1@) : o(0") (QtO resP. Q*-)'

(d) lrQ') : o(AP) (7** resP. 7*o).

Proof. Let us first prove the equivalence of (a) and (b). If (a) holds for llxllr *g
t]1en for each e>0 there exists ä>0 such that llxll'<ä implies llr-rll1=sll.rlli.
Hence, given g<ä, one has llFxllr=eg' for any x(L1(Q) with llxllr=q, which

means that (b) holds for q*0. Conversely, if (b) holds for g*g (i'e' q<ä implies

pr(O)=eg" for e=0) then, by setting llxllr::q, one has

llFxllr = pr@) = eg' : ellxllt

for llxllr=ä which means that (a) holds for llxll'*0.
The analogous proof for llxllr*- and Q*-' respectively' is somewhat

more complicated: If (b) holds for p*-, then for each e>0 there exists ar>0

such that
(6) sup {llFxllr : llxll, = 8} = s8' (s = @);
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therefore, for any xQLr(Q) with llxllr::q>co we have

ll.Fxll' = es": ellxllf .

Conversely, suppose that (a) holds for llxllr*-, i.e. given e=0 there exists z>0
such that llxllr=u implies ll^Fxllr=ell-rrlli. We must find ar>0 such that (6) holds;
to tlris end, we consider two cases: On the one hand, if pu(r)<-ern then q-oo::r
implies

ilrxl, = {il;:',r. l1',,i,,1'= n.

On the other hand, rf pp(r)>e{, then choose otl:(of t)\t, where

o:: sup {ll.F'xilr: llxllr = q llFxll, > 67,} < -
and observe that a>r. In this case g>co implies

i.e. for each q=ä we will find ,i(q)>A such that

(8) 0r?@))s-"*,1(q)s1-'= e.

Because of(7), we can find ar>O such that

01(1)),-f <. el2

for ).>a. Furthermore, the choice ä::min {a01",1e12;tt{1-r)} yields Qd/P>6atp>_o)
for g=i (note that B is negative!). Hence, if we set ,1(p):: QalF, then i(Q)=a, i.e.

0 t Q, @)) ). (q) - § a* " + 1 @)r - f QL - 
q

-. I e-" + q(L-l)a/B lr-a : I e-" * Ql-f -n

fo:erL''=eq" llxllr=r,
ilfxllr =ltllrilf = ea)n = eQn z < llxlll < co,

[e llxllf = eq" ro = llxll, < q,

which proves (6) and hence the equivalence of (a) and (b).
The equivalence of (b) and (c) follows from Theorem 1.

Assume now, for example, that (d) holds without loss of generality for i*-,
(the other three implications between (c) and (d) are dealt with similarly), i.e.

(7) 
lim er1)^-o : o.

Let e>0 be given; we will find ä>0 such that 0=q=ä implies

vy(e)e-': inf {0r(,i)* )"q\q-o < e,

:l+*n -alo-" =f|*a,-oJn-, = eQ-,: ei(d-a.

Multiplying these inequalities by ,t(q), yields the desired relation (8). tr
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L e mm a 3. The following four statements are equiualent (0 = a = l, a- L I B -r : l) 1

(a) llfxll':p111rllil (llxll'*0 or llxll**),
(b) pF(Q) :o(Q') (s*o resq. Q+@\

(c) vy(o) :O(0") (s*0 resp. Q+@),

(d) 0f(1) --O(LP) (.1*- resp. A-O).

Proof. Since the proof is in the same spirit as that of Lemma 2 (the equivalence

between (c) and (d) is even more straightforward here) we shall ommit it. tr

Instead, we wish to make an important observation:

Remark 1. If we consider the first condition of Lemma 3 for q:1, i.e.

(a') llFxll':91;1r;1r1

then it is not hard to see that this condition is equivalent to the assertion tåat

(a") j/(s, z)l=ft(s)lul

for some k€L-@). However, in general the condition

(a"') lf$, u)l= 1s 1t1 1u1'

(for a= 1) is only sufficient for (a) but not necessary, as can be seen by the following
counterexample ([1]):

Let O:(0, 1), 0-a=1, u*t|B-t:1, and

f(s, u)': {', 
I'ltt -log sP lal) 

|;l 
=:-;Then Fx(s):/(s, x(s)) mapsthespace Ir(O) intoitself (justtake a(s):e;p1-6r-p,

in (l)); on the other hand, the function f(s,u)]ul-" behaves like ry(s):scr (for
tul=s-P) which is not essentially bounded on (0, 1) since aF=O. f1

This counterexample shows that growth conditions on the function f and the

operator F may be not equivalent, at least when the growth of / is nonlinear

(i.e. a*l in (a"')).

2.The general case

So far we have restricted ourselves to the case p:q--|. In general, the super-

position operator F maps Lr(Q) into Lq(O) (14p, rl= -) if and only if there is

a pair (a, å) of positive numbers such that

(9) l,fG, ,)l = a(s)461sYta (s€o, z€R)

for some function a(Ln(Q) with llallr<a. This general case, however, can be
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reduced to the special one by setting

(10) f (t, u):: l.f(s, lultlp sgn u)lq.

Since then

lf G, dl= aG)+6lul

with d(s):2qa(s) and ö:2qb,,Fi1;;{(s,x(s)) maps the space lr(o) into itself.
This observation allows one to formulate and prove analogous results for the general
case, where, of course, the scalar functions introduced above must be modified
appropriately. Thus, if we set now

(11) vy(s) :: inf {a+bqote: @, b)(T(f; p, q))

(where T(f ; p,q) is the set of pairs (a, å) used in (9)), then Lemma t holds, with
/,g replaced by Äfle. Moreover, Theorem 1 reads now as follows:

Theorem 2. Thefunction

pr(o) : sup {llrxll, : llxll, = q}

and v1 (Siuen by (11)) are equiualent in the sense that

/r(s)=v/(a)=2pr(d.
Proof. The assertion can be proved either by adapting the proofofTheorem I

(with qo given by
e o(s, u) r: max {0, l"(r, u)l- pu@)lultre p- iley1

or by applying the transformation (10). n
Finally, we state the following generalization of Lemma 2 as a separate theorem

(Lemma 3 generalizes in exactly the same way):

Theorem 3. Suppose that the operator F maps Ln(Q) into Lq(A). Then the

following four statements are equirsalent (O<a-.pfq, fr-' +a-rp1q:11'

(a) llrxllu:o(llxll!) (llxllr*0 or llxll,**),
(b) pr(e) :o(Q') (e*o resp. Q+a),

(c) vr(Q):o(Q') (S*0 resp. Q+a),

(d) 0r()") :s110) ()"*- resp. ).*O).

Proof. Using the notation (10), one easily shows that

(I2) pr(p): pr(Qr/r)o

and hence (b) is equivalent to pu(q) : o(Q'ot'). According to Lemma 2, this in turn
is equivalent to vy(Q):o(g"e!p), and hence to (c), since

(13) v,r(s) = 2qv1(qtto)e = 2zqvt(Q).
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The equivalence between (a) and (b) is established similarly by reducing the

problem to the operator F.

Finally, the equivalence between (c) and (d) follows from the definition (ll)
by applying the same reasoning as in Lemma 2. n

Let us point out once more that (by Remark 1) the condition

lf(s, u)l= k(s)lzl' (k€L-(O), 0 < a < plq)

is only sufficient for
llFxlln= kllxlli (k > o)

but not necessary.

Finally, we wish to note t}tat analogous problems can be studied not only in
Z, spaces but, more generally, in Orlicz spaces. For example, if LM(Q) and Zr(O)
are two Orlicz spaces (where N satisfies a /, condition), then the superposition
operator F (generated by "f) maps the unit ball of L*(A) into ,N(O) if and

only if the superposition operator G (generated by the function g(s,u):
N(f[t, A -'@)l)) maps t]re space Ir(O) into itself ([4], [5]). Therefore from some

suitable transformation like (10) one can derive estimates for F between Lu(A)
and 1-r(O). These problems will be dealt with in a forthcoming paper.

3. Differentiability conditions

There is a rather easy way to derive differentiability conditions for the super-

position operator F from Theorem 3. To this end, observe that; given a nonlinear

operator F between two Banach spaces X and Y, the existence of the derivative
F'(x) at xs(X can be expressed in the form

ll ,F(xo*x)-F(xo)- F' (xr)xll y - o(llxll") (llxllx -- 0)

while the existence of the asymptotic derivative F'(*; means that

ll r(x) - F' (-)xlly - o(llxllr) (llxllx-.- oo).

it is shown that if F : Lr(O) *Lq(QD@=cil is differentiable at zero with
G - F'(0) (and f (0):0, without loss of generality), then necessarily

in measure"

s(s) :- p-lrg /'(s, u)p-t

exists and belongs to Lor11o-n1(Q), and G has the form Gx(s):g(s)x(s). On
the other hand, several sufficient conditions were given in [3] and [5] as well as in

[9] which are, however, not necessary. Similarly, a necessary condition for the

155
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existence of the asymptotic derivative F'(*) is that the limit

(1 5) S(s) :: tt- lim f(s, u)p-r
U"+ oo

exist and be an Lon,,o-r,(O) function.
We can state here a differentiability condition which is both necessary and suf-

ficient:

Theorem 4. Let f be a Carathöodory function such that /(s,0):0 and F
maps Lr(Q) into Lr(Q) (p=q). Then F is dffirentiable at 0 with deriuatiue
G:F'(O) for asymptotically linear with asymptotic deriuatioe G:F'(*)l if and
only if the following two conditions are fulfilled:

(i) the limit (14) (resp. the limit (15)) exists and belongs to Lor11r_n1(ei),
(ii) for each ).=O there exists afunction a^(Lr(Q) such that lla^lln:s17-et<o-t>1

.for )"** (resp. ),*0) and

l/(s, a)-s(s)zl< cr(s)* ).lulnre.

Moreouer, the connection between g and G is giuen by g:Gx, (x(s)=t) and
Gx(s):g(s)x(s).

Proof. We will prove the theorem only for the derivative atzero) the other part
follows exactly the same scheme.

A. Sufficiency: If conditions (i) and (ii) are satisfied, then for each e>0 there
exists ro>0 such tlat lla,llu<6,n1{0-s)1'st@-c) for ),>a. Consequently, if we
choose 1::ellxlli@-dte un6 llxll, is sufficienfly small, then ),>a and hence

lla 
^ll 

q= ellxll e; altogether, we have

ll F x - G xll o = ll a tll n + All xll Xt 
q 
= e ll xll, + e ll xll ; t o - o / a 

11 
xy t t u

: 2ellxllp

which means that llFx-Gxllu:o(llxlln) or, equivalently, p"-6(g):o(e) (S*0).
B. Necessity: If F is differentiable at O(Lr(Q), then according to the above

mentioned result, condition (i) is fulfilled and Gx(s):g(s)x(s). Hence, given e>0,
there exists ä>0 such that llxllr=ä implies llflx-Gxllu=e llxllo. From Theorem 3

it follows that the function

a2 (s) :: sup max {0, l/(s, z) - g (s) ul- l1u1trtt,

belongs to Lo(Q) and satisfies lla^llo=e)"-qt@-4) which means that (ii) holds. n
Theorem 4 admits a generalization to higher derivatives. There are several

possibilities to define higher order derivatives of a nonlinear operator F: X*Y.
The "Taylor-series version" states that F has derivatives up to order m at xr(X if

llrtro*x)-F(xo)-G, x-l crx - * c**ll, : o0xll?),
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where the operators G1s are homogeneous of order k, i.e. G1,(Äx)=)'kGx. Using

this notion one obtains the following criterion for higher differentiability which is
proved in the same way as Theorem 4:

Theorem 5. Let f be a Carathöodory function such that /(s,0):0 and

F maps Lo(Q) into Ln(Q) (t=mq). Then F is m-times differentiable at 0 with

deriuatioes Gu:Ftk)10; (k:1, ...,m) if and only if the following two conditions qre

fulfilled:
(i) the limits

sr(s): k! p_lls u-off{r,u)_sr(s)u_ _mr--,1
(k:1, ...,m) exist andbelong to Lor11e-xq')(Q),

(ii) for each 1>O there exists a function a1(Ln(Q) such that llatlln:
o().-nal@-na)) for A** and

lf(s, u)- gr(s)tt- ... - g*(s)u^l = a^(s)+ Alulptq.

Moreouer, the connection between go and Gy is gioen by g1,:Gyx1(x(s)= l) und

G1x(s):go(s)[x(s)]0.

4. Applications

Let us briefly indicate how to apply the results of the preceding sections to the

solvability of the Hammerstein integral equation

(16) x(s)-lx(s) : x(s)- [ k1s, t17(t, x(t)) dt

: ./(s).

As usual, we assume that yQLo(Q), F maps Zr(O) into Ir(O) with /(s,0)=0.
and the linear integral operator

(x(s) : 
{ 

Ort, t)x(t) tlt

maps Lq(O) continuously into Lp(O). The solvability of equation (16) relies

usually on the application of either Schauder's fixed point principle (and its generaliza-

tions) or other methods related to derivatives of A. In all these cases I is assumed

to be compact, condensing, etc.

In order to apply fixed point principles one must find invariant closed convex

bounded sets. If we assume for simplicity that these invariant sets are balls with
center at the origin and radius g=0, then the condition

llKllpo(s) = s

is sufficient for this ball to be invariant under l. Instead of using the function
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pu it is more convenient to use the function v1 defined in (1 l) which is much easier
to calculate. In this way, the problem of finding an invariant ball is reduced to the
problem of solving the scalar inequality

llrKllvr(c) = e.

Nevertheless, for most applications it is still more practical to use differentiability
properties of A rather than fixed point properties. All existence results of this
type ([3], [6], [7]) use the existence of the asymptotic derivative and the fact that 1 is
not an eigenvalue of A'(*1. If y:6 in (16) (i.e. we consider the homogeneous
equation), then the problem x:Ax always has the trivial solution x:0. To prove
the existence of another nontrivial solution one assumes usually that the derivative
A'(0) at zero exists. In this case, if the sum of the multiplicities of the real eigen-
values >l of A'(0) and A'(-), respectively, have different parity (i.e. are not
both even or odd, see [3]), then the homogeneous equation x:Ax has a nontrivial
solution. Obviously, when making use of this type of theorem, one must prove the
differentiability of A at 0 or -. Theorem 4 allows us to give a precise formulation
of differentiability and, consequently, to enlarge the field of applications.

Integral operators of Hammerstein type play an important role in various fields
of nonlinear oscillations. For example, some of the problems on forced vibrations
in automatic control systems which can be described by equations of the form

(17) L(p)x - M(p)"f(t, x)

(where L(p) and M(p) are linear differential operators with constant coeffcients
of order /=1 and m<1, respectively) lead to equation (16). If the function / is
periodic with respect to time I with the period 7=0, the Z-periodic solutions to
equation (17) coincide with the solutions to equation (16), where O:[0,I], and
the kernel t has the form k(t,s1:617-s), with G being the so-calledimpulse-
frequency characteristic of the linear term with transform function

M(p)w@):zö
Similarly, such integral equations are related to certain problems on self-excited
vibrations; in these problems the kernel of the integral operator (16) and the non-
linearity often depend on various parameters (where the periods of the self-excited
vibrations are not known a priori).

In this way, our results allow us to obtain new existence theorems for periodic
solutions to equation (17).

The author expresses his deep gratitude to Professor P. P. Zabreiko for his
constant interest and very valuable advice during the preparation ofthis paper.
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