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ON THE SPHERICAL DERIVATIVE OF
A MEROMORPHIC FUNCTION WITH A NEVANLINNA
DEFICIENT VALUE

SAKARI TOPPILA

1. Introduction and results

I thank Professor D. Shea for suggesting this subject to me.

Let f be a meromorphic function in the complex plane. We write

G
o(f(2) = T+/GF

and

p(r, ) =sup{e(f(2): |z[ = r}.

We shall use the usual notations of the Nevanlinna theory. The following result
is proved in [11].

Theorem A. Let f be a transcendental meromorphic function in the plane
such that (e, f)=0. Then

1i1£%1p_‘ZT‘(Ll§|f’(—fZ;l = A1+ (e, ),

z€E(f)
where Ay,>0 is an absolute constant, t is the order of f and
E(f) = {z: /(2 = 1}.
In the other direction, we shall prove the following result.

Theorem 1. For any d,0<d=1, and t, O<t<eoo, there exists a mero-
morphic function f of order t such that &(e, f)=d and that

. ru(r, f) _
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2. Some lemmas

Lemma 1. Let k be a positive integer,

1
g(2) g

g,(2) =gQ27?*2) for p=1,..,k
and

fi@) = 2 (—1)g,(2).
Then n(r, <, f,)=8k* for r=2,

2.1 o(fi(2)) < 72k
for all z in the finite complex plane C, and if |z|=4, then
(2.2 /e (2] = [2/2[%.

Proof. 1t follows immediately from the definition of f, that the number of the
poles of f, is 8k* and that all the poles lie on |z]|=2.
Let |z|=4. We get

G = 3 (2721 = k(2= 1)

= 2k [2/2[%(2/4)% = [2/z|%,
which proves (2.2).
Let s, 1=s=k, be an integer. If

IZ] = 2(s+1/2)/k
and p=s, we get
23)  [g,(2)] = (QEHH2e/% —1)=1 = (16(28y~P—1)~1 = (1528 ~P) -1,
If

[Z| = (s—1/2)/k
and p=ys, we get
2.9 2)—1| = (27127 — 1] 71 = ((28)pP—s+ 12— 1)1 = (15(28)P—%)-1,
&p

Since

2.5 8,(2) = 8kz71g,(2)(g,(2)—1),
we get in both cases the estimate
QO gy = Bkl +1/15) (150 ) = 2K goyrton,

From (2.6) we deduce that if |z|=2Y®Y or |z|=2*+Y2)/k  then

, _ 128k = St
[ﬂ(z)lzz—zsg,;@) =k,
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and using the maximum principle and the fact that

e(f(2) =K @),

we conclude that
2.7) o(/(2) =k
if |z|=2YC9 or |z|=2k+1Ik,

Let 5, 1=s=k, be fixed and let

2s—1/2/k = |Zi = D(s+1/2)lk,

We write f;(z)=g,(z)+h(z). It follows from (2.3) and (2.4) that

(2.8) |h(2)| = :=2—'11 IgP(Z)H_ ,,=é7.1 (=1

s 3 fimg @) = 14019 S @)t =8,
and from (2.6) we get
29 () = 2k q,f:; @)=Lk

From (2.5) and (2.9) we deduce that if |g,(z)|=5/2, then

@10)  o(A() = & @+ ()] = 8k(GR)1+5D+ ok = T2k

and if |g,(z)|>5/2, it follows from (2.5), (2.8) and (2.9) that

@1 (@) = WO+ 2T
_ 115k lgz (2)] _ 115k g, (2)—1 - 115k
= oo Tear = oo 32k | By | = g KA+ < T2k

Combining (2.10), (2.11) and (2.7), we get (2.1). Lemma 1 is proved.

Lemma 2. Let k=9 be an integer, k=log A=k+1, and

£(2) = ﬁ (1= z/ AWy
Then -

. ru(r, ) _
(2.12) 11[}1 SUP 0. 7Y X 12,

the order of f is (log A)"'logk,
(2.13) |22 f(2)] >
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as z—eo outside the union of the discs |z— A"|=A4"]2,
(2.19) lzI2|f(2)] - 0
as z—-oo through the union of the discs |z— A"|=A4"19, and
2.15) N(4™ 0, ) = (1+o(D))k"+1(k—1)"2log 4
as n— o,

Proof. We have
(2.16) N0, ) = :2_11 kP log (4"] A7)

n—1 n-1 n(k"—k) k(l—}-(n—l)k"—nk"‘l))
—_ P —_ P — —
= pgl’ kPnlog 4 logAp;; pk ( - =17 log 4

= (1+o(D)k"* 1 (k—12logd (n —oo),

which proves (2.15).
For n=2, we write

8:(2) = ]I (1- Z/A”)"”p]] (1—z/AP)".

n+1

We have

2.17) log |2, (4" = log 1? (A" APY* = N4, 0, £)
and for 7/2=p=37/2

(2.18) log g, (4"e®)| = log [] (A"/APW* = N(4%,0, f).

p=1

Let A"2—1=|z|=24". We get

@19) BB | 3 ke A)] = (- - LS ke 3 (day
2:(2) p=n+1
(472 k= 20k Ay =1 4xr+1
= @R—A =D A—1k T 1-KkA = Q=30 =10 T FA0=k/2)
_ k"—l[ 1 L e )< Thr=1
=T \Toma—m TaF) = e

Let [z—A"=A4"/9. It follows from (2.17) and (2.19) that

(2.20) log |g,(2)| = log |g,(2)/g,(4™|+1og |, (4™

= N0, )+ [ (ga(w)/g,(w)) dw]

= N(A", 0, ) +(4"/9) Tk (6(1—1/9) A"~ = N(4", 0, f)+(7/48) k™1,
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and we deduce from (2.16) and (2.20) that
(2.21) log |22f(2)| = 3log A"—k"log 9+ N(4", 0, /)+(7/48) k"~*
=1 ((log A—1) log 9—k*(k—1)~* log 4) +(7/48+0 (1) k"=

=—k""1(6+0(1) (n o).
This proves (2.14).

Let A"2=|z|=24", |z—A"|=A4"2 and Imz=0. Integrating along the

positive imaginary axis and the circle |w|=|z|, we get from (2.18) and (2.19)

(2.22) log |g,(2)] = log |g,(i4™| | [ (g1 (w)/gs(w))d]

Izl
= N4, 0, =k Y6)(| [ r~tdr|+7/2)

= N(4", 0, {)—(7k"~1/6) (log 2+ m/2) = N (A", 0, f)—2.643k" 1.
This implies together with (2.16) that
(2.23) log |z72f(2)| = N(4", 0, f)—2.643k"'—k"log2—3log 4"
= k"1 (log A —klog2—2.643+0(1)) = k"~*((1—log2) log 4 —2.643+0 (D)
= (1/9+0(D)k"  (n —<°).

Since |f(Z)|=|f(z)|, we deduce that (2.23) holds for all z satisfying the conditions
A"2=|z|=24" and |z—A"|=A4"/2. Using the minimum principle, we get (2.13)
from (2.23).

It follows from (2.16) that
m logN(4",0,f)  logk

Lim log A" " logd’

which shows that the order of f is at least (log 4)~!log k.
Let 24"~ '=r=24". It follows from (2.13) that

m(24",0,f) =o(1) (n —>e),
and we deduce from the first main theorem of the Nevanlinna theory and (1.16) that

log T(r, f) _ (1 +o0 (1)) log N(24", 0, 1)
logr ~ (n—1)log 4

_( +o(1))log N(4"*, 0, f)
= (n—1)log4

which shows that the order of f is at most (log A)~'log k. We have shown that
the order of f is (log 4)~'logk.

= (logd) tlogk+o(1) (n —>oo),
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Let h(z)=f(2) if |z—A"=A4"/9 and h(z)=1/f(z) if z lies outside the union
of the discs |z—A"|<A4"/2. It follows from (2.13) and (2.14) that

(2.24) o(f(2) = [W(2)] = |2ni)? f i »}:(—Wz))z dwl = 0(|z72))
lz—w|=1

as z— oo outside the union of the annuli
D, = {z: A"9—1 < |z—A4"| < 1+ A4"|2}.
Let zeD,. It follows from (2.19) that
lzle(f(2) = |21 F DI (D] = |2l |1 () g (2] + |2 k" |z = 47|
=Tk" 16+ k"(A"+ A4"9)(A"9—1)"1 = k"~1(7/6+10k+0(1)) (n —<o).
This implies together with (2.24) that
(2.25) ru(r, f) = k" 1(7/6 +10k+0(1)) (n —~<o)
for A"/2—1<r<2A". For these values of r we get from (2.16)
kn=1 log A"
1—1/k A"2—1
= k" '(log4—(9/8)log2+0(1)) (n <),
which together with (2.25) and the fact that 9=k=log 4 implies that

N(T’, Oaf)EN(An/z—l, Oaf)éN(An’Osf)_

ru(r, /) _  7/6+10log 4
NG, 0,7) = Tog A—©/8)logz T°W

_6+90
~ 9—(9/8)1log2

+o(1) =1240(1) (n »).

This together with (2.24) proves (2.12). Lemma 2 is proved.
Lemma 3. Let O0<d=1 and 0<i=(log9)/9 be given. There exists a mero-

morphic function g of order A such that §(e, g)=d and that

. ru(r, g)
2.26 lim sup ——2- = 124.
229 =P T(r, o)

Proof. We choose a positive integer k=9 such that

log (k+1) _ 3 logk
k+1 - k

IIA

2.27)
and choose A4=0 such that (log A)~!log k=A. It follows from (2.27) that

logA=—l%g—k—§k
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and that

_ logk _ (k+1)logk
logd = 7= Tog(ktD < k+1.

We choose f(z) as in Lemma 2 corresponding to these values of k and A.

If d=1, we set g=f, and deduce from Lemma 2 that g is an entire function
satisfying the assertions of Lcmma 3.

Let us suppose that 0<d<1. We set

(2.28) b=1/d—-1,
and we denote by [x] the integral part of a positive real number x. We set
(2.29) » = L+[(bkP8)?],  h,(2) :fsp(8pA“"(z—A")),
where fsp is as in Lemma 1, and
ho = g h(2).

It follows from Lemma 1 that

(2.30) o(h,(2)) = 8pA~"o(f,,(8pAP(z—A4P)) = 576ps, 477
for any z€C and that

l Ap 6sp
(2.31) “'II,(Z)l = m

if [z—AF|=A4°/(2p).
Let n=9, A"2=|z|=A4"*"/2 and |z—A"|=A4"/(2n). It follows from (2.29)
and (2.31) that
I212(1hy (2)] + R (2) = h, (2)])

n--1 o
= A>+2 (2—“"4— > (AP[A"P+ 3 exp (—2sp)]
p=1 p=n+1

=472 (0 3 (A7) 3 exp(—2s,))

1=p=n/2 p>n/2
= (1+o(1)A" 2 (A7 + 3 exp(—k"?)
p>nl2

= (1+0(1)) 4> *(nA=*+exp (—k"%) = 0(1) (n —<°).

This implies that
(2.32) |z%h(2)] - O

as z—oo outside the union of the discs |z—A4"|<A4"/(2n), and, together with the



242 SAKARI TOPPILA

maximum principle, that
(2:33) |22[[h(2)—h, (D) = 0(1) (n —=)
in |z—A"|=34"/(4n).
We set g(z)=f(z)+h(z). Let n=9 and |z—A4"|=34"/(4n). We write
g(2) = h,(2)+ H,(2).
It follows from (2.33) and Lemma 2 that
(234 |22H, ()] = o(1) (n —~eo),

which implies that

(2.35) |H,,’(z)l=|(27ri)"1 f H,,(w)(w—z)—zdw|§o(1z-21) (n — <)

w—z|=

in |z—A"=54"/(8n). Since

_ [hn(2)] N
Q(g(Z)) = 1+|hn(Z)+H,,(Z)I2 +!Hn (Z)l,

we get from (2.29), (2.30), (2.34), (2.35) and Lemma 2
(2.36) |zle(g(2)) = (576 +0(1))ns, A™"|z| = (576 +0(1))ns, = 0(s2) = o (k")
=0(N(lz,0, /) (n —=)
in |z—A"|=54"/(8n).
As in the connection of (2.35), we deduce from (2.32) that
(2.37) (D) =o(z]7?)

as z—oo outside the union of the discs [z—A"'<5A4"/(8n). Since

"(2)!
26 = T WG

it follows from Lemma 2, (2.32) and (2.37) that
zle(g(2) = (12+0 ()N (|2}, 0, 1)

as z—o outside the union of the discs |z—A4"<54"/(8n). This together with
(2.36) implies that

(2.38) ru(r, g) = (124+0(D)N(r, 0,1)  (r — ).
It follows from (2.29) that
(2.39) n(r, =, g) = (b+o()n(r,0,1)

as r—oco outside the union of the intervals [4"(1—1/(2n)), A"(1+1/(2n))]. Let



On the spherical derivative of a meromorphic function with a Nevanlinna deficient value 243

A"=r=A4"*', It follows from (2.39) that

NG, 22, ) =bN(, 0, /)| = | [ (n(t, ==, ©)=bn(2, 0, )¢~ di|

ni1 APA+1/2P)

=o(N O, N+ > [ In@t, e 0)=bn(1,0, NHlt~*dt

p=1 4r(1-1/(2p))

= O(N(r’ Oa f))+0 (::2‘:1 kplog%%]

=0o(N(r,0, /))+0 [ élk"/p] =o(N(@, 0, f))+o(k"™Y) (n —~oo),

which together with Lemma 2 implies that
(2.40) N(r, =, g) = (b+o(D))N(r, 0,/) (r ~=2).

Let AP(1—1/p)=r=A"(1+1/p). From the first main theorem and (2.32)
it follows that

m(r, e, h) = T(r, h)— N(r, o, h) = T(4P(1+1/p), h)— N(A”(1—1/p), <, h)
= N(4?(1+1/p), h)— N(A?(1—1/p), h)+o(1),
and since N(t, h)=N(t, g) for all =0, we deduce from (2.40) and Lemma 2 that
m(r, h) = (b+0(1)) N(4?(1+1/p), 0, f)—bN(A?(1—1/p), 0, f)

1+1
=0 (k’log 1f1;§)+o(N(AP, 0, /) =o0(T(r,g) (p—).
This together with (2.32) implies that
(2.41) m(r, =, h) = o(T(r, g)) (r —°).

Since
m(r, g = m(r, f)+m(r, h)+log2
and
m(r, f) = m(r, g)+m(r, h)+log 2,

we deduce from (2.41) that
(2.42) m(r, g) = (L+oM)m(r, /) = (1+oM)T(r, ) (r ~=).

From (2.40) and (2.42) it follows that the functions f and g have the same
order, so it follows from Lemma 2 that the order of g is (log 4)~'log k=A.
From (2.40), (2.42) and Lemma 2 we get

m(44", =, g) 7(44" f)
T(44", g) ~ T(4A4", f)+bN(44",0,f)

=({+b)1+o(l) =d+o(l) (n ),

+o(1)
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which implies that J(ee, g)=d. From (2.40) and (2.42) we deduce that

’n(r9°°7g)_ T(r,f) = T(r’f)
7o~ T N+one o W= T ot p TW
=d+o(l) (r —<),
which implies that (e, g)=d, and we get (o, g)=d.
From (2.38), (2.40) and (2.42) it follows that
a8 _ 12N(r,0,/) NN L

Trng = T DTN 0.0 D= NE o, DbNG. 0.7

=12d+0o(l) (r o).

This completes the proof of Lemma 3.

3. Proof of Theorem 1

Let d and t be as in Theorem 1. If O<t=(log 9)/9, then the function g of
Lemma 3 satisfies the assertions of Theorem 1.
Let us suppose that #>(log 9)/9. We choose a positive integer k such that

9t

@3.1) k=1 <o

=k,

A=tlk, and f(z)=g(z*), where g is the function of Lemma 3 corresponding to
these values of d and 4.

Since
(32) m (r’ f) = m(rk: g)
and
(3.3) NG, f)= N@* g

for all r=0, we deduce from Lemma 3 that J(e,f)=0(e=, g)=d and that the
order of f is kl=t.
Since

|zle(f(2)) = klz[o(g(z")
for all zeC, we get from (3.2), (3.3) and Lemma 3

ru(r, f) _ krfu@t g
(B34 T ) = TG D =12kd+o(1) (r —-<o).

Since 1/5<(log 9)/9<1, we get from (3.1)
k = 5((k log 9)/9+1—(log 9)/9) = 5(1+(k—1) (log 9)/9) < 5(1+7),

which together with (3.4) proves (1.1). Theorem 1 is proved.
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