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ANALYTICAL FOUNDATIONS OF THE THEORY
OF QUASICONFORMAL MAPPINGS IN fiN

B. BOJARSKI and T. IWANIEC

This paper gives an exposition of basic analytical properties of quasiconformal
(and quasiregular) mappings of n-dimensional domains.It grew out as a byproduct
and a proper part of our work on the monograph [10] on analytic methods in the
quasiconformal theory. This comes out of a general programme of studying the
problems of r-dimensional quasiconformal mappings exposing and exploiting as

much as possible the interconnections between the quasiconformal mappings and
various problems of partial differential equations, differential geometry and classical
analysis. This programme outlined in [6], [7], and essentially extende d in our plenary
lecture [8] at the Conference on "Global Analysis and Differential Geometry" in
Garwitz, DDR, October 1981, was based on the opinion that the natural inter-
relations between the quasiconformal theory in n>3 dimensions and partial dif-
ferential equations, in contrast to the case n:2, have not been sufficiently explored.
The development of the two-dimensional theory indicated ratler clearly that the
methods of p.d.e. supplied the most flexible and universal tools for the study of quasi-
conformal problems [5]. However, t}re study of these relations in t}te n >3 dimen-
sional case requires a much broader line of research than the case n:2. This can be
seen in relatively recent papers of L. Ahlfors [1], in the work of Ju. Re§etnjak during
the last 15 years, e.g. 1291, [30], [31],, in the recentpapers of the Finnish School,
especially of Martio, Granlund and Lindqvist [16], as well as in our papers [7],
[e], [20].

It is our belief that the exposition of analytical metlods, especially those con-
nected with partial differential equations, helps to see in the proper perspective the
deep analogies and links as well as the differences between the two-dimensional
and n-dimensional quasiconformal theory.

In the recent literature on quasiconformal and quasiregular theory a variety
of methods has been applied. Of these the most effective proved to be the methods
connected with the notion of the modulus of a path family, which were essential in
obtaining the spectacular results on extending the Ahlfors-Nevanlinna theory to
n-dimensions [32], In our presentation of the study of foundations of the quasi-
regular theory this method is deliberately avoided. This should be by no means

understood as a sign of our tending to underestimate the value of the method.
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However, it seems that the prevalence of the modulus method in the current research

papers on quasiregular and quasiconformal mappings problems is probably re-

sponsible, in a sense, for some kind of isolation of the quasiconformal theory in
R' from other branches of analysis, whereas we think that the true value of the

theory lies in its interdisciplinary role. The two-dimensional case can be illustrated

by [3], [4], [5], 1231,124) and many other papers; the view that this is the case also in
dimensions greater than two was underlying the main ideas in [6].

In the process of the work on various aspects of quasiconformal theory in several

variables an urgent need for a methodologically homogeneous and self-contained

presentation of the "well-known" fundamental facts of the theory was coming

up again and again. We included it in the first chapters of [0]. However, when

these were essentially ready and the work on the whole of [10] was naturally delayed,

for various reasons, we thought it might be useful to prepare this part of [10] in the

form of a completely self-contained, introductory publication. Therefore we restrict
our discussion here to the study of basic local analytic properties of quasiregular

mappings, including their behaviour in the simplest formulas of differential and

integral calculus. Only in the last few pages we touch some geometric problems,

just to show to a non-specialist that the analytical tools developed are sufficient

for the full proof of some important geometric properties of quasiregular mappings.

As already said, we tried to make the presentation direct and self-contained to
the extent needed for [0]. Naturally, at several essential points, the ideas used have

their roots in the existing literature on quasiconformal mappings, especially in the

papers of Ju. Re§etnjak and the Finnish School. However, except the Sobolev

local imbedding inequality and some standard analysis, all other facts are proved

explicitly. In our consideration the essential step in the basic fact that the conditions
(2.2a) and (2.2b) imply f(Wl+"(O') for every open subdomain Q'cc O and some

positive e. This first step improving the a priori assumed regularity of q.r. mappings

stated in 2a),as was shown in [5] and [40]for the case of two dimensions, opens the

most direct way for the study of -eeneral analytical properties of q.r. mappings. Theo-

rem 5.1 for locally quasiconformal mappings, n>3, was proved by F. Gehring
in [14] (see also 125) for q.r. maps), relying on the modulus method of
families of curves, which, traditionally, is applied to continuous mappings. The
general case for q.r. maps follows also from the result for variational inequalities

by Elcrat and Meyers [2]. The proof of Theorem 5.1 as presented here follows
some ideas of T. Iwaniec first stated in [9] and developed later in l2ll,1221.

Since this paper is understood as a proper part of [10] or as a supplement to
the existing literature on q.r.m. U61,126-321, we do not give here any examples.

Also, we do not try to discuss all consequences of our approach to quasiconformal

theory. For this the reader is referred to [10]. Neither do we try to show the rele-

vance ofthis presentation to the related parts ofthe theory ofvariational inequalities

or problems in pure partial differential equations. This should be evident to the

specialist. Quite a few examples will be given in [10].
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Finally let us make some remarks referring to a programme of further research:

We tried here to collect all relevant statements about general basic analytic pro-
perties of q.r. and q.c. maps in their most general formulation available at present.

However, it is our opinion that most of these statements have not, as yet, got their
final form; thus we think that such questions as the differentiability of q.r. maps,

the condition s ,/r and ,y-r, and the description of the set of zeros of the Jacobian

J1, have not been discussed in their natural set-up. As a matter of fact this natural

set-up has in most cases not been found yet. And although the present general form

of many facts about analytical properties of q.c. maps is sufficient for the basic

constructions and analytical manipulations involved in the application of the theory,

there is much left to be done in the study of the fundamental local problems of the

theory. An interesting area of research in this connection lies, in our opinion, in
the applications of the theory of "higher" variations of real valued functions as

developed by Vitu§kin [41] and others [18]. However, we think that the study of
the foundations of quasiconformal theory along the ideas of the theory of functions

of real variables should proceed in balance with the investigations of the interaction

of general quasiconformal theory with p.d.e's, variational inequalities, differential
geometry and analysis in general. At this moment the latter directions of research

are perhaps much more important than the former ones.

Let us finally mention that our references to the existing literature are far from
being complete. A more exhaustive list will be given in [10].

1. PRELIMINARIES AND NOTATION

In this section we collect some basic facts related to the Lebesgue integration,

Sobolev spaces and algebraic properties of the Jacobians. The material is essentially

well-known though at some point we present the results in a novel way involving

some modifications rather important for the applications in what follows.

1.1. Cube coverings and decompositions in R'. R' denotes a Euclidean n'space,

with points x:(x', ...,x\,xi€R (real numbers); lxl:()lx'1'z)1t2;if y:(yL, ...,!'),
then the inner product (x,y):)xiy'. B(*,r) is the open ball of radius r centered

at x and Q@,r) the cube centered at x, parallel to the axes of R' with ed'ge 2r:

Q(x, r) : {y€R"; ly' -*tl < r, i : !,2, ..., n}.

The diameter, diam Q(x,r), of the cube is then equal to 2rln. Occasionally it
will be convenient to use "half-closed" cubes, defined by the inequalities

xi-r = yi = xi+r, i : I,2,...,n.

For half-closed cubes we shall use the notation 0@, r). Let o be a positive number.

Then oB or oQ stands for the ball or a cube, respectively, with the same centre
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as ,B or Q but contracted (if o=1) or expanded (if o=l) by the factor of o.
O will be an open subset of R'. O is a domain if it is also connected. The distance
function d(x) is defined by d(x):flist(x,00), where åO is the boundary of O.
This function is uniformly Lipschitz continuous, i.e.,

ld (*) - d (y) I = l* - yl for all x, y€/<.

For a set FcR' we write FccQ if the closure F of ,F is a compact subset of
O and we say that F is strictly contained in O. This fact is characterized by the
inequality

dist (F, 0Q) - jtf d (x)

We use the notation Int f for the interior
open balls contained in F.

In what follows we shall use the dyadic division of a cube Qoc Rn. We define
by induction the families Mp, k:0,1,2,... of open subcubes of the cube e6;
Mo:{Qo). Suppose that the family Mo is given. Then we divide dyadically every
cube of M1, into 2" equal cubes. They form together the family Mu*r, the next
generation after Mo of the dyadic subdivision. The cubes of Mr are disjoint.
In general every two cubes from the union M:UoMo are either disjoint or one
includes the other. The family {Me}, k:0,1,2,... we call the dyadic decomposi-
tion of the cube Qo. lf the dyadic division process is started from a "halfclosed"
cube Qo, we will obtain only half-closed cubes in the process. They have the
inrportant property that all cubes of the fr-th generation fuu are disjoint in the set
theoretic sense and Qo:\)ae n..0 for each k.

It follows that for every TEQ, there exists a unique sequence of half-closed
subcubes {Qo@)}, Qo*r@)cju(x) and Qo@) is a cube of the k-th _eeneration
i[1, containing x. These cubes shrink into x.

Lemma l.l. Let F be a family of open cubes in Ro suclt that tlte union

UaroQ is sbounded set in R". Then there exists an at most countable subfamily
F' consisting of disjoint cubes such that

(1.1)

(1.2)

(1.3)

>0 for Fc{).

set of Fc R'; this is the union of all

IJ Qc U 5Q.
Qe s Q€. s'

Moreoaer, if I is a subfamily of the dyadic decomposition of a cube Qn, then the
subfamily 9' can be chosen in such a way that

U Qc u 0.Qes Q€s'

Proof. Let q be strictly greater than the upper bound for the diameters of the
cubes of 9. Let 4, i:0,1,2,... be the subfamily of those cubes e€fr which
satisfy the inequality 2-i-rp<diam2=2-'q. For i*j the subfamilies .{ and

fi are disjoint. obviously each subfamily of disjoint cubes in fi is finite. After
these remarks we can start the process of constructing the family g'. we construct



Analytical foundations of the theory of quasiconformal mappings in .tR' 26r

,F' as l)1frr' with each fi' consisting only of a finite number of cubes. fi' willbe
a maximal subfamily of disjoint cubes in 4. We exclude now from F, all cubes

which have a non-empty intersection with a cube in fio' . Fromthose which remained

we consider a maximal subfamily 4' of disjoint cubes. Continuing this process

we obviously exhaust all cubes from 9. By an elementåry geometric observation

we have the inclusion

(1.4)

Hence the family 9':Ui4' satisfies all requirements of the lemma. In the additional

assumption of the lemma we have instead of (l.a) the inclusion

U QC U O.
Qce'. Q€ri

This completes the proof of Lemma 1.1.

1.2. Measure anil integration. For Lebesgue measure in R' we use the symbol

dx. lf ,E is a measurable subset in R', then its measure will be denoted bV IEI
or mes .8. For a ball B or a cube Q we have

loBl: 6"13t or l,oQl : o"lQl, o > 0.

If the family fr from Lemma 1.1 is indexed by points of a measurable set .E with
the only condition that x€Q*Qfi for each point x of E, then Lemma 1.1 reduces

to a simple version of Vitali's covering theorem [36].

Lemma 1.2. Let E be a measurable subset of R" which is coaered by the

union of a family o-f cubes {Q}, of bounded diameter. Then one can select a sub-

sequence, Qr, Qr, ..., of disjoint cubes such that

(1.5)

We say that x( R" is a

(1.6)

MES E< laÅ.

point of density of E if

mes B(x, r)nE

5z
k

lim
r-'*0

: l-.
mes B (x, r)

More generally, if f is an integrable function defined on an open set Oc R', then

the point x€ O is said to be the Lebesgue point of / if

(r.7)
1I'gffi u(!,)iJu)-f(*)ldv 

- o.

The well-known Lebesgue's differentiation theorem says that almost every point

of O is the Lebesgue point of /.
For f:Xr, the characteristic function of the Lebesgue measurable set EcQ,

we get that almost every point x(,8 is the point of density of -8.

u Qc. U 5Q, i:0, 1,2,
Q€fii+r aeriugi*t
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The above definitions remain valid if we replacc the balls B(x,r) by cubes

Q@,r).For the ayerage value (l/lEl)lrf(y)dy of an integrable function / on
a set .E c R' of positive measure we use the notation

(1.8)

(1.9)

f flrl a, or J;.

Let f€Ll(A). Then the Lebesgue theorem implies that for almost every x(O

f(x): jI3 ftt )dv - llt f rot dv,
' ol '** Qi

t< f tt)dy=2nt foreoch Qeg
a

where {,Br} ({Or}) is an arbitrary sequence of balls (cubes) containing -r and such
that limr-- lB;l:0(lim;-- lQ,1:91. A more specialized choice of cubes from the
dyadic decomposition {Mo} leads to the important Calderon-Zvgmund decompo-
sition lemma:

Lemma 1.3. Let f€LL(Qo), f=0 and let t be a real number such that

fa"f1)dy=t. Thm there exists a countable (or finite) family I oJ dis.ioint sub-
cubes of Qo such that

(1.10)

and

(1.1 1) f(x) = t fo, almost euery x€eo- 
,Vre.

Proof. We shall consider the dyadic decomposition {Mo\, k:0,1,2,... of
the cube Qs. For almost every x(Oe, i.e., for x(OåoUer**Q, we examine the
sequence {Qo(x))o=o,r,... of cubes such that Qo@) is the cube from the generation
M1, which contains the point r. By the Lebesgue differentiation theorem

.lim f fOdy:f(x)**- 
aJ<*)

for almost every point x(Qo. Therefore on a subset Ac{x€Qo; "f(*)=t} of full
measure (with respect to the set {x(Qr;f(x)=r}) for some sufficiently big natural
k, k>k(x)

f 'fo)a' = t'
0*(r)

Since fnrf(y)dy=t, it means that for every point x(A there exists the first index
k:k'(x)=l such that

-fXr)dy>t and f fO)dy=t.
Qx@) Qy - r(x)
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Since lQo-(x)l:2"1Q*@)1, we have

t< fttldv=2' f t<r>dY=2t
Q*@) Qt-t(J)

and get the property (1'10). In this way we obtain a family {Qo@))*<n of cubes

indexed by the points'of the set A. By Lemma 1.1 (see the formula (l'3)) we can

select a countable or finite subfamily F of disjoint cubes covering A. lf x(Qo-

UaroQ, then x{A; hence for each k:0,1,2,..'fa*Gtf?)dy=l and the

Lebesgue theorem gives (1.11).

1.3. Lp spaces. Let E be a measurable subset of R', l= p= -' We denote

by Lp(E) the space of functions defined on E, such that lf(*)ln is integrable

with respect to the measure dx with the norm

llfll,: llflluo>: (! Vf*>Y d*)''' ,

where the values of f may be complex numbers, vectors or matrices. The Hölder

inequality

ll.fll, = llfll1',llflli', for i: **2, c,t'&2>- 0' a1*a2: I

will be frequently used in its various special cases. For example, it implies that the

function p*(foVle)t/e is increasing, i'e',

(r.r4) ( ftrlo)''o = ( fltl')''n whenever 1 < p = qs 6p'

In the case q-@ we mean (fulfln)'t':"ss sup,66lf @)1. If @ is a positive

increasing and convcx function dedned on the interval (- -, -), we have Jensen's

inequality

(1.1s) ,(ft)= f ortt.
EE

For an open set o the space lfo"(o) consists of functions which belongto Lp(F)

for every comPact FcQ.
Let f be a measurable function defined on a measurable set oc R'. we will

work with the sets
E,: {x(e; l.f(x)l = t\.

The real-valued function 'tr(l):g1e56, is called the distribution function

of t,fl. obviously ,1,(l) is a non-increasing function on the interval [0, -]).
The Lp norm of J' can be expressed by means of the distribution function

/.(r) as follows:

(1.16) I ltt*lf dx : P I r-t Å(t) dt'
O0
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We also have

(t.17)
, ^,.f l,f(x)|, dx : - il/l(x)=r t

,o-, (

holds; here div q(x) denotes the divergence of e,

dx)' dr.

E @)) dx

i.e.,

+ oE'-aN'
weak or generalized partial derivatives
as in the classical case.

I vr.»
lf l=,

A good source for the material of this and the following subsection is the book of
E. Stein [36].

1.4. sobolev spaces. The basic tool in the study of quasiregurar mappings is
the theory of functions having weak derivatives. WL collect h".-e ,o-e results on
Sobolev spaces which are necessary for our investigations.

Let e be a domain in Rn. The symbols C(O),C.(O),CL(Q),Cä(O) denote
tlre usual function spaces. rf u is a real function of the crass cl(o), we denoteby u*t:ilufåx' its partial derivative with respect to x, and by yu:(u*,,...,u"^)
the gradient of a. For a mapping f : e*R; of the class Cr1å7,7:17r,-fr,...,fn)
its Jacobi matrix is denoted by

Df(x) -
.flr, ...,.fk
{2 t2

J x2; ...s J xn

-f!r, .flr, ..., f!"

and the transposed matrix is D+/(x):(af@))..The Jacobian Jr(x) is the deter_
minant of Df(x). Geometrically Df(x) may be interpreted as ttre linear map
between tangent spaces T*e into Tv61R' which we iaentify with the Euclidean
space R' with the standard inner product (, ). The norm of i1*1 irthen equal to

lDf(x)l - sup lDf(x)hl,
lnl:r

where the supremum is taken over all unit vectors h in R,. sometimes it is con_
venient to use the norm llDfllr:Tr(D*f Df):Zt,ifij,)r.

Suppose we are given a rocaily integrable frrn"iio., u o, a. we say that
a locally integrable vector function g is the weak gradie nt of u if for all vector
valued test functions g of the crass c|1o; the integral equality

(1.1 8)

(1.19)

(t.20)

(1.2L)

{ "(x) 
div E(x) dx : - ! k@),

div E (x)

The components of g(x) arc called the
u and are denoted by the same symbols

-f:,,
"f:,,

of
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lf J': Q* R' is a locally integrable mapping, then its generalized Jacobi matrix

Df(x) is defined by the conditions Dfe L!."(A) and

(1.22)

for every Cä(O) mapping E:§)*R".
The symbol w;(o) (wr!""(a)),1=p<- stands for the class of functions

or mappings which belon g to Lp(O) (Ifl."(O» and whose weak partial derivatives

exist and also belong ro Le(Q) (Lf""(o». A norm in W)(Q) may be introduced by

ll ull w3q : ll ull ao p1 * llY ull 7, p1.

This makes W; (O) into a Banach space. Smooth functions are dense in Wj(O')

but the completion of Cfl(O) in WLr(Q) leads to an important closed subspace

of W.L(Q), which we denote by W](O). Returning to the identities (1.20) and

(1.»), we remark that using the Hölder inequality one gets

! 
,.r(x) E (x) dx - - { 

o. r (x)/ (x) d*

(r.23) l! u(x) div E @) dxl € c,(! ,E (x)ln d*)'t'

I I f" *,p (x).f (x) ctxl E c,( 
"t tE (x)l' d*)''n,

where llp+llq:l and C1:llYull* Cz:llDf ll, whenever u and /' belong to
w]@\

Conversely, if (1.23) holds for every test function Oe C[(O;, ttren u and

/ belong to wol(Q) and llYullo=Cr, llDf llo=cr. This fact is rather important
for practical use; it is a simple consequence of the Hahn-Banach theorem. It is

important to note that Lipschitz continuous functions u(Lip (A') are weakly

differentiable, that is, Lip(A)cWj(A) and the following chain rule holds:

lf f : Q * Q' belongs to the space Wj (O), then the composite function a(x):u(1r11
also does and Ya(x):D*f1x)Vu(f(x)) for almost every x€Q. For every

f{We:1""(Q), Df(x):g a.e. on any set where / is constant'
In particular , if u and u are real functions of the class W;b"(Q), then the function

g(x) - max {r(x),u(x)} : +@(*)*u(x) *lu(x) - u(x)l)

belongs to W,1rc"((2) and for almost all xe Q

if u(x) = u(x),

if u(x) = 1s(x).

The same holds for h(x):min {u(x),rt(x)\:(ll2)(u(x)+rt (x)- la(x)-z-(x)l).
Now we pass to the deeper results concerning Sobolev spaces, that is, to the

imbedding theorems and l,-estimates. Our starting point is the local Sobolev-
Poincard inequality in the standard form. We state without proof the following

vg(x):{Y:8
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Lemma 1.4. Let Q be a cube or a bqll in R'. Then for euery u(W'o(Q),
l= p-n the inequality

(1.24) (J'|"{i-"alp d*)'tz = c(n, d(! lvu<xll, d*)'to

holds with the uniaersal constant C(n,p),F:npl@-p). (Th" best oalue qf C(n,p)
in (1.24) of course depends on whether Q is a cube or a ball.)

The proof of this lemma may be easily derived from the classical versions of
Sobolev's inequality; see [35].

The local Poincard's inequality is stated in the following modified form:

Lemma 1.5. If u€W](Q),1<p-.*, then for any O=o=L

(t.2s) ( f Wa>u,rlo d*)'t' = (:)''' diame( f 1v,1*11, o*)''0,

v,here Q may be a cube or a ball.

Proqf. We prove (1.25) under the restriction that u(Ct(A). The general case
needs only a standard approximation argument. We begin with the formula

u(x) - u(y) : 
! * uQx + (t - t) y) dt : i,* - r, y u(tx + (t - t)y)) dt

for x, y(Q. Integrating with respect ,o ,roå and applying Hölder's inequality
and Fubini's theorem we get 

1

(1.26) u(x)-r,o: f I (*-y,yu(tx+(r-t)y))dt dy,
oQo

lu(x\- u"al, 4 (diam e)e ( f i lvu(tx+(r-t)y)ldt or)' =oQo

< (diam Oy f ilvu(tx+(r-t1y)lodtdy.
oQo

Hence

f tut*l- uoele dx = (diamQ)o i v f lvu(tx+(r-t)y)|, ax dy) ar.
Q o QoQ

Now for / fixed, change the variables (x,.y)*((,Q<QXZO €:tx*(l-t)!,
C:x-!. Clearly dxdy:fl(69 and we get

!,Or-u"rlt 
dx < (diamQ)eG)" 

! lvu(Ole d(.

This proves (1.25).

The Sobolev and Poincar6 inequalities imply the following estimation in the
borderline case:
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Lemma 1.6. There exists a constant v:v(n)=O such thatfor eaery aQlI4t(Q)

and any 0=o<l the inequalitY

(1.27) ;f etolu(*)-u,oltllvull^ lx = )
o

is true; here Q is a cube or a ball and llall.:(.[nlYo(y)l'dy)u'.

Proof.Inequality (1.24)with P:nl2 reads as follows:

( f t"t.l-rnl" d*)'t' = c(n) diamQ( f 1vu1*1y'' d*)''
'OA

Hence

(f WAy'd*)'t" = c(n)diamQ(f lv"f*>f''d*)'t" + f l"<,.lla*'

Let e>0. We substitut" 
"elu'u,el 

for u, getting lYul:61yr1r"iu-ol'o åDd

( f e,"t" - " " rt) 
t/' 

= r 
. c (n) diam Q ( f lo uY'' r""1u -' " st tz)z 

t 
" a f e4" - "' ol 

='ooQ

= e.c(n)diame( f lr"y)''"f f e*1"-""ot)'/'+r +t f lu-u"rle,tu-u,at.
aoa

Here we have used the Hölder inequality and the inequality et=l*tet, valid for

r>0. Again by the Hölder inequality and by (1.25)

f l, - u,nl,"l' - 
" 

ol = ( f e"l' - " " o')'' " ( .f lu -', ol")'' 
"

c_@ai"*o_( f oo"1u_u"et)r,, (f lvry),," .=-- o-t{" a
Therefore

( f e'"t" -',o,)"' = t * 
{Y ( f e*t' -'.ot)'/' ll vrll,.

a'A
Here and later the same letter C(n) is used to denote various constants depending

on the dimension only. The lemma immediately follows from t}te last estimation

if we put e:ol(2C(n)llVrll,).
Let now p be strictly greater than n:dim O. Identity (1.26) (with o:l)

implies

la(x)- uql < (diame, i ( f to"(ry+(l -t)*)l' Ar)''' a,.
oQ

For r fixed by changing the variable y*(:ty+(l-t)x€.Q we get the estimation

f lv "(tv 
+11 - 

')'x)le 
dv =- t*" f lv ufOP aC'
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Hence we conclude

lu(x) - uel = (di u O) (

Therefore if x,l€Q, then

(1.28)

fnlp dt -
Pl/D"to ldiumQ)'-ntP

llY ull o.

I 
u (*) - u (y)l = I 

u (*) - u nl + lu (y) - r 11 = !! (diam e)L -, / o ( [ 1v ul,), t, .

As a simple consequence of (1.28) the following local form of Sobolev's imbedding
Iemma is obtained:

Lemma 1.7. Let Q be acube or aballin R" and let u(Ifj(e) with p>n.
Then for a constant C(n) the foltowing estimate holds:

-f tY ul,)'P J!Oo p-n

(1 .29)

(1.31)

lu(x) - u(y)l = 
o: (! 

fu - yl,-,, o ( I lv uy)rro .' P-n t '/' 
n

In other words, u is Hölder continuous on e and the Hötder exponent a:l-nlp=O.
For another approach to Sobolev's inequality see Lemma 7.1 from Section 7.

1.5. Elementary calculus of differential forms. The calculus of differential forms
will be useful and, in a sense, even essential in some global geometric problems of
the theory of quasiregular mappings. A general p-form a in a domain o of
R', or a differential form of rank p, denoted p:rk a, l= p=r, will be written as

with 4r,,...i,(x), called the coefficients of the p-form a;, taken from some function
space defined in o; usually that will be ck(e), k:1,.... However, the case of
some subspaces of w;@) will also appear. we shall then say that the form crr

belongs to the respective function space. The product clxi,A... A clxi, in (1.31)
is the exterior product of differentials dxi, obeying the anticommutation rules
dxi ndxi:-dxj ndxi. The general anticommutation relation for the exterior
product is ar n g:(-l)'ng na; if rka:p and rk q:q. For smooth or ck(Q)
forms the operator of exterior differentiation d is defined by the formula da:
Zdrr, ,o rtdxi a... ndxi, with da,,...,, beingthedifferential oithe function @i,...io,

d,)rr...ro: § \=a*t
The operator d is connected with the exterior multiprication as follows:

d(a, a @z) : dat n alz * (- l)e ot, n dar,

where p:rkrr1. Moreover dL:dod:O.

@- Z @ir...rodxir...dxio
1=ir<...<io=n
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The form ar such that da:O is called closed white the form a:dV fot
some (p-l)-form Y is said to be exact. The pull-back f*, is defined for any

p-form ar defined in the range of .f (a(y):Za(!),,...,od!" r.... A dyio) as the

p-form in O

.f*a(x) : )r»(f (x))t,...t,df', n ... ndfi,, y : f(x), x(Q.

It preserves the exterior product f*(a rrQ):f*a xf*p and commutes with dif-

ferentiation df*a: f*da.
If we speak about the form o defined on a closed domain oc R" we under-

stand that ar is defined on some open neighbourhood of O in R'. The restric-

tion a;l2o of the form o in 0 to the boundary submanifold 0O of a regular

domain o is defined as arlro:/*rrl, where i :\Q*A is the natural inclusion'

Integration of a smooth (n-l)-form ro defined on O obeys the fundamental

Stokes's formula
(r.32)

which we shall use only in most simple cases.

The norm llro(x)ll at the point x(O of the l-form @:Zi=ra,(x)dxi is

defined as coming from the Euclidean scalar product (a, O)@):Zcrtr(x)Qi(x),
lloll':(r,r). The scalar product (at the point x(A) of two p-forms o):
@rA...A@r, Q:xtA... A te (@i and xi &ta l-forms) is defined as

(r, Q) : det(@vri)

and extended to general p-forms by linearity. Then the elementary Hadamard

inequality
ll@rn ... ^ 

@,ll = ll@rll...ll@,ll

holds and expresses the fact that the volume of the n-parallelepiped spanned by

the forms (covectors) @r, ..., @, does not exceed the volume of the coordinate

n-rectangle in R" with edges equal to the length of the edges of the parallelepiped.

1.6. Divergence free vectors and adjugate Jacobian. A vector function r:
@',...,rf), a: O*R' is said to be divergence free in the domain O if u(L!."(A)
and for each test function E<C; (O)

I e(x), Y q (x)) d* - o.

!0, ae

(1.33)

(1.34)

lf 1)€Wltb"(Q), then the integration by parts reduces (1.33) to the first order

partial differential equation

divu- 4#-0.
An important example of divergence free vectors will be the columns of the

so-called adjugate Jacobian. If I is a square nXn ntattix. we define the adjugate
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matrix adj A by the algebraic identity

(1.35) A adj A : det A. l,

where .I is the unit matrix. So, if I is invertible, adjA:detA A-1. The entries
of adj A are (n-l) homogeneous polynomials with respect to the entries of l.
The components of adj A are called cofactors of the components of l.

The explicit formula for the entries of adj A may by written

(adj A)', : 
o,änuor..,,,Al, 

AUr... AI,;' ör, AI,ir, ... A!,",(1.36)

(t.37)

where Eor...on is the Kronecker's fundamental covariant tensor, eL,2,...,n:1,
r*r...,0,:0 unless all k, are distinct; ek,...,kn changes its sign if two Ä; are inter-
changed and öl is defined likewise.

lf f : Q*R' is a mapping, then we denote by adjf:adj(Df) the adjugate
Jacobian of /.

Lemma 1.9. Let f :Q*Rn be a mapping of the class Wf,_1,ro"(O). Then
each column of the adjugate lacobian adjf o_f f is a dioergence free aector.

Proof. If / is of the class C,(Q), the entries of the adjugate Jacobian adj/
are continuously differentiable and the equality div adj/:6 follows by direct
differentiation of columns of adj/. Indeed, by (1.36) we have

g a(adjflä _ + \r ^ A (\fr |fko-, 67*o*, Afo"\
A-U*o - f--r!o^"0,"'0"5*, lff"'-n;--F,;+r 2." )

ko*q

å ,,.Jr.",..r.(d% 
"g,!#-): åo: o.

":":'\r=r v*p

This is because the expression

A'f" n |fo
aiax, 

"!*116l'

is symmetric in i and p blt the interchange of i and p results in the interchange
of /<; and kr. since r0,...0, i.skew symmetricthesumunderconsiderationvanishes.
In a weak form we write the above identity

! on(x) adj f(*) dx - o

for every test mapping 4: Q-R" of the class ct@). To complete the proof of the
lemma we observe that for f(W'_r,ro.(e) adj f belongs to Zi""(O) and by an
approximation we extend the validity of (1.37) to such mappings.



Corollary t.l. Let f : Q-Q' be a mapping of the class Wi,Lt*(Q) and let

E: Q, *Rn be a ct(Q,) mapping with zero diaergence, Then the aector (adj.fiE(f)

is dioergence free. In particular, (adjf)fllfl is diaergence free for mappings

f : A*R'-t0) of the class IU,,l,'.(A)nC(O).

Proof. we may assume thar .fccz(Q). The formal calculation yields

div (adjl)E ( fl : ?,fi, ff^u, f>i Eo (f)l : å #P *' rt,

+ 2,"@dif)r##: o*; tonai»,ff: lr*)V,uä#

: l/x) 4#: o

Here we have used the identity (Df adif)i:J fi"rThe last statement of the corollary

follows from the elementary equality
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aiv,L : O for Y(n'- {0}'
lvl"

2. DEFINITION OF QUASIREGULAR MAPS

Since we shall study only local properties we will restrict our considerations

to mappings

(2.r) J':Q*R',
or in coordinates

y, :.f,(xr, x2, ..., x') i:1,2, ..,,n,

where O is an oPen subset of R'.

we accept the following analytical definition of quasiregular mappings.

Definition 2.1. Let K be constant K>1. The mapping (2.1) is K-quasi-

regular in A if
(2.2) a) J(W"\o.(0),

l»f(x)l' = KJy@) fo, almost euerv x€-Q.

Here Df(x) is the derivative or the tangent map of the map f' which, as

recalled in Section l, is meaningful at almost every point x(Q if / is in the Sobolev

class I{1,."(O).
The smallest constant K for which (2.2) is true in O will be called the dilatation

of .f in O. (In accordance with the literature it should be called outer dilatation;

however, in this paper we avoid the word "outer" since we shall not introduce any

other concept of dilatation.) A map / is quasiregular in O if it is K-quasiregular

b)
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in o for some K>l:/ is said to be quasiconformal if it is quasiregular and 1-l
in O' The norm lD/l is understood as in (1.19) as the operator norm of the linear
map of the Euclidean space Rn.

It should be stressed explicitly that our definition of quasiregular mapping
does not assume the continuity of f, As a matter of fact we shall prove that the
continuity of the mapping f is a consequence of (2.2a) and, (2.2b). In particular,
./ will be quasiconformal if and only if it is a homeomorphism onto an open subset
of R'. For abbreviation we shall write q.r. or q.c. for quasiregular or quasiconformal
mapping, respectively.

The map f is a local homeomorphism at a point ;r€o if there exists a neigh-
bourhood Q,cQ of x such that the restriction ,flo. is a homeomorphism of
o, onto f(o-). The branch set By or more precisely B/g of a (continuous)
quasiregular map (2.1) is defined as the set of all x€g such that f is not a local
homeomorphism at x. 81 is a relatively closed subset of o. In general, for a q.r.
map the branch set B y is not empty . If B ,:9, then the rnap f is said to be locally
quasiconformal.

As said in the introduction, we do not give here any specific examples of q.r.
or q.c. mappings. We only mention that this is by no means a restricted class of
mappings: it contains any cL mappings with non-zero Jacobian; the generalized
solutions of broad classes of uniformly elliptic systems of first order with two inde-
pendent variables, the uniform limit of K-q.r. maps is K-quasiregular. For non-
trivial examples of quasiregular maps we refer to the existing literature, e.g. [2g] or
[32], where more comments on the place of q.r. and q.c. mappings in analysis are
made. Here we only mention that our general conclusion in this paper will be that,
roughly speaking, K-q.r. maps form a class of r-dimensional mappings which is
closed under uniform convergence or almost uniform convergence on compact
subsets (or even under much weaker versions of convergence, e.g. 12 convergence)
but which preserves all general analytical and geometrical properties of locally
invertible cl-mappings, except at the branch point set 87, where they nevertheless
preserve some important properties of geometric and analytical regularity in the
sense to be explained later.

In connection with Definition (2.1) one more remark is due: when coupled with
the classical Hadamard inequality, (2.2b) takes the form of a "double inequality,'

(2.3) Jr(x)=Dff=KJr(x).
Thus (2.2b) can be viewed as an "inverse Hadamard inequarity". It is this ,.double

inequality" character of Q.2b) which is responsible for the remarkable functional
and analytical properties of the class of mappings satisfying (2.2b). This point of
view was stressed in [8]. We shall see in the next section that a local Zp-version
of (2.3) will take the form of "inverse Hölder inequality" and the modified form of
"weak inverse Hölder inequality" - and this fact will have important consequences
for the theory of q.r. maps.
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They are connected with the fact that the "inverse Hölder inequality" has the

remarkable property of self-improving: when a priori assumed to be valid in the

Zp-norm sense for functions in Ll,.(Q), it turns out to hold in the Zf"l"(O) sense

for some e=0, implying, in particular, the increased degree of summability. This

fact lies at the basis of the most general regularity theory of quasiregular mappings

and weak solutions of p.d.e.

3. BASIC INTEGRAL INEQUALITIES

We
integral
(3. 1)

(3.3)

Le m rna

(3.+1

shall write the fundamental differential inequality (2.2b) in the "weak"
form

f w(x)l»f(r)l' ctx = K { E@)Jy@) ctx

for any test function E>0 of the class Cå(O).

For studying the integral on the right hand side of (3.1) it is useful to remark

that the Jacobian J1@) of a mapping f : Q*R" naturally appears when we con-

siderthepull-back f+a to O of thevolume fotma:d),r A...Ady'definedinthe
range of .f
(3.2) .f*u : df'n ...t'.dfn : Jr(x) dxr x ... ndxn.

Srnce f*a:dleDo-'l"dfr ,r... A fro "...^dfnl:df*@*, 
where coo is the (n-l)-

form (- l)k-tykhyt n...n6o ,r... A dy" for k:7,...,n (the circumflex over a term

in a formula means that it is to be omitted), (3.2) shows that the volume form is

exact and we.can evaluate the integral (3.1) on the right hand side by applying

Stokes's formula. We exploit this now.

Let E and f be smooth, say of the class C'(A). Then the integrand in (3.1)

can be written E@)J t(x)dx:d(cp./'*a)- dE nf*c» for any (n - l)-form or such that
da:dyt ,r... A dy". We then get

3.1 . For ony .feW'"(O) and EeCt((2) the estimate

lf@)-cI lof(x)\"-' d*

holds for eaery constant aector c(Rn.

Note that (3.4) also holds for E(W:(O) with Vq bounded.

Proo.f. First we establish (3.4) for f(CL(O). We take for ar in (3.3) the form

(- 1)'-'(y' - ci) dy'A .. . nA,'A ... A cly"

I w(x) Jr(x) ctx: - ! O* n.f*a-

0,_19
n 7:t
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getting

ldEllft - ctildfl n... n 8'A .. . 
^ 

d.f'|.

By Hadamard's inequality ldf' n ... nA' n ... n df'l=ldf,l...l@'i . . .ldf l=lDl1-'
since ldl''l<lDfl for each i:I,2,...,n. Now(3.4)isobtainedbytheobviousinequa-
lity lf -ctl=lf-cl.If f€W"'(O) and YE is bounded and g is compactly supported,
then f(L"(Q) so YElf-cllDfl-1€LL(O) by Hölder inequality. Therefore by
an approximation argument we are led to (3.a) in the general case. From (3.1) and
(3.4) we easily get the integral inequality

l!r§)rr(ndxl=L t +

valid for K-quasiregular mappings 6W!,^.1a1, and any non-negative V, compactly
supported with bounded gradient. Really, ptt E:Y" into (3.1) and (3.4). Then
by Hölder inequality

lYDf in-'

which gives (3.5).

We apply now (3.5) to the function Y with support in a ball .B(xo,A)cO
such tlrat Y:l in the smaller concentric ball,B(xo, oR), where 0<o-1. Specifi-
cally, we choose Y in the form V(x):4(lx-xol) with q!):l for 0</<oR,
q(t):O for ,>R and linear for oR<l<R. Then

lvs(x)l : {G+1" 
ror 6ft = lx-xol = A

[ 0 otherwise

and (3.5) gives for c:.fn6o,n1

(35) (

(3.7) (

This estimation remains

the same.

The last result of

"u (f
o (1- o) R 

B(xo, R)

KC(n) ( f Df@)l'r'd*)'t"o(l-o) (u

I v"(x)l»f(x)l' dx)'t" = "uU lvy(x)i"i_f(*)-cl, d*)''"

f v,lDfln = KI l"f-cllvv"llDJln-' - ,KI tJ-ci ivyi

= nK (l lf- cnvvl")''" ({ *"lDfr)@-1)tn,

lrut- f rl'n*)'''
B(xo, R)

(3.6) (,o,{..,lDf(x)r d*)'tn =

;{ l»f@)|" d*)'tn =

From this and the Poincard inequality (1.24) (with p:nl2,P:n) we get our basic
estimation.

Lemma32. Let f : O*Rn be a K-quasiregular mopping, and let BcQ
be a ball, 0<o<1. Then

ualid if we reploce B by a cube QcA. The proof is almost

this section is the following generalization of Lemma 3.1,
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Lemma 3.3. Assume that the functions E,V and the mappings f,g are of
theclass I4'(o), that YE,YY are bouruled, q-veft](A) and fuat 7-gew)@1.
Then the following inequality holds:

(3.8) lIkt4-vQl= ] Itr<**Yllf-el@fl+lDgD'-'

. + { lv (E - v)ll.flrDfl'-' +l gl rDgl'-').

Let us remark that by a proper choice of q,V and f,g: we can obtain some

useful special cases of (3.8). Thus if g:Y:l, we have

Proposition3.l. Let f,sel4'1l1 and f-gcw:(Q). Then

(3.9)

(3.10)

In particular,if f :17r,7',...,f') is a mapping of the class lAr,(Q) and one

of the components, say fk, k:1,2,...,n, vanishes on 0o (fk€W:(o)), then

[ ,r@) dx - { t,@) dx.

{ ,r@) dx - o.
o

In fact, for g-(ft, ...,.fo-',O,fo*',...,f") we have f-seW:(O), ./r(x)=0 and

by (3.e) [tr: [t,:0.

The proof of Lemma 3.3. As usual, we can assume that cp,Y,f and g are

smooth since the integrals in (3.8) considered as functionals of g, Y,f and g arc
continuous. We write the integral of the left hand side of (3.8) by

(3.11) ! {,otr-\vr) : * I rr*y)(rf-rs)+* ! *-y)(rf+r)

and estimate the new integrals separately. By Lemma 3.1 we get

(3.r2) 
I I <r-y)(++rs\l = | [ (v-w1t,l+l ! {w-n4l
aQA

o



Furthermore

I <**Y)(Jr-Js) : [ «p+Y)(rtf'n ... nclf" -clgt n... ndg")
aa

^n: I Z «p+Y) df' n... 
^dft-' nd(1''-S\ Adgi+t t... xdg"

Q .:L

: Z e D' -' I aKE + Y)(.ft - e\ df' n ... 
^ 

dfi-r n d, gi+r n ... n cl g"l
tö

- Z f (f' - gt) df n ... 
^ 

dft-' n d (q * V) t d gi+r r,. ... n cl g".
,Q

The first integral appearing in the expression vanishes by Stokes's theorem
(f'-s'<ct@)). Hence

(3.13) 
| I <r * Y)(rr- r,)l = I lf-gllv(E+ Yl ålDJ'li-r1pr*-t'a o i=1

= [ v- sllv(E + Y)l(lDfl*lDgl)'-'.
o

Finally (3.11), (3.12) and (3.13) imply (3.8).
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4. MAXTMAL FUNCTIoNS AND TNvERSE nölonn INEeuALrrrES

4.1. Maximal functions. We shall make use of some techniques connected with
the Hardy-Littlewood maximal function operator. However, for our purposes,
it will be essential to introduce some generalizations and modifications of the theory.

We shall work in a fixed open cube Qo in R'. Therefore the notion of the
maxinral function will be localized to the cube Qo. For a function ,feLp(Qi, l=p,
we shall define the maximal function of order p by the formula

(4.1) Mof@):'up{[ fl.fp)''', x€ecAo],
a

where the supremum is taken over all parallel open subcubes Q of Qo. containing
the point x. For Mrf(x) we shall write MJ'@).

Besides the maximal function (3.1) it is also of interest to study the weak maximal
function

(4.2) wM,f (x): rup{[ f lf|)''', x(oe, e ce,], 0 = o = t,
oQ

and the Morrey type maximal functions

(4.3) tr,,of (x): *r{fi,# f tn:)''' ; x€e. o,l.
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The dependence of WMrf on o is not included in the notation, since for the

purposes of this paper it is enough to take o:112, which we do henceforth.

For u: n we have Mn.o= Mof and for a:0 Ms,rf(r) = ( [lfl')'''.
Qo

For each l.>0

Mo,olf : iM,,o.l', lt",o(f*d < Mn,oJ'*M,,rg.

However, only for a:n Mn,pl:1.
The maximal functions Mo,of are closely related with the cubical a-dimen-

sional outer Hausdorff measure y,(F) defined for any subset Fc R' by

y"lF):inf Z lQft',

where the infimum is taken over all countable families I of coordinate parallel

subcubes of R'which cover F(Fcl)nroQ). lf F is Lebesgue measurable, then

y,(F):lF' l. The following lemma is a direct consequence of the Vitali covering

lemma:

Lemma

(4.4)

By Lemma 1.1

that U, 5 Q*,,
Therefore

T,(E'.f)

4.1 . For euery fe Lo (Q) and eaery t >0 the inequality

i,,{x€ Qo; Mo,of @) = r} = + [ v<*)l' ,t*, p = 1

'do

holds. For the case d.: n we haae the following generalization of (4.4): for O< @ <l

(4.s) mes {x€Q6, M,f(x) > t) -< Ch ,rrJu",lf(x)le 
dx.

Proof. For ,>0 we study the distribution set E,f:{x(Qo;M",rf(x)>t}.
Then for each x(E,f one can find a cube Q* such that xqQ*cQo and

> t,lQ*l*t'f vtv)lo dv
Q,*

we may choose a sequence Q*,, r:1,2, ... of disjoint cubes such

covers Ure Er\ Q*)E' f.

5u

= zl\Q*,l.tn =_ 5 zlQ*,lot" =; z
vyev

= 
5' f lf'lo.
tp JlJl t
'eo

{vv
Qxv

5aP
=- * J if'(' l)Q*--v

which is identical with (4.4).

For 0<@<1 wedefine f"(x):f(lif lf(x)l>t@ and ft(x):O if lf(x)l<t@.
Then l/(x)l=lfr(x)l+t@ for each x€Qn and we get Mof@)=-Mof"(x)*t@,
u,hich implies ErfcEs-oyfo. Here we used the additional assumption a:n.
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The inequality Q.4) applied to /, gives

lE<,-e»ful = (# ! va, : &,,,{,"lflo,
which immediately leads to (4.5).

The Calderon-Zygmund decomposition lemma allows us to prove some kind
of "weak inverse inequality" to (4.5).

Lemma 4.2. Let t=_(fa"lflrytr. Thenfor p>l

(4.6) l{x(Qo; M,f(x) = t\i = -!- [ Vf .

Vl-t

Proof. Define Erf as in the previous proof for a:n. Let g be the family
of disjoint subcubes of Qo defined by the decomposition Lemma 1.3. Then

l"f(x)l =, for almost every x(Qo- U Q

and Q(s

r - f .fo = Znp for each e€g.
o

In other words, we have the inclusions

{x(Qo; ll(x)l = ,l - N*Q 
c E,f,

the first inclusion being understood as valid up to a set of Lebesgue measure zero.
Hence.

tE,ft = z tot = å_;7 fvr : ;' 
"l 

vr = #,,,f,,r,,,.
This completes the proof of the lemma. 

Q€s

It will be convenient to introduce the distribution function lr(r) of the maximal
function Mrf. For p:I we put 1{t):1(t). Lemmas 4.1 and 4.2 give some
estimates for the distribution function )"r(t) for t*-. In particular; they imply
that the maximal function Mrf is finite almost everywhere in Qo if f(Lp(eo)
and can be used to prove that the Hardy-Littlewood maximal function operator
Mf is a bounded operator in Le(Qi for l<p=-.

Lemma 4.3. For any f(Lp(Qo),p=l the inequality

(4.7) _f wtr = # fur
holds.
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Proof. We use (4.5) for P:7 and O=@=l and also the formula (1.16) and

Fubini's theorem, getting

ol 
wtr : o i tp-L ).(t) a, = 

!*$ i o-' (u,{*lf(x)l dx) dt

: # ,lfira»to-Li.*'>t 
r-z dt)a* : *-fi*1r-o1 ,l lf {*)p a*.

Parameter @:(p-l)lp<l minimizes the last expression giving (4'7) with e>
(r+tl@- 1»'-'.

The inverse inequality (4.6) implies the important estimate of lp-norm of

/ in terms of the l"-norm of f, s< p and Lp-notm of the maximal function M"F.

Lemma 4.4. Let p>s=l and f(Le(Q). Then

f trt. = ( f vt')"" + 2' (P - s) f tM,fl' "

Qo 'Qo P Qo

(4.8)

Proof. Since (4.8) is invariant under the substitution p' : pt, s':§r, f':lfl'|"
with some r>1, it is easily seen that the general case of (4.8) follows from the case

when s:1. Therefore we prove it for .r:1 only. P:ut ft:fnol"fl' We estimate

(4.s) tlrp : I lft,+ [ vr =Å-' l ttt+, ,[ vf .

ai l"rllro Uliro l/l=to l/l-ro

Now in the second integral of the right hand side of (a.9) we apply the formula of
integration by parts

{tn
l/l=ro

f
Ul=to

The inequality (:4.6) yietrds

f ,'-'( [ lf t*ll a*) dr = 2n f ,'-L 1(r) ctr
to l/l= r to

llY:- i *-'( {trl)'a,-$-'
'o lf l='

+ (p- 1) ,[ ,,-'(,r, lf!>l dx) dr.

Here we have used the formulas

{ vt*>l' dx = t8-'
Qo

which is identical with (4.8) for
Combining Lemma 4.3 and

(1.16), (1.17). In view

Iltt.>ld*.ry
Qa

,S: 1.

(4.4) we get

2nP
- - I tMf\p.ttJY Mf=to

of (4.9) we conclude

! tut(x)l' dx,
Qo
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Proposition4.l. Let s,p be such that l=s=p,p=I and let f(Lp(ei.
Then

(4.10)

the function

(4.r2)

,{,MltP 
= #({n'J o'' +ry { vw,rv

4.2. rnverse Hölder inequality. The inequality (4.10) is a crucial tool in the
following proof of the advertised self-improving character of inverse Hölder in-
equalities (see F. Gehring [14]).

Theorem 4.1- Assume that the function f(L"(Q),s=1, safisrtes the inuerse
Hölder inequalities

(4.11) ( -f tto>f d*)'t" = c" f lfti)a*
QO

for each subcube QcQo, with the constant c, independent oJ'the cube e. Then

for each p=s such that

10'ep(p- s)C!
'_---------._--\rp-L

f belongs to Lo(Q). Moreouer

t -f tro)v d*)'t' = cp -f t^*)l d*
Qo Qo

witk the constant Co depending only on fr,p,!. One can take

c :l 5"P' trtP
- P t(p- r)tr - y).1 c"'

Proof. The formula (4.11) implies that M"f(x)=C"Mf(x) for every .x(eo.
Ihen (4.10) and (4.11) give

rr-» { taf(x)F o* = ffi( -f va»"d*)'t" = #{ f vt)'.

Since l/(x)l=Mf(x) a.e., the estimate (4.12) follows.

Remark. The inequality (4.12) remains true for every subcube eceo with
the same exponent p and the same universal constant cr. This is clear because
we could use the gube Q as our basic cube Qo. Theorem 4.1 has been proved for
a function f€Lo(Q). Therefore, strictly speaking, our proof gives only the in-
equality (4.12) with the universal constant c, if we a priori know that .f(Lo(ei.
The following observation helps to settle this point. rt f€L"(e) satisfies (4.11),
then there exists a sequence of continuous functions _fx(c(n1 such that l,*7
in L"(Qi and fo satisfies the inverse Hölder inequality (a.l l) with the same constant
c" for each cube Q strictly contained in Qo. Therefore we are justified to apply
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(4.12) to the functions J; getting

lfol for every a cc Qn.

Now the application of the Lebesgue convergence theorem and Fatou's lemma gives

the desired conclusion that f(Lp(Qi.
The explicit proof of these facts is postponed to the proof of the more general

'fheorem 4.2, where an analogous approximation problem arises.

4.3. Weak inverse Hölder inequality. It is essential for the foundation of the

theory of quasiregular mappings in R', as well as for a number of important pro-

blems of partial differential equations, to have an analogue of Theorem 4.1 for

weak inverse Hölder inequalities. By this we mean inequalities of the form

( f l"frl)'to = cp foo

t .f trwti'dr)"' = c, f lru)l dx
oQo

assumed to hold for any coordinate parallel subcube QcQo. Here o is a fixed

constant 0=o=l and C" is assumed to be independent of the cube Q, though

in general it will clepend on o. In this case we have WM"f(x)=C"Mf(x)' For

our purposes it is enough to considet o:112. To handle this more general case

we shall need to modify Proposition 4.1 by introducing the localizing weight factor

q(x) and the weak maximal function llMof@) with o:ll2 (see section 4.2).

For simplicity we assume that Qo is the unit cube, Qr:{x€R'i llxll=l} where

llxli:max lx'|. As a weight factor g(x) we take the function

(4.14) s(x): (1-l;x;11v" = 1.

Obviously a(x):0 on the boundary of Qo.

Proposition4.2. Let s,p besuchthat las<P,p>l andlet J(Lp(Qd. Then

(3. 13)

(4.1 5)
{ 

aotMlt,= #{{yl")'"* t02pn§, 
{ 

QplwM,ft'

Proof. To prove (4.15) we first show two pointwise estimates:

lq (x) Mf (x)lo = Znpt' ltw qf (.r) l'+ 3"/' I f Vi')'",
eo

(4.16)

(4.t7) (ä"u'" lq(x) wM,.fgx)l' *3'pt't{ l/i')"'lM,qf(x)\p =

We derive them simultanously. For a point x€Qo let Q be an arbitrary coordinate

parallel subcube of Qo containing x. The two terms on the right hand side of
(4.16) and (4.17) correspond to two possible cases.
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Case l. 1-ll.rll=2lQlu'. In this case

suP(1-ll7ll) =3lQ|tn
and we have

(4.18) (f ,"1,fl")'/" =3ot"lQl'i"(f Vl')''" =3,,"( -f ltf)''".AQeo
AIso

(4.1s) e@ f lfl=3,,"@fb(,f lff)''" =3,,"( f ltf)'''.
QAQO

Case2. l-llxll>2lQlu'. Hence 1-llxll =Zllx-yll for every y(e and con-
sequently we get

1?
7(t-llxll) = jåå(, -llyll) = :t;E(t-llyll) = ;(t-ilxtl).

Furthermore, the double cube 2Q is a subcube of Qo. In particular,

, 1_il-il

|=ffi=z foreach YcQ'

Therefore we can obviously write

@.20) p (x) f l 1 : .f (=Lil-r,J 
"' " 

n (r) l f 0)l a y = 
yr " f pl f l = 2, r 

" M p f (x).
a A \- rrr,t 

O
Also

( f tnrr)''': Q(r) t/ t+=]#)" urr>r arJ"" = (*)"" n@)( f r.rt")'tu

(4.2t)

= (+)"'" p(x)wM"f(x).

The last inequality follows from the fact that 2QcQo. Now (4.19) and (4.20) imply

(e @ f If )' = 2t/"1MEl'@)p13nr's ( f Vf)''"

and (4.18) together with (4.21) yield

( f tntr)''" = (+)'"'" lq(x)wM"f(x)lp+3nets( f ttr)''" .

Q \-' 
QO

These estimates hold for every x(Qo and each cube O such that x€Qceo.
By the definition of the maximal functions the estimates (a.16) and (4.17) follow.
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If we integrate (4.16) over Qo, then apply (4.10) to the function q/ and use

(4.17), we get (4.15). In fact

(4.23)

283

! aolMflr= Znpt' !lMsfto4Jno,'{,!m') 't'= ryQo Qo Qa

. 
{ 

lM,aflo*3npt' ({ l.rl')'"

= lry * 3npt, 
t",,' Tr' Lw re - t> 

J(rf tr
, ^\DnlS

l|)' 
' 

z*rcro,ep(p_s)rft^fiewa"fr.
Qo

Finally simplifying the terms in front of the above integrals we get (4.15). From this

Proposition we deduce the fundamental

Theorem4.2. Assume that the function feL"(Qi, l=s, satisfies the weak

imserse Hölder inequality

(4.22) {f tt<.lf d*)'t"=c, f lf@)lctx, where o:'r,
oQ Qo

for each subcube Q oJ' Qo with the constant C " independent of the cube Q. Then

for each p>s such that

y-tyzpn#C!-1

the function f belongs to Lf",(Q; and the unifurm estimates

(4.24\ ( f lru», a*)'to = ",[ f ltalf dr)'t", o: ]oQa

hotd for each subcube Q strictty contained in Qo with the constant Co depending

only on n, p, v.

Proof. First we assume that f is continuous in Qo. The inequality @.22) means

that WM"f(x)=C"Mf(x) for each x(Qo. Then as in the proof of Theorem 4.1,

using (4.15), we get

f ooluflo - 702p" ( f trpl'ha1g',' (!-l) c! .f o'lMfl'.
eo - p-, ,o"o '' ' , p-l -' 

ol' '

On account of the assumption (4.23)

t f tnll')"'
Qo

l')o"

,{ ao tMr!' = ffi-a r{r,Fl')"'
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For xeoQo, o:ll2 we obviously have q(x)=(l *lf)lnts-2-"1s and therefore

-f ttt*>t, clx < 2n2npts f erl*tJ-1, = 103p' ( { V-f)r,' ,oeo eo - (P-1)(1- v) tn'r

which is equivalent to (4.24) with

^ 103,c, : 
11r;ly6 _;;1,r,'

and Q:gr. Notice that the exponent p and the constant C, do not depend on
the cube Qo. Therefore we can apply the same reasoning to any subcube eceo
getting (4.24).

Finally we eliminate the assumption of the continuity of f by the following
approximation argument. we take an arbitrary subcube e' strictly contained in
Qo and a mollifier function 4(x) supported in a sufficiently small neighbourhood
of 0€ R' which approximates the Dirac measure concentrated at the origin. The
convolution

is well defined in a neighbourhood of Q' and it is continuous. It is easy to verify
tlrat for every cube QcQ'

F(x) - ytx l/l - { n Q)i./'(x- y)l'ty

( f wotrd,)'t":( f (trrr)1./@-y)tdy)"dx)Lt"
oQ oQ Rn

=- 
*d 

r{r)(,f tt<*-r\Y ax)'i" av.

Here we used Fubini's theorem and Minkovski's inequality. From (4.22) we get
(f"alf@ - y)l"d*;'r"=a" fnlf@ - y)l dx. Hence

( f lrolf d*)'t' = c" f no) f ltt*- tll dx dy : c" f lr{»l ar.
oQRnOA

Now we are justified to write (4.24) for the function I

(4.2s) ( f trill, d*)'t' = ",( f tr,ll, d*)""

with C, independent of the mollifier function 4. By young's inequality

[-f lr$'u :lf a*l.rl)"J''"= llryttr,,rnr (f vr)''":(! lfl")'/"
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(4.25) the uniform estimates

t fierJ"'= c,(f trt')""
oQO

t of ry. This shows that iJ-l:[imr.*".
The limit is taken over a sequence

measure. This completes the proof

v;ith C p independen

and satisfies (4.24).

tending to the Dirac

and we obtain from

q i x if i belongs to Lo (oQ)

of mollifier functions 4 i
of the Theorem.

5. CONTINUITY AND DIFFERENTIABILITY

We discuss here some important direct consequences of the previous estimates

with the intention of applying them to quasiregular mappings'

5.1. Ip-integrability. Let us recall that every K-quasiregular rnapping f :Q*R"
is assumed to belong to W;tb.(Q). Lemma 3.2 shows that the first generalized

derivatives of / satisfy a weak inverse Hölder inequality (3.7). Now, on the basis

of Theorem 4.2we can prove that f actually belongs to W]y""(Q) with an exponent

p strictly greater than n. After these remarks we can formulate the following

precise result.

be a K-quasireguler mcpping. Then there exists

n and K such that .feW;ro"(0). Moreol)er,

estimate

C (n, P, K)
[dist (F, AQ))'-nto

holds with C(n,p,K) independent of f, F and Q.

Proof. A local estimate immediately follows from (3.7) and Theorem 4.2 so

that for every subcube Qc2QcQ we have

(s.2) ( f Wrale d*)'t' = "l f lof(x)Y o*)''',
Q2Q

where C depends on n, p and K. This reads equivalently as follows:

(s.3) [ lor{oP dx = c (diamQ)-n ( [ DflOY d*)''" .

To go further, we shall consider the partition of R' into closed congruent cubes

with sides parallel to the axes and such that the interiors of two cubes of the partition

are disjoint. The collection .// of these cubes will be called a mesh of cubes in R'.

The diameter - diam .// - of the mesh is defined as the common diameter of
cubes in ,til. Let diam"/4:(1i2)dist @,AA). Then for each cube Q(-// which

touches the set F the double atbe 2Q is contained in O. Therefore it follows

Theorem 5.i. Let f : f2*R"
p: p(n,K)=n depending only on

fo, eaery compact subset F c {2 the

( f lof(x)l' d4''"
o

(s.1) ( I l»f 6)lo d*)',tP '=
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from (5.3) that

I torr = nitr!, 
I totv = 2p-'cldist(F, 0Q))'-e 

,3?E,(,1 
iof r)'''

=2p-nCfdist(F,ile)l-t( å { loll,)?t", since pln = t.
aAi'isza

we observe that each point x€ Rn is contained in at most 3' of the cubes from
the family 2"//: {2Q; Q€.//\ of double cubes. Hence

^Z_ IlDfl,=3^ [ t»t'f =3 [lDfp.a\i!",:n t:* o

Finally we get 
QfiF*o

{ tot t, < 2p-". 3p c [disr (r, Daly-, ( ! lot'y),t 

"F

and the proof is finished.

5,2. Hölder continuity.

Theorem 5.2. Any K-quasiregular mapping f : Q*R" i,s Hölder continuous
on any compact subdomain Fc.Q. The Hölder exponent q.:a(n, K) depends
only on n and the dilatation Kr:K while the Hölder cofficient depends on n, K,
the geometry of the sets F,Q and on the norm ([rpff)rt"
(s.4) lf@)-f?)l = c(n, K, F, o)llDfll,lx_yl'
.for eoery x, y(F.

Proof. Suppose first that p:Q is a cube and g:2Q. By Sobolev's imbedding
Lemma 1.7 and by the inequality (5.3) we get

(5.s) lf(x)-J'b)l = c(n, p)l*- yl,-a, ( ! l»fV),t,
o

= c(n, n, n(ffi)'-"'' (o[lDf1),t"

for every x,ycQ.This gives (5.a) with a:l-nlp=O. The general case follows
from this particular one by use of routine metlods. We omit the details.

Theorem 5.2 is surely much weaker than the precise and deep result of F. Gehring
(see [13]) and it has only qualitative value. However, even this result on the conti-
nuity of quasiregular mappings has fundamental consequences in the study of
-eeometric properties of QR mappings.
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5.3. Differentiation of QR mappings. In this section we show how the dif-

l'erentiability properties of quasiregular mappings follow from Ip estimates of
derivatives of the mappings. In agreement with our approach we are not interested

in the greatest generality. Let f : d)*R', be a mapping and let xo(o. we say

that f is differentiable at xo if there exists a linear map I: R'*Rn such that

(5.6) -f(xo+ h) : .f(xo) +Ut* o (l h l)

as the vector h( R' tends to zero. We call L the differential of the map f at the

point xo. Obviously / is continuous at x6 whenever it is differentiable. If / is

differentiable at xn, then its partial derivatives at xo exist and the differential is the

linear transformation identified with the Jacobi matrix Df(xr), but the converse

is not true. It can be shown that there are mappings in the Sobolev space Il];r""(Q)

with p<_n not admitting differentials at any point of o. Nevertheless for p=n
we have [11]

proposition 5.1. Any map f(W]rc.(Q) with p>n is dffirentiable at almost

eaery point x(Q and its differential is equal to Df(xs) the generalized Jacobi matrix.

Proof follows from the Lebesgue theorem. Indeed, since Df(LL"(A), the

Lebesgue points of Df form a subset Q', of full measure in o (see (1.7)). For

each xo(Q' we have

lim f lotO)-of(xe)le dy : 6.

'*o rlriry

Let us put g(x):/(x) -f(xs)-Df(xo)(x-xo); then g(xo):O, CeW;t*(O) and

Dg(x):p7@1-Df(xo). By Sobolev's inequality (5.5) we get

V@ -"f (xr) - Df (xJ (x - xo) I : lg (x) - s(xJ I

- o(r)

for lx-xol=r. This implies (5.6) with t:Df(x). In view of Theorem 5.1 we have

Theorem 5.3, A quasiregular map is dffirentiable at almost eaery point.

6. YARIATIONAL INTEGRALS

6.1. A special divergence type equation. To move further in our study of
analytical properties of quasiconformal and quasiregular mappings, we shall need

some particular properties of weak solutions of divergence equations

= c(n, p)r( f tosl,)"' - c(n, »r( f lnfU)-Df(xo)l'dv)"'
-B(xo, r) B(xs, r)

(6.1) div A(x, Var) : 0
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with A(x,O-the function from OXR' into .R' ofthe form

(6.2) A(x,O:t<o@)C,C>o-2)tzc(x\8,

where G:G(x) is a symmetric positive definite nXn matrix-valued function with
measurabtre entries defined in a domain Oc R' and satisfying the uniform estimate

(6.3) u'l(l'= (G(x)(, C> = fr'14'

for almost all x(Q and all (€R' with some constants o(, B,O<al=Bz.
The equation (6.1) is obviously the Euler-Lagrange equation for the functional

(6.4) I(u,Q): f r@,Yu)dx with f'(x, 11: (C(x)t,t),tr.

The weak solutions .f fJ.fl and the minima of the functional I(u, e) are Iooked
for in the Sobolev space \L(Q). This means that for any test function 4(W:@)
the integral identity
(6.5) [ (O(*,Yu),Y1) dx : O

a

holds. In the terminology of Paragraph 1.6 it expresses the fact that the vector
A(x,Yu) is divergence free.

For convenience we collect some elementary properties of the integrand
F(x, () and the vector functions A(x, () in

Lemma 6.1 . For almost all xCQ and all (,(€R' we haae

(6.6) to.lrY = (t(x, O, (): t,@, t)

(6.7) l(A(*, (),0i = + §,lll,-,tq

(6.8) (.t1x,1)-,e(x, O, (-() =- +V_.q'«r-'+wr-,) =- +(+)' w-(r.

Proof. The properties (6.6) and (6.7) are obvious. To _eet (6.8) we remark that
G admits the representation G:Q*Q. Then A(x, O(:(nl2)iQCf-'Q.Q( and thus

(t(*, o- A(x, o, c- o : + <la(ln-rQe -lo(in-zQ(, Q(-o(>

: + lo( - e(r Qocl"-' +le(y-') + i Qo( 12 - lou\ (ie(|,-, - lau,-,)

= + loc -Q(r(locl"-' +le(l'-') : + <G G - o, ( - (>t<Ge, €>(* -z)/Z

+(G(, (>(n-2)t2f 
= + a,l,-fl,()(ln-,+ |fl,-,) = +(+)" Å-(r.
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6.2. Thefunction u:-ln l/1. Suppose that f : O*R'\{o} is a quasiregular

mapping, i.e., f(141rc"(O) and

(6.9) lof(x)Y = KJr(x) for almost every x€Q.

We define the matrix-valued function

By (6.9) we see that G-l(x) is defined everywhere in O as a symmetric positive

definite nXn matrix such that detc-1(rc):l and

l(1'z = (G-1(x) <, t) = K't'l?l'.

Hence the inverse matrix, denoted by G(x), satisfies

6.(11) K-2'',1(12 = <GE, () = l(1"

which corresponds to the assumption (6.3) with a,:K-'tn and P:1' It follows

directty from the definition that for almost all x(Q

(6.12) (Jr(i)<"-'t'" G (x)D*f(x) : adj f(x), and Df(x)G(x)D* f(x) : J?' (x)1,

where adj/(x) is the adjugate matrix (see 1.35)'

Notice that(6.12) follows from (6.10) lf Jy@)*o. In the case .f(x):0 both

the left and the right hand side of (6.12) vanish because Df(x):A; see (6.9).

Let us now consider the function u(x): -ln l/(x)l' we easily verify that

Yu(x) : -DY@\JQ: '" lf@)l''
Hence

(G(x)Yu,Yu) : lfl-n <(GD.l)f, (D.f)f> : lfl-4 <(DfGD*.f)"f, f>

: Jitnlfrr(f,f> : Jit,l"fl-,
and

G(x)Yu: -lfl'z(GD"f)f.

Therefore (G(x)Yu,Yu)tn-z)tz67x)Yu: -lfl-'Uy-')tnGDtrf)f : -(adj f(x))f llfl-
on the other hand, we know that the vector @aififll,fl' it divergence free (see

Corollary 1.1). Thus we have proved

Lemma6.2. For any quasiregular mapping /: O*R'-{0} the function
u:-lnlfl is a weak solution of the equation (6.1) with G(x) satisfying (6.11).
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6.3. Basic estimates of weak solutions.

Propositio n 6.1- Let u be a weak solution of (6.1). Then .fbr eaery test func-
tion E(Co(Q),q=-O with bounded gradient YE@) and for euery constant c the

following inequality holds :

(6.13) (l E"@)lvr(x)f d*)'t' 
= #( ! tv,ot.lflu(x1_-s1, 4*1't" .

If the weak solution u is positiue in Q, then the function u:ln u belongs to I44rbc(e)
and satisfies the inequality

(6.t4) ( I tEalrwu(x)l dx)tt, = # #( { lvv (x)1, dx),t"

for eaery E<W:(O).

Remark. Since z(x)*e is also a solution of the equation (6.1) for every
constant €, we may assume for the proof of (6.14) without loss of generality that
a is strictly positive, i.e., u(x)>e=0 for some e.

Proo.f. In both cases we use the integral identity (6.5) and a proper choice of
tlre test function q. To get (6.13) we take 4@):rp,(x)(u(x)-c)<W,r1ay fhen
Yrl :nE"-' (u - c)Y E t E"Yu and

f v"(A(x,Yu),Yo) dx - -n I v"-'(u- c)<A(x, V u),yq) il*.

Hence, in view of (6.6)and (6.1)and o, 
j. 

Hölder inequ ahty

nan

2 [ v"lul' = "+ [ v"-'lu-cllv,pllvuln -1

-aa

and (6.13) follows. To get (6.14) we substitute q- E"lu"-l€ w:ey Then

LTN_L

and

(n-D 
! E"<A(x,Yu),Yr)ctx - " ! En-L(t (x, Vu),vE)ctx.
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Hence by (6.6), (6.7) and the Hölder inequality

o-rl# ! E,lyul, =ry ! v"-,lvvllv,l,-,

= 
Af ( [ v'tY uY)b-u'. ( ! tv Et')'t',

and (6.14) follows.
As a consequence of estimate (6.13) we get

Corollary 6.1. If the ball B(xo,2r)cQ, then the Caccioppoli type inequality

(6.15) ( [ lvur*11, d*)'t" = #t [ ,lr{i*,y a*)'t'
a(xo, r) B(ro' 2r)

holds.

Notice that (6.15) is valid with ,B replaced by a cube O with another co-

efficient which can easily be evaluated.

Proof. The inequality (6.15) arises when we put E in (6'13) such that A@):L
in B(xo,r) and IVE(x)l=llr in B(x,2r). Taking c:fn6o,z,1u(y)dy and using

the local Poincard-sobolev inequality (see 1.24)

( f l"ol- I ul"dy)''"=c(n)r( f lyu(y)l"rz7r)zr"
B(xo,2r) B(ro,2r) B(xs'2t)

we obtain the weak inverse Hölder inequality

( f toa")''n = '(n' 
a' fi)( f lYultz)zt" '

a(;0, r) B(ro,2r)

In view of Paragraph 4.3 we have the important

Corollary 6.2. Eoery weak solution uQW;r(O) of (6.1) actually belongs to

some Wo'rc"(Q) with p=n.' In particular, by Sctbolea's imbedding theorem, weak

solutions of (6.1) and local minima of the functional (6.4) are Hölder continuous in Q.

6.4. Conformal capacity. We recall now the concept of the m'capacity of the

pair (F, O), where F is a compact subset of O.

Definition 6.1. The m-capacity Cap, (F, O) of the pair (F, O) is defined as

(6.16) Cap^(F, r) : 
,rri#!^ro, I lVrl^, elr = l, m > l.

Obviously
(6.17) Cap*(F, Q) <- Cap*(F', Q') if F c- F' cc Q' c Q.

The n-capacity will also be called the conformal capacity. The inequality (6.14)

can be used to estimate the L"(F) norm of the gradient of u : -ln u, where u is
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a positive weak solution of divergence equation (6.1), in terms o[ conformal capacity
of the pair (F, O).

Corollary 6.3. If a:Lnu and u=0 is a weak solution oJ- $.1), then for
euery compact subset FcQ the inequality

(6.18)

holds.

In particular,

(6.1e)

(6.20)

(6.2r)

div A(x,Yu) : 0, x€Q

Lt - Er-wr'(o)

({ lvrl')"n = ##[cap* tF,e11tr"

{' B(xo, r)cB(xo, R) CQ, then

B(xr, r)

where an is the aolume of the unit sphere in Rn.

Proof. The inequality (6.18) follows if we take the infimum on the ri_eht-hand
side of (6.14) over all admissible E, E>l on F. The inequality (6.19) is obvious
if we assume the conformal capacity of the pair (A@", r),B(xo, Ä)), R =n known.
A simple derivation of this fact will follow from some considerations below: see

the formula (6.24).

6.4. Existence and uniqueness. so far we did not use the important property
(6.8) of the function A(x, (). It expresses the fact that the "form" (A(x, () - A(x, (),
(-() is positive definite and has familiar consequences of monotonicity. Specially
(6.8) implies that the non-linear Dirichlet problem

for a given E<.141(q has a unique weak solution u in Wit(e). Moreover, the
maximum and minimum principle (comparison principle) for u,eak solutions of
(6.20-21) holds.

Both above facts are well known and their proofs are completely standard.
We discuss them for completeness. The solution of the Dirichlet problem is

obtained by minimization of the functional I(u, O) over the subset of W41(O)
of functions satisfying the boundary condition (6.21). Let uj be an arbitrary
minimizing sequence for I(u, O) such that ui-rp(W,'171, i.r..

/n,in : hf.^. t qc1*1vr,yu)n,z dx: li.ql -f qc1*1vu,,yu,\,t2 ttx.u:wi@) a i-- ri '

"-,pefr'.@)
By (6.6) we see that the norms lluillxo are uniformly bounded. Hence the func
ttons ui-e€w:@) are uniformly bounded in w,t(Q) and consequently the set

{ri} it weakly compact inl\L(O). Any weak limit rz:lim*-*uju is the required
solution of (6.20) and (6.21) because it minimizes the integral I(u, e).
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In fact, let ( (x) - <G (x)Yu(x), Yu (x))@-z) tzYu@)€ L"trn-') (O). Then

{ ac(x)va(x), vz(x))n'Z fiv -= { <c(x)v u(x), ((x)) dx - }11 [ <rouiu, ()

= IIm [ (cvri*,Yu,u)uz (G(, ()ttz

= * 
:! ;; ; ;' ;;' .),' !.,:;,'ä"-,),'* 

- "''

Hence I a (G (x)v u(*y, vu1l17'r' dx= I^1n.
But in view of the definition of .I-in the function a must eqaalize the last

inequality. To prove uniqueness we assume by contradiction that u, and a, solve

the problem (6.20), (6.21) and u1lu2 as elements in l\t(O). Therefore

t6.22)

for any neW;p1. Since a, and u, satisfy the same boundary conditions we are

justified to substitute q(x):u1*ur(W,' @) getting

I U@,Yur)- A(x,Yu2),Yur-Yuz) : o

and by (6.8) [olY(ur-ur)l'=0, Y(u1-ur):Q, tt1-tt2 almost everywhere in O.

So we reached the contradiction.
Suppose now that we are given two solutions u, and a, such that ur>u,

on åO. This means that the function 4:min (ur-rr,0) belongs to W,t1Q1 and

thus can be used as a test function in the identity (6.22), which in view of (6.8)

implies that [nlVrl'=0 or rl=0, i.e., ut>ttz almost everywhere in O. This

last inequality holds everywhere in O on account of the continuity property of
the solutions u, and rzr. This is exactly the assertion of the comparison principle.

In particular, letting u1 or u2 to be constants we immediately get the maximum

and the minimum principles.
As a consequence of the above remarks we get:

Corollary 6.4. The conformal capacity Cap,(F, Q) can always be calculated

from the unique solution to the weak Dirichlet problem

! <a(x, v u) - A (x, Y ur), vö clx - o

(6.23)

When applied to

exact expression for the

p W)cB(xo, R):O, r<R, this corollary gives the

capacity of the pair (.B(xo;D , B (xo, R)) used in the deri-
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vation of (6.19), namely,

as(x) : ln(lx-xol/R) vrr /*\ - 
x-xo_ _TGm_, y uo\r) _ 

lx_xJrE_(m0_
and

(6.24) Cap, (E1xo3, .B(xo, R)) : I lyuo@)f dx : , = 
?! , ,r=lx--xol=R ln'-l(Rl r) '

6.5. A weak form of Harnack's inequality. We shall show now that the basic
estimate (6.19) implies a principle of the Harnack type for non-negative weak solu-
tions of the class l4'@) of divergence equation (6.1). To achieve that we need
a sharpening of Sobolev's imbedding inequality (1.27) in the borderline case W[t(Q).

Proposition 6.2. (Weak local Harnack's principle). Let u be a non-negatiue

function af the class I4'@) such that for euery cube Qc3QcA

(6.2s) 
^/ lv r, uY = +,
SQ

where v(n) is the corustant appearing in Lemma 1.6. Then

(6.26) .fu"=2fu".
3QA

Proof. Apply (1.27) to o:ll3 and c:ln u; then

f etr*u-(tnu)el = )
sQ

or

^ fl-.,-
f u" = 2e{ "'" =2 f en"" :2 f u"

sQAO

by Jensen's inequality (1.15) appliedto A7t1:e'. By iteration the inequality (6.26)
is immediately globalized as follows:

Propositio n 6.3. Let {Qi}, j =1,2, ..., N be a sequence of parallel cangruent
cubes QlcQ such that 3QrcQ, QinQi*r+0 for .i:1,2,...,.1f- I and
j:1,2,...,N (6.26) holds for each Q1. Then

(6.27) I u" = (2.3\N-t I u" .for i, j : 1,2, ..., N.
Qt Qj

Proof. For N:2 we have

I u'= f u'= 2.3' t u"
Qt gQz Qz

since obviously Qrc3Q, if QrnQ2*0. The general case follows by iteration of
the above inequality.
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Combining (6.27) with the Caccioppoli type inequality (6'15) we can easily

prove the following version of the Harnack type inequality:

Theorem 6.1. For any compact subsets F, and F, of adomain Q, lntFr#$
and any diaergence type equation (6.1) satisfying the condition (6.3) there exists

a constant C:C(n,d,,fr,Ft,Fz,Q) such that for any non'negath;e solution u of
(6.1) in Q the following inequality holds:

(6.28)

Proof. We obviously may assume that u is positive. Then we can examine

the function o:Lnu. For F1 and F2 given we choose a covering of P1 uF, by

a finite number of coordinate parallel cubes Qr, ..., QN with fixed sidelength

e small enough to satisfy the following conditions:

a) 2Q, c Fz

b) 6Q,cQ
c) QiaQial#0 for i:1,2,..., N-l

o, ./ ,o tn ul' = + , i : t, 2,... , r'/ (see 6.25).

Such a choice can be made with the numbers N and e depending only on n, d, F
and the geometry of the sets Fr, Fr,Q. In fact, taking into account the uniform
estimate (6.19) we see that the condition d) and also the conditions a) and b) are

guaranteed by a choice of sufficiently small e i.e., the size of the cubes Q, covering

the compact subset Frv Fr. In order to have c) it is enough to take sufficiently

many of such cubes, say N.
Notice that the cubes Qr, ...,Qn can be chosen for example from a family

of cubes obtained by sufficiently small regular division of R'. Condition d) in view

of Proposititn 6.3 implies

I r' =(2.3';rv-r I u" = (2.3)N-t I u" for i :!,2,..', N.
zQi zQt F2

Now the Caccioppoli type estimate (6.15) yields

I t"@)1" dx.
F2

{ tou(x)\" d*
Fl

Since the cubes Q; cover Fr, the inequality (6.28) with C:Ne-'C(n,a,f,N):
C(n, a, 0, Fr., Fr, O) follows.
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7. CAPACITY AND HAUSDORFF MEASURE ESTIMATES
FOR QUASIREGULAR MAPPINGS

Now we have at our disposal all tools needed to prove two important theorems.

7.1, A capacity estimate.

Theorem 7.1. Let J". Q*R" be K-quasiregular, /€W,r(q,flo.*) Assunrc
0<M:suPxeol/(x)l=-. Let E be a compact subset of Q anrt denote Et:
{x€E; lf(x)l=t}. Then there exists a constqnt C depending on n, K, E, Q and
f, but not on t, such that

(7.1) Capn(E,,0)=Cln1 -.+ -fo, t=+
Proof. We fix two open subsets O1 and Q, of Q, such that E cc ercc ercc O,

and put Fr:Qz-Or. Since / is continuous and f*0, there exists a compact
subset F, containing an open cube such that

M(7.2)

Obviously flrc O - Er: Q,

xtrz

for all t.

The essential idea in the proof of the estimate (7.1), due to Resetnjak [30], is the fact
that the function u(x):lv1(aljf@l) is a weak solution of the equarion (6.1) (see
Lemma 6.2) and the use of some barriers for u, constructed as weak solutions of
the same equation. The crucial property of A(x, () in this construction is that it is

-) F"t.t*plicity we assume that ,f is defined and continuous on O.



(7.3)

In particular,

(7 .4)
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homogeneous in (; A(x,),():)'-'A(*,C) for ,i€R1. Definition 6'l allows us

to take into consideration functions o4llil(O,) satisfying the boundary conditions

Q:0 on 0O and E- 1 on 0E,'

we can take as E the weak solution Q: Ut of the Dirichlet problem

ldivAlx,Yu,)-0 in Qt

tr, - g on 0Q, ut : 1 on \Er.

Then in view of (6.6) and (6.5) we shall have

capn(E,,o) = { lv r,,l' = 4 ^{ <a(x, v u,), Y u,) :
{2t Qt

for any function rl€Wrt (r»r) such that 4 - ut(W,,'(.Q,).

function rlec'(O) such that
(r.t) 4:O for x(Q-Qz, 4:l for x(Or

has this property if t=M12. Therefore for any such 4 we have V4(x)=0 if
xtF ; thus by (6.7)

capn(E,, a) =- * I u@,yu,),Y4) = (fl' { Fu,Y-',lvul

= (11" ( [ lv u,')'"-'''' ( I lv,t()'''(«,f ro'r' ' z 
F!

or, since 4 is arbitrary satisfying (7.5)'

(7.6) Capn(E,,n, = (*)'cap, (0., ,,r({lYu,l'){'-rtt".

Now we use the Harnack inequality (6.28) to estimate the right-hand side in (7.6)'

Consider the function ur(x):u,(1)ln(Mlt) in the domain o,' Both a,(x) and

u(x):111(ettlft*ll) are weak solutions of the equation div A(x,Vz):g in the

open set {x(A; l/(x)l=l}c0, on the boundary of which we have u(x)>n,@)'

In fact, by the conditions (7.4) and by the comparison principle (see Paragraph6.ll

l=u,(x)=O everywhere in Qr; thus ln (Mlt)>u,(x)>0 in O,. For every point

x from the boundary of {x€ O ; lf@)l=t} we eit}rer have lf@)l: t, u (x):111 (M I t)=
il,(x) or x€|Q and so z(x):11 (allf@)l)=ln(MlM):g:u,(x)'

Now by the comparison principle we conclude

u(x) >- u,(x) for x({x(A; lf@)l = t7.

Since t=M12, then Frc{x?A;lf@)l=r}. In particular, for x(Fz

2P
,ro" nJ

On the

(l(*, Yr,), Yrt)

other hand, any

fi.7)



since both l"r and F, are compact subsets of o,o, the Harnack inequality(6.2g)
applied to the weak solution ar, of the equation div (x, Yu):g in O,o gives

(7.8) flvn,r=e Ili,f=etn,2(mesFr)Fr Fz

with the constant e independent of the solution u, and, in particular, independent
of the parameter t<Mf2. Finally (7.6) and (7.8) imply (7.1) with C:C(n,K,E,e,f)
In fact

Capn(E,,r) = (*)" Capun a(,,e,) 
[.1(," #)-'vo,r1@-t)tn - ch,-,L.

Corollary 7.1. Let f: QtR" be a quasiregular mapTing, flconst. Then

(7.9) Cup,(f -r(y)) : 0 for euery y€R,.

Here f-t(y) is the preimage of a point y under the mapping /.
Remark. The equality (7.9) should be understood as follows:

Cap,(zaf -'(y), o) :0 for every compact E c e.

Proof. If y:6, then (7.9) directly follows frorn Theorem 7.1 because

cap,(an1'-,(y), a) = cap, (E,, Q) = clrr-" # for each , = + .
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The full assertion is the consequence of this inequality applied to the shifted mappings.
Now, for a non-degenerate quasiregular mapping -fi {ltR" we introduce the

nrodul of continuity
ot(xo, r) : 

p,ly.p,=, lJ'@)-"f(x)l

defined for each x6€O and y=(ll2) dist(xo, åO;.

corollary 7.2. For each xn(Q there exist an exponent l>-0 qnd a constant
C (xr) such that

(7.10) a(xo, r) > C(xo)r^ fo, y = (tl2) disr (xo, åO).

In general, A and C(x) may depend on the mapping J'.

Proof. We assume for simplicity that xo:O, 1xo):0. Fix a ball f:E(0, n)cfZ
and ro=R such that M,:sup,,,=,lf(x)l=Ml2:(ll2) sup*6p l/(x)l for r=to.
Then, in view of (7.1) and the obvious inclusion f (0, r)c {x€B(0, R); lf(x)l=M,}:
E*, we get

Cap, (B(0, r), ,B(0, .R)) = Capn (EM., o) = ctnr-" #
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where C does not depend on r=r0' Hence

ro(xo, r) : M, = ,(+)^ , i: (cf a)rt@-tt.

For ro<r<(U2)dist(xn,åg) the inequality (7.10) may be easily obtained by our

taking possibly smaller constant C(*o).

or, in view of (6 .24),

@n_ -.. 
C

ln,-1(R/r) : lnn.r(Ml M,)'

7.2. Zeros of the Jacobian.

Theorem 7.2. For any quasi.regular f: Q*R", flconstant in a domain

Q let N1:{x€O,.rr(x):0}. Then mes Nl:0.

Proof. Assume that mes N1>0 and that xo:s is a density point of Nv i'e''

(7.11) ls5ffiip: o, B(0, r) c o.

The Hölder inequality gives

I lof {r)y,'a* : I lDf(x)\"'' dx = lB(0, r)- Nrltrz(-,!.toru»'d4'' .

a(d,i B(0, r)-- Ny B(o' r)

Hence by the weak inverse Hölder inequality (3.7)

( 

^,,{rlDfi')"" 
= 4KC(') [*IlD71"rz)zr"

B(0, r)

whereinviewof(7.11)e(r)--*OaSr*0.Iteratingweget

[-,^ ^{_,tDn")," 
< c(r)e (;)'(å) ...6t#-) (,,{,lDrl')"

B(0, Z-k r)



(u*,,{,"rlDJl')''' = (+)'- (,,,f,rlarv)'t" - ,1*12-o,in (u,o{urDfy)''' .

For each r=ro there exists k such that 2-kro=r<2-e+1r0. Then

( t lD/ l')"" = c(rr)rN*l for v s ro : ro(//).
B(0, r)

By Theorem 5.2 (see also 5.5) we have

t fIDrr)''"=2( f D/t')'''
B(0, r) B(0,2- L + 1rs)

= Zri* (2-k+rro), I f pfi,)"' = ZL-,-rsro ,., ( -f Wf ln)',".

This means that 
B(0' 16) B(o' ro)
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For any natural N we choose rs:rs(N) such that the numbers e(ro), e(rol2),
e(rol4),...,e(rol2k-L),... do not exceed 2-N for k:1,2,.... We then have

. 
sup. l/(x)l = C(n, K)( [ Df f)''' = C(n,K, .rrr;7rv+r

lxl<r[z rfrr]»

for any N. This, however, is incompatible with Corollary 7.2.

7.3. Outer Hausdorff measure. Our nearest aim is to show relations between
capacity and the outer Hausdorffmeasure 7o. We return to the considerations of
Paragraph 4.1.

The following Lemma generalizes the local sobolev imbedding inequality.

Lemma7J. Let Qo be a cube in R" and uelo(O) ancl let l-p<*,
0<n-a< p. Then there exists a constant C :C (n, u, p) such that

(7.12) ia(x)l = C(n, a, p) (diam Q)t--n/p+otp Mo,oYu(x)

for each x(Qo. It reduces to Soboleu's inequality for a:0.
Proof. We assume that Qo:2(0,,R) and u is a function defined in R, with

zero values outside Qn. For every x(R, we have

u(x)-- [ t* ,,,f 
u(x*ty)dr)ctr - - { ,(,{(y,yu(x* 

ty)>dyctr.
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Hence

lrz(x)l = { ,,,{lYu(x* 
ty)l ctl; dr - { 

(r,I iYu(r')l a1') a,

* it f tYuto)'rottr*f ( fv,t)a,
0 O(x, r) R Q(x,r)

= zv-r,, ittr# 
^!,,tY,t')' 

r@-n)tv 6,

1-r- f lYul = z@-n)to ],7o,oYu(x) I r@-nttp clr-7(i-1)p,-t ,rr!^ri'-i 
e -'-d'P'-' 

o

(a - n * np)z@-") I P Rt-nl P * ql P

M r, oY tt (x),

which is (7.12).

Combining this with Lemma 4.1 we immediately get

Lemma 7.2. Under the hypotheses of Lemma 7.1 the inequality

(7.13) y.{x€eo) lu(x)l = ^l=W [lv"Y
"Qo

holds for eaery L=0.

Proof . By (7.12) and (4.4) we have

y,{xCQd lr.r(x)l = )'} = y,{x€Qo; M,,oYu(x) > ,i (diam Qo)ntp-dtp-t c-t)

54 f rv,)p=ryJolvur'
As an important consequence of the estimation (7.13) we obtain

Lemma 7.3. Let F be acompact subset of gcR' suchthat Capn(F' O):0.
Then y.(F):0 for eaery O<a=n. In particular, 7r(F):0 and thus F does not

contain any line-segment.

Proof. Let u be an arbitrary C[1O; function such that u(x):l on F and

let Qo be a cube containing O. Therefore

t,(F) = v,{x(Qu: la(x)l = ll2[ = c(n, u) I ,"Y : c(rt, a7 [ lvuf '
Qo
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Since a is an arbitrary C[(O) function, relevant for the definition of the n-capacity
of the pair (F, O), then y,(F)=C(n,a)Capn(F, O):0.

Finally using Corollary 7.1we conclude:

Corollary 7.3. Let f: Q-R" be aquasiregular mapping such that flconst.
Then for any y the outer Hausdorff meqsure y, of the closed set f-t(y) is
zero for any positiae a
(7.t4) y"(f -t(y)) : 0.

In particular, f-'(y) does not contain any line-segment.

7.4. An application to smooth QÅ mappings. We shall now show that any non-
constant and smooth quasiregular mapping f: Q*R', n>_3 is a local homeo-
morphism. This is a basic fact distinguishing the two-dimensional theory from the
general case n>3. For n:2 holomorphic functions supply examples of smooth
quasiregular mappings having branch points e.g. f(z):7k,k:2,3,..., z:xrfixz.

The result proved below is weaker than the facts known in the literature.
However, we include this weaker result here to illustrate the application of our
methods.

We begin with the following simpler case:

Lemma 7.4. Let f : Rn* R", n>3 be a quasiregular mapping w,hose components
are homogeneous polynomials o.f degree k,k>|. Then f is a homeontorphism of
R" onto itself.

Proof. First of all we observe that the Jacobian J7@) of the map / does not
vanish in R'-{0}. contradicting this fact suppose that ./y(xo):0 for some xof\.
Since / is quasiregular, Df(x):0. On the other hand, Df(x) is homogeneous of
order /c-l; thus D/ vanishes on the line {rxo; r€Rl}. As a consequence of that
we get /(rxo):const:0 for all real r. This contradicts Corollary 7.3. rn a similar
way we prove that f(x)+O for x*0. Therefore f is a local diffeomorphism of
R'- {0} into itself.

Let us now consider the map
by the formula

q : §rn- 1--.5n- 1 defined on the unit sphere ,Sr-- 
1

f(x)g(x):ffi
This mapping is a local homeomorphism (even local diffeomorphism) follows
from the following observation: e:foh, where the map å:S,-l*R,-{0}
has the form h(x):11y1*. Here l=0 is the scalar smooth function, ).(x):
lf@)l-'to. Such mappings as å transform diffeomorphically rhe unit sphere
onto a closed smooth (n-l) surface. Since / is a local diffeomorphism in R,- {0},
then E is a local diffeomorphism on the unit sphere.

The crucial point in our proof is the following topological theorem: Any
local homeomorphism of S'-1 into itself must be a homeomorphism onto s,-1.
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Here the assumption r>3 is essential. On the basis of this theorem we see that

E is a diffeomorphism of ,S'-1 onto ,S'-1. We shall derive from this that

f: R"-{0}*R,-{0} is a diffeomorphism. since we know that f is a local dif-
feomorphism, it suffices to prove that f is one to one. Let f(xr):f(x2); then

«O@Lllxtll:E@'llx'), so xtllxll:a211p1. The homogeneity condition implies

.f(xr)llxrlk:f (*\ll*'lo, whence lxll:lx2l and xL:x2. The lemma is proved.

Let us remark that the inverse mapping f-r: R"*R" is Hölder continuous

with the Hölder exponent a:l|k. The following theorem generalizes Lemma 7.4.

Theorem 7.3. Let -f: A-R' be a non-constant quasiregular mapping of the

class C-(Q), where Q isadomainin Rn,n>3. Then f isalocalhomeomorphisnt.

Proof. We investigate f in a sufficiently small neighbourhood of an arbitrary
point xo€O. For simplicitywe assume that xo:Q6O and,f(0):0. By Corollary
l.2there exist an integer N and a constant C >-0 such that

sup lf@)l = Cr*
i.rl=r

(7 ls)

for sufficiently small r >- 0" We use the Taylor expansion formula

f(x) : Pr(xh ... t Pry (x) * o (lxlN+l),

where P1 are homogeneous polynomials of degree k. In view of (7.15) one of
them does not vanish identically. Therefore we can write

"f(x): h(x)*R(x),

where å is a homogeneous polynomial mapping of degree, say k, l=k=N and

R is a smooth mapping such that lR(x;1:911r1r+tr. Since / is K-quasiregular,
i.e., lDf(x)l=KJy(x), then lDh(x)l'=KJo@)lO(l.x1o'*'-") and by homogeneity

of å we infer that å is also a K-quasiregular mapping. Now Lemma 7.4 implies

that h is a homeomorphic map of R' onto itself. This makes i possible to
examine the map f(h-'(y)):y+R(/x*l(/» defined in a neighbourhood of y:9.

Obviously R(h-r1y1):g(ll,-{y)lu*):O(lyl(k+l)tn) and Rh-r is a C*
map for y*0. This shows that Rå-1 is a Cl mapping such lhal D(Rh-t)(0):0.
Finally we conclude that fh-l is a C1 diffeomorphism in a neighbourhood of
.y:0 (since Dfh-t(0):I-the identity matrix) and consequently f is a homeo-

morphism in a neighbourhood of x:0.
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8. MEASURABILITY AND INTEGRATION

We will now briefly discuss the behaviour of the Lebesgue measure under
quasiconformal and quasiregular mappings and the closely related change of
variables formula for definite integrals.

8.1. Lusin'scondition.il,Let f: AtR'(O is a domain in R,) be a mapping.
Then f is said to satisfy the condition .,{ if for every set tco of measurezero
the image f(E) is also a set of measure zero. Let us recall that if / is a continuous
mapping, the condition ,ff is necessary and sufficient in order that the mapping
transforms every measurable set into a measurable set. Indeed, let / fulfil the con-
dition .,{. since a measurable set Aco is a sum of a set E of measure zero and
an ascending sequence of compact sets ,E',, then f(A): vtf(E)vf(E), where

f(E,) are compact and l/(E)l:0, whence f(A) is measurable. Conversely, as-
suming that f transforms measurable sets into measurable sets, let us suppose that
there exists a set ä of measure zero such that F:f(E) has positive measure.
Then one can find a subset F'cF which is not measurable. Let E,cE be the
inverse image of F' under the map f: E-F. Then E is measurable as a subset
of the zero measure set E but the image f(E):F' is not measurable, contrary
to the assumption. In connection with the condition rt we recall another essentially
more restrictive condition, introduced by S. Banach [33] and called the condition ,S.

We say that the mapping f : Q- R" satisfies the condition ^S if for each number
e >0 there exists a o>0 such that, for each measurable set Ece, the inequality
lEl=o implies that f(E) is measurable and l/(E)l<e.

Obviously every mapping which fulfils the condition ,S also fulfils the con-
dition -,f .

Lemma 8.1. Let f: Q*R" be amapping of the Sobolea class \t(e),p=n.
Then f sati'sftes the condition S. Moreooer, for each measurqble subset E cc Q we hql)e

(8. 1)

(9.2)

if@)l = c(n,

Z lfQ)l = C(n, p)å (diam Q)")'-ntP(?

dlEl,- ",'v l»f @)to 4 *)n t o

where C(n,p) depends only on n and p.

Proof. First we examine a set äcco which is the union of disjoint cubes

Q1ccQ, j:1,2...., E:viQi.For every cube Qi we have on account of (1.28)

l.l'Q)l = 2" (diamf(Q))" = C(n, p)(diam Q)(t-(ntn)n (

Hence by the Hölder inequality we obtain

I vrv)''o
Qi

I tnrte)nte
Qi

{ totto)"'o - c(n,p)lEl'-ntp ({ tntp)''o
uQi E

c(n, p)(Z leilr-",o (
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Here lf(O)l means the outer Lebesgue measure of f(Q). Now let E be an

arbitrary measurable subset, EccQ, and let QlccQ be cubeswithdisjoint interiors

such that EcviQ,i,»tlQ)=lEl*e for some e=0. Then by the inequality (8.2)

lJ@)l=zilfQ)l=c(n,

+ C(n,

In particular, if lEl:0, we immediately get l,f(E)l:O since e may be chosen

arbitrarily small. In other words, / fulfils the condition Jr. Hence f(E) is mea'

surable whenever E is measurable. Now one can easily derive the inequality (8.1)

from the last estimation and afterwords deduce the condition §. An explicit cal-

culation is omitted, being standard.

Lemma 8.1 implies at once

Theorem 8.1. Any quasiregular mapping fulfils the condition .f .

8.2. Condition .,{-r. The map f : Q-R" is said to satisfy the condition Jr-L
if for each set Fc Rn of measure zero the preimage f-'(F) is also a set of
measure zero.

Theorem8.l. Any non-constant quasiregular map f:8*R" satisfies con'

dition -,{-r.
Proof. We have to show that lf(E)l:0 implies lf l:0. Assume the contrary:

for some E of positive measure l"f(E)l:0. Since / is differentiable almost every-

where (Theorem 5.3) and the Jacobian Jy@)=O for almost each x€E (Theorem

7.2), there is a point xe€,E which satisfies the following conditions:

a) x6 is a density point of .8,

b) / is differentiable at xs,
c) .f(x6)=0,
d) xo is a Lebesgue point of the function lD/l'.

Let Qi:Q1@o),_t: l, 2, ... be a sequence of cubes shrinking into xs. We then have

t8! : W = C (n,, (W)' - "'' (t^ o,l,tol1"''

= C (n,' Pbf)'-"'' ({ tDf P)

in view of (8.1). Letting 7+o, w€ get by b) that the left-hand side of the above

estimation converges to .f(xo)=O. Now a) and d) imply that the right-hand side

converges to 0. The obtained contradiction proves the theorem.

pxl El+s)'-.,, (u{ tott')n'o

ilqal*e), -ntp (! lDf le)nte
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8.3. Banach indicatrix. First version of change of variables formula. A suitable
instrument for studying quasire-eular mappings is the transformation formula for
definite integrals under general transformations not necessary one to one. For this
purpose we introduce the so-called Banach indicatrix N(y; f, O) of a mzp f : O* R"
(other names used in literature are crude multiplicity functicn or the counting
function).

Definition 8.1. Let f: Q*Rn beamappingandlzt E beasubsetof Q. Then

N(y;f, E): card {x(E;J'@) : y}

for each y(R'. We qdmit the aalues ** for the function N(y;f,E).

Theorem 8.3. Let f: Q*Rn be a continuous mapping satisfying the con-

dition ",f . Assume that f is differentiqble almost euerywhere and the Jacobian
J7@) is integrable on Q. Then the function N(y;f,Q) is int"grable in Rn ard

(8.3) ! ttr(x) I
dx - *[ 

nrr; f, a) cty.

Notice that in view of Lemmas 1.1 ,1.8 and Proposition 5.1 any map of the
class W](A) with p>n satisfies all the hypotheses of this thccrem. In particular,
quasiregular mappings are in the range of our considerations. The proof of Theo-
rem 8.3 is based on an auxiliary Lemma 8.2.

By fro, k:0,1,2, ... we denote the division of R' into half-closed cubes
of the side-length equal to 2-k, no two of which have points in common. Any
cube from ,//o*, arises by the dyadic division of a cube from -l/u. By -// we
denote the union of the families -/tp, k:0, 1,2, ..., fl:l)u-//o.

Lemma 8.2. Let f satisfy the hypotheses of Theorem 8.3. Then for eaery
nx:1,2,... there exists a subfamily 4cU7=r,,/fi of dis.ioint cubes contained in
Q such that

I---: ^ t/l for each l€.fr*,
tt'l I'.I J

b) lo- u 1l :0,
' r<g^ t

c) each cube I€9^+r is a subcube of a cube belonging to the family fr^.

Proof. Fix the number m.We begin the construction of the family 9*cl)y=_ frx
with the choice of cubes from .,// ^ which are contained in O and satisfy the con-
dition a). Suppose by induction that the cubes from ,r//1, are chosen as cubcs
belonging to 9-, k>ru. Now each cube l(i/pa1 which is contained in O, has
no points in common with any cube chosen before and fulfils the condition a) will
be included to fi*.

a) lirtzlt - !ttr@)ldxl
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The condition c) immediately follows from the above construction of F* and
from the observation that every two cubes from "// are either disjoint or one

includes the other. To verify the condition b) we suppose, by contradiction, that
Q-Ures^1 is a set of positive measure. We find xs(Q-Ureo^I, which will
be a differentiability point of f and a Lebesgue point of the function IJACD@).
There exists ko:ko(dist(xo, lQ),m)>a such that for every k>ko the unique
cabe lo€"//o such that x6(10 is contained in O. Since xo|Ures^l, then Ie cannot
be a subcube of a cube belonging to the family 9-, and, in view of the properties
of ,til,10 is disjoint with every cube from fl^U^="=o.,//". This means that

l#- f v'a»o.l=+ ror k=ko'

On the other hand, since 1o are shrinking into xo,

)i- .f l,L(x)l 4v: lJ1(xo)l and also 1;- J44)i : l,I/(xJl.
i:;l J\"/, " r\v/ k-@ llkl

The last statement follows from the differentiability of f at the point xo, i.e.,

f (x) - f(x ) : Df (xr)(x - x6) * o( lx - xol). This gives the contradiction.

The proof of Theorem 8.3. We consider a sequence of integer valued functions
g.: R'*N:{0, l, .... -} defined by

s*(y): ,Z^xro(t),
where X" stands for the characteristic function of a measurable subset Fc R'.
For every nt we have the estimation

(8.4) - I- ir2l +m lrr(x)l ,t**+1rz1.I r*O)dY = !I trr(x)l dx=

In fact, if I(g^, then by the condition a) of Lemma 8.2. we have

-ltrt + f ltrrildx= [xylrtu)dy= !ltrt,oldx+]-Vl.m" I t

Summing up over all the cubes from 9* and taking into account the condition
b) we get (8.4), noting that g- are integrable. Furthermore, we assert that

for every ye R"-f(E), where E:U*=r(Q-Urro^I). The above sequence of
inequalities follows from the property c): To prove (8.5) we observe that for
y< R" - f(E), f-'(y)cU, €e*1, m:1,2, .... Consider the case l=card.f-r(y):
N:N(y;f, O)=-. Let x1,xr,...,xn(d) be district points such that y:f(x),
j:1,...,N. Therefore xi(Ureo^1 for m:1,2,..., j:1,2,...,N. Since the

side-length of any cabe l(F*cl)p=^il1, does not exceed 2-^, then for sufficiently
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large m the points xL,xz,...,xy belong to the different cubes of the family 9^.
The number of suchcubes is obviously equal to g-(y),which means lim-*- g-(y):
N(y;f, O). The case when card(f-t(y)): - i, treated similarly and the case when

f-'(y):O is obvious. Finally we observe that E is the set of measure zero because
of the property b). Since / is assumed to fulfil the condition -,f , then f(E) has
measure zero also. By (8.4), (8.5) and by Lebesgue's theorem on integration of
monotone sequences we conclude that N(y;f, O) is integrable in R' and the
formula (8.3) holds. This completes the proof of Theorem 8.3.

The integral formula (8.3) can also be used to derive the condition $-r for
quasiregular mappings. In fact, this method gives a slightly more general result,
which we state here as follows.

Lemma 8.3. Let f satisfy all the hypotheses of Theorem8.3. Assume addilionally
that the Jacobian Jy@) is positiae for almost all x€Q. Then f fulfils the con-
dition -4r-1.

Proof. Let E be an arbitrary measurable subset of O such that tf(E)1:0.
For every open set U=f(E) the preimage f-r(U) is open and by (8.3) we have

*[ 
*(r, f, f -'( u)) ,t v - .{ * (r; f, f 

-L ((])) d t'

= I tt(yt f,o)dy.
U

Since N(y; / O) is integrable on R' and U is an arbitrary open set covering the
set f(E) of measure zero, we get ! nlJ /x)ldx:O.

Hence we conclude that lf l:O on account of the assumption l,/r(x)l=Q
for a.e. x( O. Therefore the lemma is proved.

{ trr(x)l dx = , ,{r,lrr@)l 
dx -

I "(f(*)) rr@) dx - I "U)1,{(y;{2 R,,

- *{ xvu)N(Y;

Theorem 8.4. Let f : Q* R' be

ferentiable almost euerywhere, J f(x)=0
rf . Then fo, eaery u(L*(O)

a continuous mopping of class ,l/,,'(Q), dif-
o.e. o/?d additionally satisfying the condition

(8.6) f,Q) dv.

Proof. Let us first examine the case when u:Xv-the characteristic function
of an open set VcR'. Then f-'(V) is open and by (8.3) we can write

{ rr(i dx - I *O; f,f -'(v);),t) - I * O,, f, a) dy
f-t(v) v i

f, Q) dv.

We used the obvious equality N(y;f,f-'(V)):N(y;"f, O) for each y€2. Since
both sides of (8.6) are additive functionals with respect to u, we get (8.6) for any
piecewise constant function u(y):Zi=rCiXv,, where V, are disjoint open sub-

I rr(fl*Yry(x) dx -
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scts of f,n. Since any u(L*(Rn) may be approximated by a sequence of piecewise

constant functions zp boundedly convergentto u almost everywhere, the sequence

"u(f@)) 
converges boundedly to u(f(x)) almost everywhere in O. Here we used

the essential fact that / satisfies the condition .ff-L; see Lemma 8.3. By the

Lebesgue convergence theorem we obtain (8.6) in the form asserted in the theorem.

8.4. Total variation in the Banach sense. Let f : Qt R" be a quasiregular

mapping. The set function g defined by the formula E(E)- l/(E)l it not additive

in general. Therefore the theory of derivation of set functions is not applicable

to E. A relevant tool in the study of the measure of the image sets /(E) is the

theory of variation.
We recall the notion of the total variation of a map f: d)*R"- Assume that

/ is continuous. Then on each open set DcQ the Banach variation is defined by

Yu(f,D) : rlp ,äl"f?)|,
where the supremum is taken over all finite systems F of closed intervals contained

in D no two of which have interior point in common. An interval .I in R' is

a point set determined by the inequalities ai=x'=bi, (ai=bi) i:1,2,...,n. Let
us observe that VoV;.) considered as a set function defined on open subsets

of O is completely additive in the sense that

Vu(f, uDi) - E,Vu(f, D,)

for any sequence of open disjoint subsets DtcQ.
From the inequality (8.1) we immediately see that any f:d)*Ro of the class

W; (O), p=n is a mapping of bounded variation. More precisely,

(8.e) VuU; Q): rlp ,äl"f@l = C(n, p)typ ,ä

(8.7)

(8.8)

l1l'-ntp ([ tot.lo)ntt

(21,-,,, (! lDl"lo)"',= c(n, p)'H (,äl1l)'-ntp (J lDflo)"'' =- c(n, p)l < oo.

To simplify further considerations from now on we assume that f(Wot (O) with
some p>n. The formula (8.7) may be simply extended for D being composed

of closed intervals. In this way Ve(f ; .) may be viewed as a function of intervals.

This function is additive in the sense that

Vs(f; Irvlr) : Va(f; I)*Vo(f; Ir)

whenever 11, I, and IrvI2 are intervals contained in O and Ir, I, are non-

overlapping. In fact, the inequality ft(f ; Ir)*Vs(f ; Ir)=Vu(f ; I1v I) is ob-

vious. To show the opposite inequality we consider an arbitrary finite family F of
non-overlapping intervals Ic.I, v Ir. Let 94: {I a I; I( 7) and 4: {I a Iz; I< g},
For each I€F we have l/(/)l=l/(/n/)l+lf(Inlr)1. Hence

i e.g I',(gt I" (.fiz
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and
Vs(f; IrvIr) =Vu(f; I)*Ys(f; I).

The inequality (8.9) shows that vr(f: . ) is absolutely continuous, that is, there
exists a number o>0 corresponding to each e>0 such that for every non-over-
lapping intervals Ir, fr, ...,IncQ the inequality ll)11,1<o implies Vy(f ; v Ir)=e.

Now we recall the fundamental Lebesgue theorem on the derivation of additive
functions of intervals.

Theorem 8.5. Let p be an additioe function oJ'interc-als oJ'bounded aariation
and absolutely continuous. Then p is almost euerywhere clerit:able arcl

(8.10) pu)
I

for each interaal 1cO (see [33]).
Thederivativeof p atapoint x(O, denotedby p'(r), isdefincdas

tt'(x): mffi,
where the limit is taken over an arbitrary sequence ex of cubes shrinking into x
such that x€Q*, k:1,2,... . It can be shown that for each f(Iy;@), p:-n the
derivative of total variation of / is almost everywhere equal to the absolute value
of the Jacobian of /. In this way we proved

Lemma 8.4. For any map f<W;(q, p>n, the formula

(8.11) v,(f; u) : f ltr{/.,1a* : I *o, f, u) ,tt,
U

holds, where U is an arbitrary) open set in O.

8.5. Topological index. second version of change of variabres formula. Let
f : Q*R' be a quasiregular map. The topological index of a point z in the tar,eet
space R' with respect to the map / restricted to a sub-domain Dco is defined
only for (f,D) admissible points z. lf D is a subdomain of o with compact
closure DcQ, a point z of the target space of / is called (/D) admissible if
z$f(\D), where äD is the boundary of D,åD:D\D. The ser Cp:C(f,D)
of (f, D) admissible points is then the complement of the compact set f(LD) and,
decomposes into an at most countable number of N disjoint components,
l=N= *, CD:UI-'C,uC-, where by C- we denote the unique component
containing the point - of .R-'. c- will be called the outer domain of the map /.

we shall use an analytic definition of the topological index [r7]. For that
we shall need a special family of auxiliary "bump" measures, compactly supported
approximations of Dirac measures in R'.

Let E"(r),0<e_=1, be an arbitrary family of C- functions defined for r>0
and such that E'7r1:g for r>e, E'(r):const in a neighbourhood of r:0, q"(r)=O
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and

I v"lltD dY : r'

Obviously the functions E"?) can be taken in the form E"(r):lle"Y(rle) with
some fixed smooth Y(Cr(R), Y(l)>0, Y(r):g 1ot lr l= l, I RY(lyl)dv:l'
With 9"(r) fixed we set

020) : E"(lr- vD dv

and obtain a family of n-forms in R' such that
a) q! is compactly supported and for each (J',D) admissible z and fot e

sufficiently small the support of Q2, is contained in the open component of Cp

containing the point z,

b) q| is normalized
: 1.
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The topologicol

the formula

Lt.(z; f, D)

y) dv

Definition 8.2.

point z is defirued bY

(8.12)

index p(z; f, D) ,J the (l', D) admissible

whzre f*gi:<p"(lz-f(x)l) Jt(x)dx is the "pulled back" n'form on D-

Since z |f@D), f*Q", is compactly supported in D (for e=dist (z,f(lD))),
and the integral in (8.12) has sense for e small enough. The topolcgical index

p(z;f,D) is defined by the integral formula (8.12) as a real number, non-negative

for (orientation preserving) q.r. mappings, depending on the casual choice of the

bump forms qi. The basic property of the function lt(r; f, D) is that it is integer-

valued and independent of the auxiliary choices. As a matter of fact it depends

on the homotopy class of the restriction f l»D of the map .f to the boundary

0D on1y. However, at this moment we shall restrict our proofs only to those u'hich

are important to our purposes. We notice first that for sufficiently small e, depend-

ing on dist(z,J'(yD)), ttre integral (8.12) does not depend on e. Indeed, the nor-

malizing condition b) implies that 020)-Sl(y) is a differential of a smooth (n-l)-
form with small support contained in the neighbourhood of the point z: this is
immediately seen in local polar coordinates

where r:ly-zl and d@ is the volume (n- l)-form of the unit sphere in Rn.

Obviously the (n- l)-form a; is smooth and compactly supported in D. Therefore

I o f*da: I pd,(f*a):g by Stokes's formula and I o f* p2: I , .f* Q', as asserted.

Thus for each z(Co we can discard the lim in the formula (8.12). Consequently

wc have:

02o)- ai(y) - 't([ (E'G)-Eu(r)) rn-l dr ct@)- da,
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corollary 8.1. The topological index p(z;/,D) is a continuous Junction
of z(C2.

Th e o r e m 8.6. Let f be a quasiregular map ping of class W!^.(a), p = n, D cc e
and u(z) a bounded measurable function with support contained ,n R\/(åD).
Then

(8.13)

Proof. Set K: supp u. Then K af(|D;):g and there exists an eo >0 such that

lf@)- rl - co > 0 for x(.LD, z(K.
By definition

p(z; f,o1: Iv"(lf(x)-zl)Jr(x)dx for e<€0.

Let yp@) be the 
"fru.u"t"ri"rti" 

function of D.Multiplying (8.12) by u(z) and
integrating over R' with respect to z we get

J uQ)p(z; f, D) dz : _I (-l *"lf(r)- 4)4@)u(z)y.o@) ctx)dz.
in Rtr Rn

Denote

u"(y) : I v" lt - ,D u(z) d z.
Ån

By Fubini's theorem we have

t ue)1t(z; f, D) dz : ! u"(f(x))l(x)yp(x) dx.
Rn

By the well-known approximation property of the ..mollifiers,, q"(J,)) we have
u"(y)*u(y) almost everywhere. Since / satisfies the lf -l-property, u"(f(x))*
u(f(x)) almost everywhere. Therefore by the Lebesgue convergence theorem
we get

lim [ ""(flr))tr(x)xo(x) ctx : I u(f(x))tr(x) ttx
e -0 4i,

as desired

8.6. Further properties of the topological index. The two forms of the change
of variables formula make it possible to identify the two functions y(z;f,D) and
N(z; f, D).

c o rol la ry 8.2. For any quasiregular map f : e * Rn and any open subset D cc e.

(8.14) p(z; ./, D) : N(z; f, D)

for almost eaery point z(f(LD). In particular, p(z;f,D) is constant and integer-
aalued on eaery component of co. The topological index p(z; f, D) does not depend
on the ckoice of the auxiliary "bump" function q"(r).

! "("f(*))Jr(i dx - n{ 
ue) rre; f, D) ctz.
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Proof. The prcperties (8.13) and (8'6) imply

f, D) dz * f, D) dz

tor each bounded measurable u(z)with support ccR',§(åD). Hence (8.14) since

the left-hand side of (8.1a) is continuous in z and the right-hand side is integer-

valued. The fact that p(z;f,D) is locally constant and integer valued is obvious.

The Banach indicatrix N(z;f,D) depends on f and D only; hence the last

assertion of the corollary. Thus we have shown that the topological index p(z; f, D)

is independent of the casual choices inherent in the definition. In fact we also see

that it is homotopy invariant.

Corollary 8.3. If fr,O=t =1, fo a J'amily of maps satisfying the conditions

oJ' Definition 8.2 and dzpending "in a continttous way" on the parameter t, and if,
for all r([0, l] z{f,(lD). Then

p(z; Jo, D) : 1t(z; -fr, D).

Proof is immediate, since an integer-valued continuous function of r€[0, U

must be constant.
It is possible to derive an expression for the topological index in terms of the

homotopy class of the mappings f4ao. However, we omit the discussion of this

topic since we do not use it here.

Applications of the concept of topological index are based on the simple

Proposition 8.1. If z is (f;D)-admissible and z{f(D), then p(z;f,D)-0.
Equioalently

p(z; f,D) * O implies z€f (D).

Proof. Our assumpticns imply z|f(O). To compute p(z;f,D) we may use

any normalized n-form q with support in a small cube withcenter z and diameter

-n-Ltz dist(z,J1O:11. Since then .f*p=O in D, the proposition follows from (8.14).

In view of Proposition 8.1 the topclogical index is an important tool, describing

the image set /(D) in the discussion of the solvability of the equation f(*):r.
In this connection we mention

PropositionS.2. If the point z belongs to the outer domain of the map f
then p(z; f, D):0.

In fact, for z -> @ the equation z - J'@)
assumption f is bounded in D).

We shall also need

has no solutions x€D (since by

PropositionS.3. Let {D} i:1,2,... be a sequence of disioint open subsets

of D. Assume that DccQ, z is (f,D) admissible and l'-'(r)aQcl)iD,. Then

{ "@)t{ 
(z;

Rn
[ "@) 

1t(z:
Rn
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lt (z; f, D) D')'

Proof. We show first that z(f(D,) only for a finite number of indices t4.
Really, if z:f(x), xo(Dru k:1,2,..., then any accumulation point xo of the
sequence {xo} belongs to f-t(z). But xo does not belong to any one of the open
sets D;, and this contradicts our assumption. It follows that for a sufficiently
small neighbourhood a, of the point z, the open subset .f-r(al) has a non-empty
intersection with an at most finite number of Dr, say Dr, ...,DN. Let the form
q- have the support in al,. Then

p(z; f,D) : { f.(q) -

the point z is (f, D,,)-admissible fo, eGCh

is non-zero .fo, a finite number of indices {i}
i and the topologicol index tt(z) f, Di)
only ond

s(J 6)) rr@) dx

of the class C;(Q'). To prove this we
applied to the vector function u(y)-

- 2 t,o; f,
i:1

N^

,-t Di

J 
r.r0)l'-'(y) dy - - ! adj*J (x)E(f @)) ctx

! A.@)D*E(/(x))) x dx

:T
N
ODi

tl:1

dx

N

z
i:1

! ,(f (*)) rr(*)

rt(2, f, D,),

since the open subsets D i are disjoint. This ends the proof.

9. GEOMETRICAL AND ANALYTICÅL APPLICATIONS

9.1. The inverse mapping.

Theorem 9.1. Let f: Q*Q' be a K-quasiconfornwl nupping. Then the
inuerse map f-r: Q'*d) is K'-1-quasiconformal.

Proof. Let us first observe that the algebraic inequality Ai'=K detl implies

lA-r1=A'-r det A-r for an arbitrary invertible matrix A. That is why the dilata-
tion of .f-t is expected to be equal to Kn-r. Since the adjugate matrix adj A:
(det A) A-t, we have

ladj Ai = (l( det l\n-L)t't whenever iAY = K det A.

We begin with the integral identity

(e.1)

(e.2)

holding for every test mapping E: Q'* R'
use the change of variables formula (8.6)

D*Ej)f-'(y), getting

of 
,.r(v)f -'(v) dv -
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Consider the test

by the definiticn

Therefore
-'(v) dv -

The differentiation rule yields (».a1x1)x : -4@)-lY\x,rt@)), where (x, 4(x))
is the inner product of the vectors x and r1@). k is clear that the function Y(x):
(x,,t(x)) belongs to W:(O). Ncw we appeal to Lemma 1.9, which says that the

columns of the matrix adjf(x) are divergence free. The weak form of this fact

can be written as follows:

for each function

which is the same as (9.2).

Now by (9.1) and by the Hölder inequality we obtain

I J 
r. r rrr, -' (D d vl = Ko - 1) t n { t, 1r1* -u t' 

lE (f k))l a *

< K@ - 1) t n ( I t, t»lr (J' @1)1" 
r a - » d x)t' - 

lt t " 1s 1r 
t'

= ur-or,, ( [ l,lttlf,t-rt ]r)tn-tttn 1g}rn.

Here we have repeatedly used the change of variables formula (8.6). According to

the remarks of Section I this inequality shows that the map f-' belongs b Wr"(O')

and

(e.3)

As the map f-' fulfils the condition .{, because / satisfies the condition -'[-1,
Theorem 8.3 (applied to the mapping /-1) yields

(e.4)

Therefore

(9.5)

: Xs).

This inequality may be written with
we could at the beginning restrict

Q' replaced by an arbttrary subdomain because

our consideraticns to an arbitrary subdomain

! t^a:* .f(x)D*rt (r)) x dx.
J 

o.*(ilJ

mappins rt (x) - E(/(r)), q(W:(o). Since Dq (x) - DE(/(x)) Df@),

of the adjugate matrix adj f (x) we have the formula

Dq(x) adi J @) - Jv@)DE(f @)) a'e' in Q'

V IDJ -'(v) l' dv)'tn < K@-\tnlQl'''

{ "a:* .f 
(x)v Y (x) dx - 0

Y from W,t(Q). In particular, we get the equality

J 
o.ro).f-'(y) ,ty - - I adf f(x)ry@) dx,

lol - [ ,, -,(y) dy (lr(, ; f -', e')

Jtot-'(v)l" 
dv = Kn-' J Jr-,(v)ctv-

315
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of O. In other words, we are justified in cancelling the integrals on both sides of
(9.5) and writing

IDJ--'0)1" = K"-r Jr-,(y)

for almost every y(o'. This shows that .f-t is a K'-1-quasiconformal mapping.

Remark. To write the formula (9.4) we need to know that the inverse map
./-1 is differentiable almost everywhere in O'. Since

f(x)*f(xr):Df(x)(x-x0)+o(l.r-.r01), ,Iy(x6) = 0 for a. e. xs(e,

in view of the l[-L property of f we immediately obtain

J -' 0) -f -' (.yo) : (»f@))-,(y - li -t o 11y - 1011

for almost all yo:f(xsi)(Q',

9.2. Isomorphisms of Sobolev spaces I{r.

Corollary 9.1. Let f: Q*Q' be a quasiconformal mapping such that
f<rT'(O),lDf(x)l'=KJr(x). Let u be afunctionfrom the Soboleu space W,t(e,).
Then thefunction u(x):r(f(x)) belongs to l\t(Q) and

(9.6)

In particular, the linear operator 7*:W,'17'1*W,,«O>_defined by (f;)(x):o(f(x))
is an isomorphism the norm of which does not exceed I x. nere the norm in w:@)
is giaen by ll"ll:(lolyul)|r".

Proof. If u(Ct(Q'), then obviously u(W;t(e) and yu(x):p*f1y)Vr(f(x)).
Hence lVa(x)l'< lof(x)llvu(f(x))l'=rlvr (f(x))lJ r(x). Since yu(W,(e,), we
get by Theorem 8.4 that lYa(f(x))llr(x) is integrable on e and

This may be simply generalized for an arbitrary o from ,Iir(A) by an obvious
approximation. Let us remark that the inverse operator (f*)-r:W^r1O1*t4tr1g1
is equal to (,f-r)* with the inverse map f-r: d)'-d).

Another direct consequence of the above results is the important observation
that the conformal capacity is K-invariant under K-quasiconformal mappings.
This means:

Corollary 9.2. Let F be a compact subset of a domain e and tet f : d)*d),
be a K-quasiconformal mapping transforming F onto a compact set F, :f(F). Then

I tYu(x)|" ctx = K { lvu(y)l tty.

{ tY u(x)l' = K I lv, (y)1, dy.

(9.7) Capn @, O) = K Cap, (F', Q').
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In fact, by (9.6) and by the definition of conformal capacity we have

KCapr(F', Q') : lrf K
t, €wL^(g,)

r:?1 on F'

= Cap,(4 O).

9.3. Local topological properties of quasiregular mappings. Now we have all

the tools necessary to prove the fundamental fact that a quasiregular mapping is

discrete and open. We recall that a map f : d)*R" is discrete if for each xs€O

there exists a neighbourhood O*o of xo in O such that .f(x)*f(xo) for x€O,o-

{xo}. The map J' is open in O if the image set f(D) is open in R' whenever

D is an open subset of g. These properties of q.r. mappings were first proved by

Ju. G. Re§etnjak.
We start with the following lemma.

Lemma 9.1. Let f : A-Rn be an orientation preseraing map of class tYj(Q),
p=n,Jr(x)=0 for almost ettery x€Q. Let z(f(D)-f(lD) for some subdomain

D c=Q. Then

(e.8) tt(z;J', D) > 1.

Proof. Take as the density e(y) in the definition of p(z;f,D) a smooth

n-form p(y)dy such that C(y)=O in a small neighbourhood of the point z(f(D)-
f(lD). Then

p(z; /', D) : (x)dx>0

I tyu(y)in cr),= 
,,q,#lf,n , !lyu(x)|" 

dx

r31 on F

{ ,(f 
(*)) t r

since q(f(x))J ,(x) =0 on a
q (z)= 0).

Now p(z; f, D) assumes

subset of positive measure (e"f is continuous and

only integer values. Thus we get

p(z;/', D) > 1

as needed.

Propositio n 9.1. Let f satisfy the assumptions of Lemma9.1. If N(2,f, D)<
sr* for apoint zef(D)-f(0D), then

(9.9) 1 = N(2,.f, D) = 1t(z;"f, D).

Proof. By assumptiot z:f(xi) only for a finite number of points x;€D,

i:1,2,...,k. For i:1,...,k let Di be a small ball with centre xi,DiCD,
such that DinDi:$ for i*.i. Then z(f(|Di) for i:1,.,.,k. Moreover.

k

= Z pQ;
i:7

k

D): Zi:11 = N(2, f, N (r, f, D,) l', D,) = p(z; f,, D)
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since N(z,.f,D):l=p(:z;-f,D) in view of Lemma 9.1. Notice that the condition
N(2,f, D)= + @ assures that Lemma 9.1 is applicable. We also used Prcposition8.3.
In contrast to (8.14) the inequality (9.9) holds for each admissible z.

Now we introduce a convenient condition Z.

Condition Z. A sense preserving (l,1x1=_O a.e. in O) mapping f(Wr, (e1, p=n,
willbesaidtosatisfythecondition L ifforeachpoint x(O thereexistsanarbit-
rary small spherical neighbourhood -B(x, r) of x, B(x, r)c0 such that

(9.10)
"f 

(x) + f @B(r, ,)).

The neighbourhoods B(x,r) satisfying (9.10) will be called quasinormal.

Proposition 9.2. lf the mapping f: e-R,,fCWj(e),p=n, satisfies the
condition L, thenfor euery domain DccQ and any z<f(D)-f(lD) the inequality
(9.9) holds.

Proof. Set k:p(zlf,D) and assume that (9.9) is not true. Let x1,...,xk+r
be fr * 1 distinct points in f-t(z) o D. Let B (xi, r ), i: l, 2, ..., k +1, be a sequence
of disjoint quasinormal neighbourhoods. Then, as in the proof of proposition 9.1,

k+| < o§ 
uQ, f, B(x,, r,)) = p(z: f, o) : tr,

i:1

which is a contradiction.

Proposition9.3. Let f be as in Propositiong.2. Then.for each point xo€e
there exists a neighbourhood at*ocQ such that

a) f(x)#f(xi for x(@"n and xlxo,
b) f(a,") is an open set.

Proof. Applying Proposition 9.2 to a quasinormal neighbourhood B(xo, ro)
of xo weconcludethatin B(xs,rr) there exists a finite number (=p(.f@i;f,,8(xo,ro)))
ofpoints x*,k:1,...,N,f(xo):f(xi.Thenanyball B(xo, r) with r=min{lro-rol;
k:1,...,N) satisfies the condition a). Since p(/(xo);f, B(xo,r))=1, it follows
that p(z;f,B(xo,r))>l for z sufficiently close to f(x). proposition 8.1 implies
then that z€f(B(xo,r))cf(D). Thus we see that a sufficienrly smail bail with
centre /(xo) is contained in f(D). This proves b).

Proposition 9.3 expresses the fundamental fact that the condition z for
a mapping f : Q*R" of class wr'(Q), p=n, implies that the mapping / is discrete
and open. Actually the assumption that f€w;(o) is superfluous; however, in
quasiconformal theory this weaker version is sufflcient. Conversely, the conditions
a) and b) of Proposition 9.3 imply the condition z. The equivarence of the condi-
tion L and the conditions a) and b) for continuous orientation preserving mappings
of topological manifolds was proved in the paper of Titus-young in 1962l3jt.
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Lemma 9.2. Let A be a closed set in Rn. Then for eaery x(Rn the outer

Hausdorff measure yr(A) can be estimated from below by

!,(A) =ar,{, > 0; S(x. r)aA * 0}.
ln

In particular, iJ' yr(A):Q, thenfor ecch x€R' we cunJind abcll B(x,r) o.f arbitrary

small radius r such thcit Aa\B(x,r):$.

The last statement expresses the fact that the tcpological dimension of the set

A is zero.

Proof. Let F be an arbitrary countable family of cubes covering the set l.
If S(x, r)oA*0, then ^S(x,r) intersects at least one of the cubes Q(9. There-

fore the set of parameters r defined by {r = 0; s (x, r) a A *0\ is covered by a family

of intervals of length diam (Q), where Q( 9. Thus

),,(A)-iryf Z lel,t':l,rt ) diam O=+yr{r=0; S(x, r)nAr0}3 e€e Yn - Q<s Yn

as assertcd.

As an immediate ccnsequence of this lemma \ile get

Lemma 9.3. Let f : Q*R" be a quasiregular mapping, not reducing to a con-

stant map on any component o/ A. Then .f satisfies the condition L.

Finally in view of Proposition 9.3 we conclude:

Theorem 9.2. Eaery quasiregular mapping f : A*R', flconstant, ,§

discrete and open.

9.4. Measure of Bt and f (B).

Theorem 9.3. For any quasiregular map f : Q*R',f=constant, mesBr:0.
Consequently also mes f(B t):0.

The proof is based on two lemmas.

Lemma9.4. Let f: Q*R" be a mapping of class Wo'(Q),p=n, J1(x)>-0
q.e. Let xsCQ be a point of differentiability of f and a Lebesgue point for the

Jacobian, JÅxs)=O. Then there exists a neighbourhood D oJ' xo such that the

point z:f(xi€f@)-710D) and

p(z; -f, D) : 1..
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(e.11)

Proof. We may assume without loss of generality that xo:Q, 2:f(x):0,
Df(x):1- the unit matrix. Since / is differentiable at the point xo:Q, then the

expansion
f(x) : x*v(x),

holds, where v(x):p11r1;.
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We take for D a ball ,B(0, r) with r small enough to sarisfy lf(x)l>(tl2)lxl
for lxl<r. The point z-f(xo):0 is then(f,D)-admissible and

(9.t2) p(z: f,D) : lr13 r,!ne'(fl*)) 
tr(*ld, : I"r* 

u,1,.,r"(.f(*)) 
o*

* lg 
^1, 

e" (f (x))(r r (x) - t) d x,

where q'(y)- 6-'V(e-,ly), V (C*'(R'),
first limit is exactly equal to l. In fact, for

B(0, r)

0 for t > l, I Yly)dy- l.
supp a'(f(x))cB (0,2e) and

Y(lt-lx+r-1v(x)l) dx

v(t1-
t3 f,

n{

B(0,2)

l)dv -

The

lim f a'(.f(x)) ctx - lim e-t*0 -.tl 
\r \--/'t'-" e-'0

B(0, r)

B(0,2)
{ Y (ly) cty - 1.

B(0,2)

To estimate the second limit on the right hand side of (9.12) we use the fact that
xo:0 is the Lebesgue point of the Jacobian and Jr(xi:|,

I I s"(fl*)X"rr(r)- \ axl = e-' / lv(;e-'x+e-1v(x)l)l lrrG)-rl ctx
B(0,2e)

< ctn) f lJr(x)- 1l dx -- a as t -* o.
B(0,2e)

This completes the proof of the lemma.

Lemma 9.5. Let f: Q-Rn be a quasiregular mapping and let xo be a point
of differentiability of f ard the Lebesgue point.for the Jqcobian, J1(xn)=0. Then

f is a local homeomorphism at xo.

Proof. In view of the previous lemma for sufficiently small quasinormal neigh-
bourhoods B(xo,r) of xo, the topological index

p(';f,'B(xo, r)) : 1 for zef(B(xo, r))-f(lB(xo, t)1.

By Lemma 9.3, -f satisfies the condition L and we are justified in using Proposi-
tion 9.2 getting

1 = N(z,f,,B(xo, r)) = p(r;.f, B(xo,r)):1.

In other words, the map f is t-t on the set f-t(f (B(xo, r))\/(ä.8( xo, r)))nB(xo, r),
which is open because f(n@*r))-f@n@o,r)) is open, and contains the point
xo because B(xo,r) is a quasinormal neighbourhood of xo. Since the map / is
open, the inverse map f-L is continuous. This shows that f is a local homeo-
morphism at xo. Finally, Theorem 9.3 follows from Lemma 9.5, which is applicable
for almost all points xo€O, giving mes Br:0; the assertion that mes/(,Br):0
is a consequence of the .,{ property of /.
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9.5. Composition of quasiregular mappings. The important question about the

composition of quasiregular mappings is somewhat delicate in the set-up of our
analytical Definition 2.1. lt naturally splits into two questions corresponding to the

conditions a) and b) of the definition in Section 2.

Lemma 9.6. Let E(rqL,o"(Q') and let f : Q*Q' be a quasiregular mapping

of a domain O into d)'. Then f*E:q"f(LIit'."(O). Moreoaer, for almost

euery xQQ

(9.13)

i.e., the usual chain rule for differentiation of the composite function holds.

Proof. Let xs(Q be an arbitrary point and let B :B(xs,r) be a quasinormal

neighbourhood of xo,/(xr)(f(B)-f(08). Let DcR"-f(lB) be the component

containing /(xo) and let E1,(y), h:1,2,... be a sequence of Cfr(D) functions

bounded in W:(R") and approximating g in the sense of IQ'(U) for an open

U such that f(xs)(Uc=D.'lhen V:f-r(U)aB is aneighbourhood of xo. The

functions qo(f@)) obviously belong to Wl(A); the formula

holds for almost every x€O, and (Eoof)(x)-(E"fl@) for almost evety x(V.
By the well-known property of Sobolev spaces it is enough to show that the

integrals

1la@':fl(*)1" a* i : t, 2, .., , n

are bounded uniformly in å. The quasiregularity of f implies

llffil'n.= K !tyEol)t"rt(y; f,B),ty - K

for almost every xe Q.

Since YE{L-(R"),suppVElcDcR"-f(08), we are justified in using

the change of variables formula (8.13)

f, B) dv.

Since D is the /(xo)-component of R"-f(08), then p(y;f,B):p(f(x);f,B)
for all y(D. The integrals l"lYcloj)ldl are bounded uniformly in å, say

I tornu)i'r,0;
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by M. Hence

{lffil o* = Ktt(',*o) ; l' B)' M

and the required uniform estimate follows.
Now we can prove

Theorem 9.4. If f:Q-Q'cR', and g: d2'*R" are K1 and Kr-quasiregular
mappings, respectiaely, then the composition gof: Q*R" is K1.Kr-quasiregular.

Proof. In view of Lemma 9.6 we have to prove only that the condition b) of
the definition is fulfilled with the dilatation constant estimated by K, 'Kr. The
chain rule of Lemma 9.6 gives the formulas

D(s of) - Ds oDf and Js.f(x) - Jr("f (*)). Jr(x).o.l4)

We need to prove the inequality

(9.15) lO (S 
""f)(x) in = K1 . KrJnoy(x)

for almost every x( O.

This follows if we multiply both sides of the inequalities

lof(x)|" = K,Jr(x)
and

l»s(f@)Y = Kzrs(f(x))

valid for almost every x€Q. The first is clear and the second holds, for almost
every x(Q, since the map f satisfies the condition .lr-1.
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