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SIMPLIFIED PROOFS OF SOME BASIC THEOREMS
FOR QUASIREGULAR MAPPINGS

MARTTI 1. PESONEN

1. Introduction

In what follows f will always denote a non-constant n-dimensional quasi-
regular mapping of a domain GC R" into R". We recall that the branch set Bj is
the set of those points in G at which f is not locally homeomorphic, and that
N(», f, A) is the number of all points in the set f~%y)nA. Our notation and
terminology is adopted from [1].

The purpose of this paper is to present new simplified proofs for the following
well-known theorems in the theory of quasiregular mappings.

1.1. Theorem. The condition (N) is satisfied, i.e., if ACG and m(A4)=0,
then m(fA)=0. Moreover m(fB;)=0.

1.2. Theorem. The transformation formula
[hof)Jpdm = [R(G)N, 1 E)dm(y)
E Rn

holds whenever h: R"—[0, ] and ECG are measurable.
1.3. Theorem. For a.e. x€G, J;(x)=0. Consequently m(B;)=0.

Resetnjak’s original proof for the condition (N) does not make use of the
fact that f is discrete and open. In the present proof these properties of f play
an essential role. It should be noted that 1.1 is not needed in proving the discreteness
and openness of f (see [4]).

Theorem 1.2 is a direct consequence of the proof of Theorem 1.1. Earlier the
transformation formula was obtained by the use of a general theorem [3, p. 364]
the proof of which requires a heavy machinery of algebraic topology.

The original proof [1, 8.2] of Theorem 1.3 is based on the K. -capacity inequality.
Our proof instead is, based on the use of the Ki-path family inequality and Poleckii’s
lemma.
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2. The proofs of Theorems 1.1 and 1.2

Because f' is continuous and a.e. differentiable, it is a basic fact of real analysis
that if f is injective, then

Q.1 m(fE) = [J;dm

for every Borel set E in G. In fact, the cquality holds in (2.1). This is a consequence
of the following result, which is obtained by a C-approximation.

2.2. Proposition. For every Borel set E in G
m(fE) = fdeln.
E

Proof. We first show that n-intervals in G can be approximated by n-intervals
whose boundaries f maps into null-sets. To do this, fix a closed n-interval Q in
G and let ¢ be positive. Let Q" be a closed n-interval in G <o that Qcint O’
and m(Q\Q)<e. If m(f0Q,)=0 for every n-interval Q,, OcQ,cQ’, then
there is a positive number p and a sequence of n-intervals Q;, 0cQ,C(Q’, with
disjoint boundaries such that m(fdQ;)=p for every i. But this is impossible. since

2m(f00) = [ 3 oo, dm = N(£.Q)m(fQ) <=,

Rn 1
where

N(f; Q) = sup {N(y,/, Q")|yeR"}.

Hence, m(f0Q,)=0 for some n-interval Q,>Q with m(Q,\Q)<e.

Let & be positive. It follows from the definition of the Lebesgue measure
and from the approximation result mentioned above, that since J, is locally
integrable (fis ACL"), there exists a sequence of closed n-intervals Q,CcG with
m(f0Q;)=0, such that EcC U,Q; and

> fdeméfdem-{—sl.
i g E

On the other hand, m(fE)= 3 m(fQ,), so that it remains to show that the propo-
sition holds for any closed n-interval Q in G satisfying m(f0Q)=0. By [5; 27.7]
there are C'-mappings fi, f3, ..., which converge c-uniformly to f and whose
Jacobians J, converge to J, in L. Set y=y;, and y;= s+ In order to
show that y;—y a.e., we first pick a point y in fO\ f0Q and note that the local
topological degree u satisfies u(y,f;, int Q)=u(y, f,int Q)=0 for j=j,, since
the convergence is c-uniform and f is sense-preserving. Hence yef;0 if j=jy,
and x;(¥»)—x(»). Outside fQ the convergence X~ 1s obvious, so that y;—-yx
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a.e.in R". To complete the proof we apply Fatou’s lemma, and get

m(fQ) = fxdm = lim ijdm = lim m(f;Q) = lim flijldm = fdem,
R" j=o gn jeo j=e g o
where the latter inequality comes from elementary calculus.

Theorem 1.1 is an immediate consequence of 2.2; for the last statement, recall
that /,=0 a..in B,. Since f satisfies the condition (N), it is obvious that (2.1)
and 2.2 hold in fact for any measurable set E in G.

To prove the transformation formula, we first consider the case that h=
2, La; 713( 0) is a simple Borel function. Since m(fB;)=0 and J;=0 ae.
in B;, we may assume that E does not meet By. Let Ey, Ey, ... bea measurable
partition of the set E, such that each E is contained in a domam on which f is
injective. Then

f(hof)dem:Zaj f Jydm = 2 a;m(fE.NB))
E ik . ik

E.Nf~1B;

‘/.ZayBJZXfEkdnl th(,f,E)dm

R" J

Finally, if #=0 is measurable, then there is an increasing sequence (h;) of simple
Borel functions, which converge to /1 a.e.. It follows from (2.1) thatalso h;o f—~he f
a.e. outside the sct {x:J(x)=0}, and hence Theorem 1.2 follows by the monotonic
convergence theorem.

3. Proof of Theorem 1.3

From 1.2 it follows easily (see [1; 3.2]) that
(ERY M) = K (IN(f; HAM(fT)
if ' is a path family in a Borel set ACG, and N(f, 4)<<. This path family
inequality and Poleckii’s lemma 3.2 will be needed in the proof of 1.3.

3.2. Lemma [2]. If T, is the family of all closed paths in G on which [ is
not absolutely precontinuous, then M (fT¢)=0.

Recall that f is called absolutely precontinuous on y if foy is rectifiable
and if the reparametrization y* of y with

foyt =(foy)
is absolutely continuous. Here o denotes the parametrization of « by means

of path length.

Proof of 1.3. Suppose that J,=0 in a set of positive measure. This set then
contains a Borel set B of positive measure such that BCQ, where Q is a closed
n-interval in G, and that f is differentiable and f’(x)=0 for every x€B. Let
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I'p be the family of all closed intervals y in Q parallel to e;=(1,0, ..., 0) with
[, 2sds=0. Fubini’s theorem implies that M (I'5)=0. By 31

0 < M(I'p)/Ky(IN(f, Q) = M(fT),

so that according to Poleckii’s lemma there is a path y€I'y such that y* is ab-

solutely continuous. Thus
Ifo7)
0< [rsds= [ (aoy)y”ldmy = [ p*|dm,
bl 0

y*—lB

and consequently m,(y*~*B)=0. On the other hand, for m;—a.e. t€y*~1B,
L=(fon)"O] = I(foy YO = | (" (0)y” ()] = 0.

which is clearly absurd. Therefore J;#0 a.e. Since J,=0 a.e. in By, it follows
that m(B,)=0.

3.3. Remark. In [2] Poleckii uses 3.2 to prove his celebrated K;-path family
inequality. In his proof he needs the result 1.3, whose original proof requires the
use of the K;-capacity inequality. This latter inequality is quite hard to prove, and,
on the other hand, is a special case of the K;-path family inequality. It is therefore
Important to have a proof for 1.3 which does not make use of the K,-capacity
inequality.

S. Rickman has pointed out that it would also be possible to modify the proof
of the K;-path family inequality in such way that 1.3 is not needed in the proof.
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