Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 8, 1983, 235—245

ON THE SPHERICAL DERIVATIVE OF A MEROMORPHIC FUNCTION WITH A NEVANLINNA DEFICIENT VALUE

SAKARI TOPPILA

1. Introduction and results

I thank Professor D. Shea for suggesting this subject to me.

Let f be a meromorphic function in the complex plane. We write

$$\varrho(f(z)) = \frac{|f'(z)|}{1 + |f(z)|^2}$$

and

$$\mu(r, f) = \sup \{ \varrho(f(z)) \colon |z| = r \}.$$

We shall use the usual notations of the Nevanlinna theory. The following result is proved in [11].

Theorem A. Let f be a transcendental meromorphic function in the plane such that $\delta(\infty, f) > 0$. Then

$$\limsup_{\substack{z \to \infty \\ z \in E(f)}} \frac{|z|\varrho(f(z))}{T(|z|,f)} \ge A_0(1+t)\delta(\infty,f),$$

where $A_0>0$ is an absolute constant, t is the order of f and

$$E(f) = \{z : |f(z)| = 1\}.$$

In the other direction, we shall prove the following result.

Theorem 1. For any d, $0 < d \le 1$, and t, $0 < t < \infty$, there exists a meromorphic function f of order t such that $\delta(\infty, f) = d$ and that

(1.1)
$$\limsup_{r\to\infty} \frac{r\mu(r,f)}{T(r,f)} \le 60(1+t)\delta(\infty,f).$$

2. Some lemmas

Lemma 1. Let k be a positive integer,

$$g(z)=\frac{1}{1-z^{8k}},$$

$$g_p(z) = g(2^{-p/k}z)$$
 for $p = 1, ..., k$,

and

$$f_k(z) = \sum_{p=1}^k (-1)^p g_p(z).$$

Then $n(r, \infty, f_k) = 8k^2$ for $r \ge 2$,

$$\varrho(f_k(z)) < 72k$$

for all z in the finite complex plane C, and if $|z| \ge 4$, then

$$(2.2) |f_k(z)| \le |2/z|^{6k}.$$

Proof. It follows immediately from the definition of f_k that the number of the poles of f_k is $8k^2$ and that all the poles lie on $|z| \le 2$.

Let $|z| \ge 4$. We get

$$|f_k(z)| \le \sum_{p=1}^k (|2^{-p/k}z|^{8k} - 1)^{-1} \le k(|z/2|^{8k} - 1)^{-1}$$

$$\leq 2k |2/z|^{6k} (2/4)^{2k} \leq |2/z|^{6k}$$

which proves (2.2).

Let $s, 1 \le s \le k$, be an integer. If

$$|z| \ge 2^{(s+1/2)/k}$$

and $p \le s$, we get

$$(2.3) |g_p(z)| \le ((2^{(s+1/2)/k}/2^{p/k})^{8k} - 1)^{-1} = (16(2^8)^{s-p} - 1)^{-1} \le (15(2^8)^{s-p})^{-1}.$$
If

$$|z| \le 2^{(s-1/2)/k}$$

and $p \ge s$, we get

$$|g_p(z)-1|=|(z^{-1}2^{p/k})^{8k}-1|^{-1} \leq ((2^8)^{p-s+1/2}-1)^{-1} \leq (15(2^8)^{p-s})^{-1}.$$

Since

(2.5)
$$g'_p(z) = 8kz^{-1}g_p(z)(g_p(z)-1),$$

we get in both cases the estimate

$$(2.6) |g_p'(z)| \le 8k|z|^{-1}(1+1/15)\left(15(2^8)^{|s-p|}\right)^{-1} = \frac{128k}{225|z|}(2^8)^{-|s-p|}.$$

From (2.6) we deduce that if $|z|=2^{1/(2k)}$ or $|z| \ge 2^{(k+1/2)/k}$, then

$$|f_k'(z)| \leq \frac{128k}{225} \sum_{t=0}^{\infty} (2^8)^{-t} \leq k,$$

and using the maximum principle and the fact that

$$\varrho(f_k(z)) \leq |f_k'(z)|,$$

we conclude that

$$\varrho(f_k(z)) \le k$$

if $|z| \le 2^{1/(2k)}$ or $|z| \ge 2^{(k+1/2)/k}$.

Let s, $1 \le s \le k$, be fixed and let

$$2^{(s-1/2)/k} \le |z| \le 2^{(s+1/2)/k}$$

We write $f_k(z) = g_s(z) + h(z)$. It follows from (2.3) and (2.4) that

$$|h(z)| \le \sum_{p=1}^{s-1} |g_p(z)| + \left| \sum_{p=s+1}^k (-1)^p \right|$$

$$+\sum_{p=s+1}^{k}|1-g_p(z)| \leq 1+(2/15)\sum_{q=0}^{\infty}(2^8)^{-q} \leq 8/7,$$

and from (2.6) we get

$$|h'(z)| \le \frac{256k}{225} \sum_{q=0}^{\infty} (2^8)^{-q} \le \frac{115k}{100}.$$

From (2.5) and (2.9) we deduce that if $|g_s(z)| \le 5/2$, then

$$(2.10) \varrho(f_k(z)) \le |g_s'(z)| + |h'(z)| \le 8k(5/2)(1+5/2) + \frac{115k}{100} < 72k,$$

and if $|g_s(z)| > 5/2$, it follows from (2.5), (2.8) and (2.9) that

(2.11)
$$\varrho(f_k(z)) \leq |h'(z)| + \frac{|g_s'(z)|}{1 + (|g_s(z)| - |h(z)|)^2}$$

$$\leq \frac{115k}{100} + \frac{|g_s'(z)|}{|g_s(z)/2|^2} \leq \frac{115k}{100} + 32k \left| \frac{g_s(z) - 1}{g_s(z)} \right| \leq \frac{115k}{100} + 32k(1 + 2/5) < 72k.$$

Combining (2.10), (2.11) and (2.7), we get (2.1). Lemma 1 is proved.

Lemma 2. Let $k \ge 9$ be an integer, $k \le \log A \le k+1$, and

$$f(z) = \prod_{n=1}^{\infty} (1 - z/A^n)^{k^n}.$$

Then

(2.12)
$$\limsup_{r \to \infty} \frac{r\mu(r, f)}{N(r, 0, f)} \le 12,$$

the order of f is $(\log A)^{-1} \log k$,

$$(2.13) |z|^{-2}|f(z)| \to \infty$$

as $z \to \infty$ outside the union of the discs $|z - A^n| \le A^n/2$,

$$|z|^2|f(z)| \to 0$$

as $z \to \infty$ through the union of the discs $|z-A^n| \le A^n/9$, and

$$(2.15) N(An, 0, f) = (1 + o(1))kn+1(k-1)-2 log A$$

as $n \to \infty$.

Proof. We have

(2.16)
$$N(A^n, 0, f) = \sum_{p=1}^{n-1} k^p \log(A^n/A^p)$$

$$= \sum_{p=1}^{n-1} k^p n \log A - \log A \sum_{p=1}^{n-1} p k^p = \left(\frac{n(k^n - k)}{k - 1} - \frac{k(1 + (n-1)k^n - nk^{n-1})}{(k-1)^2} \right) \log A$$
$$= (1 + o(1))k^{n+1}(k-1)^{-2} \log A \quad (n \to \infty),$$

which proves (2.15).

For $n \ge 2$, we write

$$g_n(z) = \prod_{p=1}^{n-1} (1 - z/A^p)^{k^p} \prod_{p=n+1}^{\infty} (1 - z/A^p)^{k^p}.$$

We have

(2.17)
$$\log|g_n(A^n)| \le \log \prod_{p=1}^{n-1} (A^n/A^p)^{k^p} = N(A^n, 0, f)$$

and for $\pi/2 \le \varphi \le 3\pi/2$

(2.18)
$$\log |g_n(A^n e^{i\varphi})| \ge \log \prod_{p=1}^{n-1} (A^n/A^p)^{k^p} = N(A^n, 0, f).$$

Let $A^n/2-1 \le |z| \le 2A^n$. We get

$$(2.19) \quad \left| \frac{g_n'(z)}{g_n(z)} \right| = \left| \sum_{p \neq n} k^p / (z - A^p) \right| \le (|z| - A^{n-1})^{-1} \sum_{p=1}^{n-1} k^p + 2 \sum_{p=n+1}^{\infty} (k/A)^p$$

$$\le \frac{(A^n/2)k^{n-1}}{(A^n/2 - A^{n-1} - 1)|z|(1 - 1/k)} + \frac{2(k/A)^{n+1}}{1 - k/A} \le \frac{k^{n-1}}{(1 - 3/A)|z|(1 - 1/k)} + \frac{4k^{n+1}}{|z|A(1 - k/A)}$$

$$\leq \frac{k^{n-1}}{|z|} \left(\frac{1}{(1-3/A)(1-1/k)} + \frac{4k^2}{A-k} \right) \leq \frac{7k^{n-1}}{6|z|}.$$

Let $|z-A^n| \le A^n/9$. It follows from (2.17) and (2.19) that

(2.20)
$$\log |g_n(z)| = \log |g_n(z)/g_n(A^n)| + \log |g_n(A^n)|$$

$$\leq N(A^n, 0, f) + \left| \int_{z}^{A^n} \left(g'_n(w) / g_n(w) \right) dw \right|$$

$$\leq N(A^n, 0, f) + (A^n/9)(7k^{n-1})(6(1-1/9)A^n)^{-1} \leq N(A^n, 0, f) + (7/48)k^{n-1},$$

and we deduce from (2.16) and (2.20) that

(2.21)
$$\log |z^{2}f(z)| \leq 3 \log A^{n} - k^{n} \log 9 + N(A^{n}, 0, f) + (7/48)k^{n-1}$$
$$\leq -k^{n-1} ((\log A - 1) \log 9 - k^{2}(k-1)^{-2} \log A) + (7/48 + o(1))k^{n-1}$$
$$\leq -k^{n-1} (6 + o(1)) \quad (n \to \infty).$$

This proves (2.14).

Let $A^n/2 \le |z| \le 2A^n$, $|z-A^n| \ge A^n/2$ and Im $z \ge 0$. Integrating along the positive imaginary axis and the circle |w| = |z|, we get from (2.18) and (2.19)

(2.22)
$$\log |g_n(z)| \ge \log |g_n(iA^n)| - \Big| \int_{A^n}^z (g'_n(w)/g_n(w)) dw \Big|$$

$$\ge N(A^n, 0, f) - (7k^{n-1}/6) \Big(\Big| \int_{A^n}^{|z|} r^{-1} dr \Big| + \pi/2 \Big)$$

$$\ge N(A^n, 0, f) - (7k^{n-1}/6) (\log 2 + \pi/2) \ge N(A^n, 0, f) - 2.643k^{n-1}.$$

This implies together with (2.16) that

(2.23)
$$\log |z^{-2}f(z)| \ge N(A^n, 0, f) - 2.643k^{n-1} - k^n \log 2 - 3\log A^n$$

$$\ge k^{n-1} \left(\log A - k \log 2 - 2.643 + o(1)\right) \ge k^{n-1} \left((1 - \log 2) \log A - 2.643 + o(1)\right)$$

$$\ge (1/9 + o(1))k^{n-1} \quad (n \to \infty).$$

Since $|f(\bar{z})| = |f(z)|$, we deduce that (2.23) holds for all z satisfying the conditions $A^n/2 \le |z| \le 2A^n$ and $|z - A^n| \ge A^n/2$. Using the minimum principle, we get (2.13) from (2.23).

It follows from (2.16) that

$$\lim_{n\to\infty}\frac{\log N(A^n,0,f)}{\log A^n}=\frac{\log k}{\log A},$$

which shows that the order of f is at least $(\log A)^{-1} \log k$.

Let $2A^{n-1} \le r \le 2A^n$. It follows from (2.13) that

$$m(2A^n, 0, f) = o(1) \quad (n \to \infty),$$

and we deduce from the first main theorem of the Nevanlinna theory and (1.16) that

$$\frac{\log T(r,f)}{\log r} \le \frac{(1+o(1))\log N(2A^n,0,f)}{(n-1)\log A}$$

$$\le \frac{(1+o(1))\log N(A^{n+1},0,f)}{(n-1)\log A} \le (\log A)^{-1}\log k + o(1) \quad (n\to\infty),$$

which shows that the order of f is at most $(\log A)^{-1} \log k$. We have shown that the order of f is $(\log A)^{-1} \log k$.

Let h(z)=f(z) if $|z-A^n| \le A^n/9$ and h(z)=1/f(z) if z lies outside the union of the discs $|z-A^n| < A^n/2$. It follows from (2.13) and (2.14) that

(2.24)
$$\varrho(f(z)) \le |h'(z)| = \left| (2\pi i)^{-1} \int_{|z-w|=1}^{\infty} \frac{h(w)}{(w-z)^2} dw \right| = O(|z^{-2}|)$$

as $z \rightarrow \infty$ outside the union of the annuli

$$D_n = \{z: A^n/9 - 1 < |z - A^n| < 1 + A^n/2\}.$$

Let $z \in D_n$. It follows from (2.19) that

$$|z|\varrho(f(z)) \le |z||f'(z)|f(z)| \le |z||g'_n(z)|g_n(z)| + |z|k^n|z - A^n|^{-1}$$

$$\le 7k^{n-1}/6 + k^n(A^n + A^n/9)(A^n/9 - 1)^{-1} \le k^{n-1}(7/6 + 10k + o(1)) \quad (n \to \infty).$$

This implies together with (2.24) that

(2.25)
$$r\mu(r,f) \le k^{n-1} (7/6 + 10k + o(1)) \quad (n \to \infty)$$

for $A^n/2-1 < r < 2A^n$. For these values of r we get from (2.16)

$$N(r, 0, f) \ge N(A^{n}/2 - 1, 0, f) \ge N(A^{n}, 0, f) - \frac{k^{n-1}}{1 - 1/k} \log \frac{A^{n}}{A^{n}/2 - 1}$$

$$\ge k^{n-1} (\log A - (9/8) \log 2 + o(1)) \quad (n \to \infty),$$

which together with (2.25) and the fact that $9 \le k \le \log A$ implies that

$$\frac{r\mu(r,f)}{N(r,0,f)} \le \frac{7/6 + 10\log A}{\log A - (9/8)\log 2} + o(1)$$
$$\le \frac{7/6 + 90}{9 - (9/8)\log 2} + o(1) \le 12 + o(1) \quad (n \to \infty).$$

This together with (2.24) proves (2.12). Lemma 2 is proved.

Lemma 3. Let $0 < d \le 1$ and $0 < \lambda \le (\log 9)/9$ be given. There exists a meromorphic function g of order λ such that $\delta(\infty, g) = d$ and that

(2.26)
$$\limsup_{r \to \infty} \frac{r\mu(r, g)}{T(r, g)} \le 12 d.$$

Proof. We choose a positive integer $k \ge 9$ such that

$$(2.27) \frac{\log(k+1)}{k+1} \le \lambda \le \frac{\log k}{k}$$

and choose A>0 such that $(\log A)^{-1}\log k=\lambda$. It follows from (2.27) that

$$\log A = \frac{\log k}{\lambda} \ge k$$

and that

$$\log A = \frac{\log k}{\lambda} \le \frac{(k+1)\log k}{\log (k+1)} < k+1.$$

We choose f(z) as in Lemma 2 corresponding to these values of k and A.

If d=1, we set g=f, and deduce from Lemma 2 that g is an entire function satisfying the assertions of Lemma 3.

Let us suppose that 0 < d < 1. We set

$$(2.28) b = 1/d - 1,$$

and we denote by [x] the integral part of a positive real number x. We set

$$(2.29) s_p = 1 + [(bk^p/8)^{1/2}], h_p(z) = f_{s_p}(8pA^{-p}(z - A^p)),$$

where f_{s_n} is as in Lemma 1, and

$$h(z) = \sum_{p=1}^{\infty} h_p(z).$$

It follows from Lemma 1 that

(2.30)
$$\varrho(h_p(z)) = 8pA^{-p}\varrho(f_{s_p}(8pA^p(z-A^p))) \le 576ps_pA^{-p}$$

for any $z \in C$ and that

$$|h_p(z)| \le \left| \frac{A^p}{4p(z - A^p)} \right|^{6s_p}$$

if $|z-A^p| \ge A^p/(2p)$.

Let $n \ge 9$, $A^n/2 \le |z| \le A^{n+1}/2$ and $|z-A^n| \ge A^n/(2n)$. It follows from (2.29) and (2.31) that

$$|z|^{2}(|h_{n}(z)|+|h(z)-h_{n}(z)|)$$

$$\leq A^{2n+2} \left(2^{-6s_n} + \sum_{p=1}^{n-1} (A^p / A^n)^{6s_p} + \sum_{p=n+1}^{\infty} \exp\left(-2s_p\right) \right)$$

$$\leq A^{2n+2} \left(\sum_{1 \leq p \leq n/2} (A^{-n/2})^6 + \sum_{p>n/2} \exp\left(-2s_p\right) \right)$$

$$\leq \left(1 + o(1) \right) A^{2n+2} \left(nA^{-3n} + \sum_{p>n/2} \exp\left(-k^{p/3}\right) \right)$$

$$\leq \left(1 + o(1) \right) A^{2n+2} \left(nA^{-3n} + \exp\left(-k^{n/6}\right) \right) = o(1) \quad (n \to \infty).$$

This implies that

$$(2.32) |z^2h(z)| \to 0$$

as $z \to \infty$ outside the union of the discs $|z-A^n| < A^n/(2n)$, and, together with the

maximum principle, that

$$|z^{2}||h(z)-h_{n}(z)| \leq o(1) \quad (n \to \infty)$$

in $|z-A^n| \le 3A^n/(4n)$.

We set g(z)=f(z)+h(z). Let n>9 and $|z-A^n| \le 3A^n/(4n)$. We write

$$g(z) = h_n(z) + H_n(z).$$

It follows from (2.33) and Lemma 2 that

$$(2.34) |z^2H_n(z)| \leq o(1) \quad (n \to \infty),$$

which implies that

$$(2.35) |H'_n(z)| = \left| (2\pi i)^{-1} \int_{|w-z|=1} H_n(w) (w-z)^{-2} dw \right| \le o(|z^{-2}|) (n \to \infty)$$

in $|z-A^n| \le 5A^n/(8n)$. Since

$$\varrho(g(z)) \le \frac{|h'_n(z)|}{1 + |h_n(z) + H_n(z)|^2} + |H'_n(z)|,$$

we get from (2.29), (2.30), (2.34), (2.35) and Lemma 2

$$(2.36) \quad |z|\varrho(g(z)) \le (576 + o(1))ns_n A^{-n}|z| \le (576 + o(1))ns_n = o(s_n^2) = o(k^n)$$

$$= o(N(|z|, 0, f)) \quad (n \to \infty)$$

in $|z-A^n| \le 5A^n/(8n)$.

As in the connection of (2.35), we deduce from (2.32) that

$$(2.37) |h'(z)| = o(|z|^{-2})$$

as $z \to \infty$ outside the union of the discs $|z - A^n| < 5A^n/(8n)$. Since

$$\varrho(g(z)) \le \frac{|f'(z)|}{1 + |f(z) + h(z)|^2} + |h'(z)|,$$

it follows from Lemma 2, (2.32) and (2.37) that

$$|z|\varrho(g(z)) \leq (12+o(1))N(|z|, 0, f)$$

as $z \to \infty$ outside the union of the discs $|z - A^n| < 5A^n/(8n)$. This together with (2.36) implies that

(2.38)
$$r\mu(r,g) \leq (12+o(1))N(r,0,f) \quad (r \to \infty).$$

It follows from (2.29) that

(2.39)
$$n(r, \infty, g) = (b + o(1))n(r, 0, f)$$

as $r \to \infty$ outside the union of the intervals $[A^n(1-1/(2n)), A^n(1+1/(2n))]$. Let

 $A^n \le r \le A^{n+1}$. It follows from (2.39) that

$$|N(r, \infty, g) - bN(r, 0, f)| = \left| \int_{0}^{r} \left(n(t, \infty, g) - bn(t, 0, f) \right) t^{-1} dt \right|$$

$$\leq o\left(N(r, 0, f) \right) + \sum_{p=1}^{n+1} \int_{A^{p}(1-1/(2p))}^{A^{p}(1+1/(2p))} |n(t, \infty, g) - bn(t, 0, f)| t^{-1} dt$$

$$\leq o\left(N(r, 0, f) \right) + O\left(\sum_{p=1}^{n+1} k^{p} \log \frac{1+1/(2p)}{1-1/(2p)} \right)$$

$$\leq o\left(N(r, 0, f) \right) + O\left(\sum_{p=1}^{n+1} k^{p} / p \right) \leq o\left(N(r, 0, f) \right) + o(k^{n+1}) \quad (n \to \infty),$$

which together with Lemma 2 implies that

$$(2.40) N(r, \infty, g) = (b + o(1))N(r, 0, f) (r \to \infty).$$

Let $A^p(1-1/p) \le r \le A^p(1+1/p)$. From the first main theorem and (2.32) it follows that

$$m(r, \infty, h) = T(r, h) - N(r, \infty, h) \le T(A^{p}(1+1/p), h) - N(A^{p}(1-1/p), \infty, h)$$

 $\le N(A^{p}(1+1/p), h) - N(A^{p}(1-1/p), h) + o(1),$

and since N(t,h)=N(t,g) for all t>0, we deduce from (2.40) and Lemma 2 that

$$m(r, h) \leq (b + o(1)) N(A^{p}(1 + 1/p), 0, f) - bN(A^{p}(1 - 1/p), 0, f)$$

$$\leq O\left(k^{p} \log \frac{1 + 1/p}{1 - 1/p}\right) + o(N(A^{p}, 0, f)) \leq o(T(r, g)) \quad (p \to \infty).$$

This together with (2.32) implies that

$$(2.41) m(r, \infty, h) = o(T(r, g)) (r \to \infty).$$

Since

$$m(r, g) \leq m(r, f) + m(r, h) + \log 2$$

and

$$m(r, f) \leq m(r, g) + m(r, h) + \log 2$$

we deduce from (2.41) that

$$(2.42) m(r,g) = (1+o(1))m(r,f) = (1+o(1))T(r,f) (r \to \infty).$$

From (2.40) and (2.42) it follows that the functions f and g have the same order, so it follows from Lemma 2 that the order of g is $(\log A)^{-1} \log k = \lambda$.

From (2.40), (2.42) and Lemma 2 we get

$$\frac{m(4A^n, \infty, g)}{T(4A^n, g)} = \frac{T(4A^n, f)}{T(4A^n, f) + bN(4A^n, 0, f)} + o(1)$$
$$= (1+b)^{-1} + o(1) = d + o(1) \quad (n \to \infty),$$

which implies that $\delta(\infty, g) \le d$. From (2.40) and (2.42) we deduce that

$$\frac{m(r, \infty, g)}{T(r, g)} = \frac{T(r, f)}{T(r, f) + bN(r, 0, f)} + o(1) \ge \frac{T(r, f)}{T(r, f) + bT(r, f)} + o(1)$$

$$= d + o(1) \quad (r \to \infty),$$

which implies that $\delta(\infty, g) \ge d$, and we get $\delta(\infty, g) = d$.

From (2.38), (2.40) and (2.42) it follows that

$$\frac{r\mu(r,g)}{T(r,g)} \le \frac{12N(r,0,f)}{T(r,f)+bN(r,0,f)} + o(1) \le \frac{12N(r,0,f)}{N(r,0,f)+bN(r,0,f)} + o(1)$$

$$= 12d + o(1) \quad (r \to \infty).$$

This completes the proof of Lemma 3.

3. Proof of Theorem 1

Let d and t be as in Theorem 1. If $0 < t \le (\log 9)/9$, then the function g of Lemma 3 satisfies the assertions of Theorem 1.

Let us suppose that $t > (\log 9)/9$. We choose a positive integer k such that

$$(3.1) k-1 < \frac{9t}{\log 9} \le k,$$

 $\lambda = t/k$, and $f(z) = g(z^k)$, where g is the function of Lemma 3 corresponding to these values of d and λ .

Since

$$(3.2) m(r, f) = m(r^k, g)$$

and

$$(3.3) N(r,f) = N(r^k, g)$$

for all r>0, we deduce from Lemma 3 that $\delta(\infty, f) = \delta(\infty, g) = d$ and that the order of f is $k\lambda = t$.

Since

$$|z|\varrho(f(z)) = k|z|^k\varrho(g(z^k))$$

for all $z \in C$, we get from (3.2), (3.3) and Lemma 3

(3.4)
$$\frac{r\mu(r,f)}{T(r,f)} = \frac{kr^k\mu(r^k,g)}{T(r^k,g)} \le 12k \, d + o(1) \quad (r \to \infty).$$

Since $1/5 < (\log 9)/9 < 1$, we get from (3.1)

$$k \le 5((k \log 9)/9 + 1 - (\log 9)/9) = 5(1 + (k-1)(\log 9)/9) < 5(1+t),$$

which together with (3.4) proves (1.1). Theorem 1 is proved.

References

- [1] Anderson, J. M., and J. Clunie: Slowly growing meromorphic functions. Comment. Math. Helv. 40, 1966, 267—280.
- [2] Anderson, J. M., and S. Toppila: The growth of the spherical derivative of a meromorphic function of finite lower order. J. London Math. Soc. (2) 27, 1983, 289—305.
- [3] CLUNIE, J., and W. K. HAYMAN: The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 49, 1966, 117—148.
- [4] Lehto, O.: The spherical derivative of meromorphic functions in the neighbourhood of an isolated singularity. Comment. Math. Helv. 33, 1959, 196—205.
- [5] Lehto, O., and K. I. Virtanen: On the behaviour of meromorphic functions in the neighbourhood of an isolated singularity. Ann. Acad. Sci. Fenn. Ser. A I Math. 240, 1957, 1—9.
- [6] NEVANLINNA, R.: Analytic functions. Springer-Verlag, New York—Berlin—Heidelberg, 1970.
- [7] POMMERENKE, CH.: Normal functions. Proceedings of the NRL Conference on Classical Function Theory, Math. Res. Center, Naval Res. Lab., Washington, D. C., 1970, 77—93.
- [8] TOPPILA, S.: On the growth of the spherical derivative of a meromorphic function. Ann. Acad. Sci. Fenn. Ser. A I Math. 7, 1982, 119—139.
- [9] Toppila, S.: On the spherical derivative of a meromorphic function with a deficient value. Proceedings of the fifth Romanian—Finnish Seminar on Complex Analysis (to appear).
- [10] TOPPILA, S., and J. WINKLER: On the spherical derivative of a meromorphic function with a Valiron deficient value. Math. Z. 180, 1982, 545—551.
- [11] TOPPILA, S., and J. WINKLER: Some lower bounds for the maximal growth of the spherical derivative. Complex variables: Theory and application 2, 1983, 1—25.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 1 February 1983