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ANALYTICAL FOUNDATIONS OF THE THEORY
OF QUASICONFORMAL MAPPINGS IN R"

B. BOJARSKI and T. IWANIEC

This paper gives an exposition of basic analytical properties of quasiconformal
(and quasiregular) mappings of n-dimensional domains. It grew out as a byproduct
and a proper part of our work on the monograph [10] on analytic methods in the
quasiconformal theory. This comes out of a general programme of studying the
problems of n-dimensional quasiconformal mappings exposing and exploiting as
much as possible the interconnections between the quasiconformal mappings and
various problems of partial differential equations, differential geometry and classical
analysis. This programme outlined in [6], [7], and essentially extended in our plenary
lecture [8] at the Conference on ‘“Global Analysis and Differential Geometry” in
Garwitz, DDR, October 1981, was based on the opinion that the natural inter-
relations between the quasiconformal theory in #=3 dimensions and partial dif-
ferential equations, in contrast to the case n=2, have not been sufficiently explored.
The development of the two-dimensional theory indicated rather clearly that the
methods of p.d.e. supplied the most flexible and universal tools for the study of quasi-
conformal problems [5]. However, the study of these relations in the n=3 dimen-
sional case requires a much broader line of research than the case n=2. This can be
seen in relatively recent papers of L. Ahlfors [1], in the work of Ju. ReSetnjak during
the last 15 years, e.g. [29], [30], [31],, in the recent papers of the Finnish School,
especially of Martio, Granlund and Lindqvist [16], as well as in our papers [7],
(91, [20].

It is our belief that the exposition of analytical methods, especially those con-
nected with partial differential equations, helps to see in the proper perspective the
deep analogies and links as well as the differences between the two-dimensional
and n-dimensional quasiconformal theory.

In the recent literature on quasiconformal and quasiregular theory a variety
of methods has been applied. Of these the most effective proved to be the methods
connected with the notion of the modulus of a path family, which were essential in
obtaining the spectacular results on extending the Ahlfors—Nevanlinna theory to
n-dimensions [32], In our presentation of the study of foundations of the quasi-
regular theory this method is deliberately avoided. This should be by no means
understood as a sign of our tending to underestimate the value of the method.
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However, it seems that the prevalence of the modulus method in the current research
papers on quasiregular and quasiconformal mappings problems is probably re-
sponsible, in a sense, for some kind of isolation of the quasiconformal theory in
R" from other branches of analysis, whereas we think that the true value of the
theory lies in its interdisciplinary role. The two-dimensional case can be illustrated
by [3], [4], [5], [23], [24] and many other papers; the view that this is the case also in
dimensions greater than two was underlying the main ideas in [6].

In the process of the work on various aspects of quasiconformal theory in several
variables an urgent need for a methodologically homogeneous and self-contained
presentation of the “well-known” fundamental facts of the theory was coming
up again and again. We included it in the first chapters of [10]. However, when
these were essentially ready and the work on the whole of [10] was naturally delayed,
for various reasons, we thought it might be useful to prepare this part of [10] in the
form of a completely self-contained, introductory publication. Therefore we restrict
our discussion here to the study of basic local analytic properties of quasiregular
mappings, including their behaviour in the simplest formulas of differential and
integral calculus. Only in the last few pages we touch some geometric problems,
just to show to a non-specialist that the analytical tools developed are sufficient
for the full proof of some important geometric properties of quasiregular mappings.

As already said, we tried to make the presentation direct and self-contained to
the extent needed for [10]. Naturally, at several essential points, the ideas used have
their roots in the existing literature on quasiconformal mappings, especially in the
papers of Ju. Refetnjak and the Finnish School. However, except the Sobolev
local imbedding inequality and some standard analysis, all other facts are proved
explicitly. In our consideration the essential step in the basic fact that the conditions
(2.2a) and (2.2b) imply f€ W, (Q’) for every open subdomain Q' cc 2 and some
positive &. This first step improving the a priori assumed regularity of g.r. mappings
stated in 2a), as was shown in [5] and [40] for the case of two dimensions, opens the
most direct way for the study of general analytical properties of q.r. mappings. Theo-
rem 5.1 for locally quasiconformal mappings, n=3, was proved by F. Gehring
in [14] (see also [25] for q.r. maps), relying on the modulus method of
families of curves, which, traditionally, is applied to continuous mappings. The
general case for q.r. maps follows also from the result for variational inequalities
by Elcrat and Meyers [12]. The proof of Theorem 5.1 as presented here follows
some ideas of T. Iwaniec first stated in [19] and developed later in [21], [22].

Since this paper is understood as a proper part of [10] or as a supplement to
the existing literature on q.r.m. [16], [26—32], we do not give here any examples.
Also, we do not try to discuss all consequences of our approach to quasiconformal
theory. For this the reader is referred to [10]. Neither do we try to show the rele-
vance of this presentation to the related parts of the theory of variational inequalities
or problems in pure partial differential equations. This should be evident to the
specialist. Quite a few examples will be given in [10].
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Finally let us make some remarks referring to a programme of further research:
We tried here to collect all relevant statements about general basic analytic pro-
perties of q.r. and g.c. maps in their most general formulation available at present.
However, it is our opinion that most of these statements have not, as yet, got their
final form; thus we think that such questions as the differentiability of q.r. maps,
the conditions 4" and 4 "1, and the description of the set of zeros of the Jacobian
J;, have not been discussed in their natural set-up. As a matter of fact this natural
set-up has in most cases not been found yet. And although the present general form
of many facts about analytical properties of g.c. maps is sufficient for the basic
constructions and analytical manipulations involved in the application of the theory,
there is much left to be done in the study of the fundamental local problems of the
theory. An interesting area of research in this connection lies, in our opinion, in
the applications of the theory of ‘higher” variations of real valued functions as
developed by Vituskin [41] and others [18]. However, we think that the study of
the foundations of quasiconformal theory along the ideas of the theory of functions
of real variables should proceed in balance with the investigations of the interaction
of general quasiconformal theory with p.d.e’s, variational inequalities, differential
geometry and analysis in general. At this moment the latter directions of research
are perhaps much more important than the former ones.

Let us finally mention that our references to the existing literature are far from
being complete. A more exhaustive list will be given in [10].

1. PRELIMINARIES AND NOTATION

In this section we collect some basic facts related to the Lebesgue integration,
Sobolev spaces and algebraic properties of the Jacobians. The material is essentially
well-known though at some point we present the results in a novel way involving
some modifications rather important for the applications in what follows.

1.1. Cube coverings and decompositions in R". R" denotes a Euclidean n-space,
with points x=(x%, ..., x"), '€ R (real numbers); |x|=(Zx'[)"?; if y=0"1, ..., »"),
then the inner product {x, y)=_>x"y". B(x,r) is the open ball of radius r centered
at x and Q(x, r) the cube centered at x, parallel to the axes of R" with edge 2r:

Q(x,r) = {YER"; |y'—=x|<r, i=1,2,...,n}

The diameter, diam Q(x, r), of the cube is then equal to 2rYn. Occasionally it
will be convenient to use ‘half-closed” cubes, defined by the inequalities

X—r<y =x+r, i=12,..,n

For half-closed cubes we shall use the notation Q(x, r). Let ¢ be a positive number.
Then oB or ¢Q stands for the ball or a cube, respectively, with the same centre
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as B or Q but contracted (if ¢=1) or expanded (if 6=1) by the factor of o.
Q will be an open subset of R". Q is a domain if it is also connected. The distance
function d(x) is defined by d(x)=dist (x, 0Q), where dQ is the boundary of Q.
This function is uniformly Lipschitz continuous, i.e.,

(1.1 [d(x)—d ()| = |x—y| for all x, yeR".

For a set FCR" we write Fcc Q if the closure F of F is a compact subset of
Q and we say that F is strictly contained in Q. This fact is characterized by the
inequality

dist (F, 0Q) = ilggd(x) =0 for Fc Q.

We use the notation Int F for the interior set of Fc R"; this is the union of all
open balls contained in F.

In what follows we shall use the dyadic division of a cube Q,= R". We define
by induction the families M,, k=0,1,2,... of open subcubes of the cube Q,:
M,={Q,}. Suppose that the family M, is given. Then we divide dyadically every
cube of M; into 2" equal cubes. They form together the family M, _,, the next
generation after M, of the dyadic subdivision. The cubes of M, are disjoint.
In general every two cubes from the union M=|J, M, are either disjoint or one
includes the other. The family {A,}, k=0,1,2, ... we call the dyadic decomposi-
tion of the cube Q,. If the dyadic division process is started from a *‘halfclosed”
cube Oy, we will obtain only half-closed cubes in the process. They have the
important property that all cubes of the k-th generation M, are disjoint in the set
theoretic sense and Qy=Ugcw, O for each k.

It follows that for every x€Q, there exists a unique sequence of half-closed
subcubes {0, (x)}, Op11(x)=0i(x) and O,(x) is a cube of the k-th generation
M, containing x. These cubes shrink into x.

Lemma 1.1. Let & be a family of open cubes in R" such that the union
Uges @ is a bounded set in R". Then there exists an at most countable subfamily
F’ consisting of disjoint cubes such that

1.2) Uogc U 50

QeF QeF’

Moreover, if & is a subfamily of the dyadic decomposition of a cube Q,, then the
subfamily ' can be chosen in such a way that

(1.3) Uoc U o
0¢F Qe
Proof. Let ¢ be strictly greater than the upper bound for the diameters of the
cubes of F. Let &, i=0,1,2,... be the subfamily of those cubes Q¢ which
satisfy the inequality 2~'"lg<diam Q=2"%9. For i, the subfamilies % and

&; are disjoint. Obviously each subfamily of disjoint cubes in % is finite. After
these remarks we can start the process of constructing the family #’. We construct
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F as | J;#  with each &  consisting only of a finite number of cubes. %  will be
a maximal subfamily of disjoint cubes in %,. We exclude now from #; all cubes
which have a non-empty intersection with a cube in %,. From those which remained
we consider a maximal subfamily %  of disjoint cubes. Continuing this process
we obviously exhaust all cubes from &. By an elementary geometric observation
we have the inclusion

(1.4) U gc U 50 i=0,1,2,...

QEF; QEFIUF] 11

Hence the family %’ = ;% satisfies all requirements of the lemma. In the additional

13

assumption of the lemma we have instead of (1.4) the inclusion

Ueoec U o

Qe QcF,
This completes the proof of Lemma 1.1.

1.2. Measure and integration. For Lebesgue measure in R" we use the symbol
dx. If E is a measurable subset in R”, then its measure will be denoted by |E|
or mes E. For a ball B or a cube Q we have

loB| =0"B] or l6Q|=0"0l, o=>0.

If the family & from Lemma 1.1 is indexed by points of a measurable set E with
the only condition that x¢ Q.64 for each point x of E, then Lemma 1.1 reduces
to a simple version of Vitali’s covering theorem [36].

Lemma 1.2. Let E be a measurable subset of R" which is covered by the
union of a family of cubes {Q,}, of bounded diameter. Then one can select a sub-
sequence, Qi, Qs, ..., of disjoint cubes such that
(1.5) mes E=5" 2 |0

k

We say that x€ R" is a point of density of E if

mes B(x, )"NE _
r~0 mes B(x,r)

(1.6)

More generally, if f is an integrable function defined on an open set QC R”", then
the point x€Q is said to be the Lebesgue point of f if

1
1.7 lim — ‘»)—f(x)|dy = 0.
(L.7) i B, /Ol
The well-known Lebesgue’s differentiation theorem says that almost every point
of Q is the Lebesgue point of f.
For f=jyg, the characteristic function of the Lebesgue measurable set ECQ,
we get that almost every point x€E is the point of density of E.
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The above definitions remain valid if we replace the balls B(x,r) by cubes
Q(x,r). For the average value (1/|E|)[ f(»)dy of an integrable function f on
aset EC R" of positive measure we use the notation

(1.8) frovay or s
E
Let f€LY(Q). Then the Lebesgue theorem implies that for almost every x€Q
(1.9) J@=lim froydy=lim fro)dy,
By Q;

where {B;} ({Q;}) is an arbitrary sequence of balls (cubes) containing x and such
that lim;, . [B;|=0 (lim;, . |Q,|=0). A more specialized choice of cubes from the
dyadic decomposition {M,} leads to the important Calderon—Zygmund decompo-
sition lemma:

Lemma 1.3. Let feLYQ,), f=0 and let t be a real number such that
fQ0 f(»)dy=t. Then there exists a countable (or finite) family F of disjoint sub-
cubes of Q, such that

(1.10) t< ff(y) dy =2"t for each Q€¢F

and ¢

(1.11) Jf(x) =t for almost every x€Qy— |J O.
QeF

Proof. We shall consider the dyadic decomposition {M,}, k=0,1,2, ... of
the cube Q,. For almost every x€Q,, i.e., for x€(_, Uge M, 9, we examine the
sequence {Qy(*)}i—o,, .. of cubes such that Q,(x) is the cube from the generation
M, which contains the point x. By the Lebesgue differentiation theorem

lim  f () dy = f(x)

Qk(x)

for almost every point x€Q,. Therefore on a subset 4C{x€Q,: f(x)>t} of full
measure (with respect to the set {x€Q,; f(x)>t}) for some sufficiently big natural
k, k=k(x)

frovay =t

Qk(x)
Since fQo f(»)dy=t, it means that for every point x€A4 there exists the first index
k=k’(x)=1 such that

ff(y)dy>l and ff(y)dyét.

Q0,(x) Qp—1(0)
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Since 10, -1(x)|=2"0,(x)|, we have

(= frovay=2  f fody =2
0, o e))
and get the property (1.10). In this way we obtain a family {Q(x)}xc4 of cubes
indexed by the points of the set 4. By Lemma 1.1 (see the formula (1.3)) we can
select a countable or finite subfamily & of disjoint cubes covering A. If x€Qy—
Uges @» then x¢4; hence for each k=0,1,2, ... fo f(»)dy=t and the
Lebesgue theorem gives (1.11).

1.3. L” spaces. Let E be a measurable subset of R", 1=p<oc. We denote
by LP(E) the space of functions defined on E, such that |f(x)|? is integrable
with respect to the measure dx with the norm

£l = 1/l = ([ £GP dx)'”,
E
where the values of f may be complex numbers, vectors or matrices. The Holder
inequality
1 oy O
= nifle for —=—4—, 0,0, =0, oyF+ap=1
11, = IG5 I s 10

will be frequently used in its various special cases. For example, it implies that the
function p—(fg|fIF)"/" is increasing, ie.,

(1.14) [f]fl"]l/p = (flflq]l/q whenever 1 =p =g =-o.

In the case g=<o we mean (fg|f]%)"9=ess supxc |f(x)|. If @ is a positive
increasing and convex function defined on the interval (— e, =), we have Jensen’s
inequality

(1.15) o fr)= foun

For an open set Q the space Lf, (Q) consists of functions which belong to L?(F)
for every compact FC Q.
Let / be a measurable function defined on a measurable set QC R". We will

work with the sets
E, = {x€Q; |f(x)| =1}

The real-valued function A(f)=mes E, is called the distribution function
of |f]. Obviously A(?) isa non-increasing function on the interval [0, <]).

The LP norm of f can be expressed by means of the distribution function
A(t) as follows:

(1.16) [lflrdx=p [ et dr.
Q2 0
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We also have

(1.17) [ fPdx=— f zv-l(l S /()| dx)’ d.

|£lx)>¢ fl>t

A good source for the material of this and the following subsection is the book of
E. Stein [36].

1.4. Sobolev spaces. The basic tool in the study of quasiregular mappings is
the theory of functions having weak derivatives. We collect here some results on
Sobolev spaces which are necessary for our investigations.

Let Q be a domain in R". The symbols C(Q), Cy(Q), CX(Q), Ci(Q) denote
the usual function spaces. If u is a real function of the class C1(Q), we denote
by wu.=0u/dx" its partial derivative with respect to x' and by Vu=(uz, ..., uz)
the gradient of u. For a mapping f: Q—R" of the class CHQ), f=("f2 o f)
its Jacobi matrix is denoted by

Savs [l o, [
(1.18) Df(x) = f"f"zf"
Si, fla, o fi

and the transposed matrix is D*f{ (x)=(Df(x))*. The Jacobian Jr(x) is the deter-
minant of Df(x). Geometrically Df(x) may be interpreted as the linear map
between tangent spaces 7,.Q into TyxR" which we identify with the Euclidean
space R" with the standard inner product {, ). The norm of Df(x) is then equal to

(1.19) \Df (x)| = sup IDf (x)hl,

where the supremum is taken over all unit vectors 4 in R". Sometimes it is con-
venient to use the norm ||Df|2=Tr (D*fDf)y=3; [(f2

Suppose we are given a locally integrable function u on Q. We say that
a locally integrable vector function g is the weak gradient of u if for all vector
valued test functions ¢ of the class Ci(Q) the integral equality

(1.20) Ju@divo@dx == [(2(), o) dx
(2 2
holds; here div ¢(x) denotes the divergence of o, i.e.,

. _ & 09
(1.21) dive(x) = 2o

The components of g(x) are called the weak or generalized partial derivatives of
u and are denoted by the same symbols as in the classical case.
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If /: Q—R" is a locally integrable mapping, then its generalized Jacobi matrix
Df(x) is defined by the conditions Df€ L] (2) and

(1.22) [P @) dx == [ Do) f(x)dx
Q Q

for every Cg(2) mapping ¢: Q—R".

The symbol W (Q) (W,'1,.(2)), 1=p=<ec> stands for the class of functions
or mappings which belong to L?(Q) (L (Q)) and whose weak partial derivatives
exist and also belong to L7(Q)(LL.(R)). A norm in W,!'(2) may be introduced by

loc
[l wie = [ u”LP(n)+ HvullLP(Q)'

This makes #,'(2) into a Banach space. Smooth functions are dense in I/I{,I(Q)
but the completion of Cy(Q2) in W;(2) leads to an important closed subspace
of W'(R), which we denote by WI}(Q). Returning to the identities (1.20) and
(1.22), we remark that using the Holder inequality one gets

| [u@)dive () dx| = & [ lo ()7 dx)™
(1.23) 4 o

| [D*o(x)/ @) dx| = Ca( [lo()l#dx)™,
Q Q

where 1/p+1/g=1 and C,=|Vu|,, C,=|IDf|, whenever u and f belong to
W Q).

Conversely, if (1.23) holds for every test function ¢@€Cy(®), then u and
f belong to I/I{}(Q) and |Vu|,=C;, |Df||,=C,. This fact is rather important
for practical use; it is a simple consequence of the Hahn—Banach theorem. It is
important to note that Lipschitz continuous functions u€Lip (') are weakly
differentiable, that is, Lip (Q)cW2(Q’) and the following chain rule holds:
if /2 Q—~Q belongs to the space W,'(2), then the composite function v(x)=u(f(x))
also does and Vo(x)=D*f(x)Vu(f(x)) for almost every x€Q. For every
JEW, 1 10e(Q), Df (x)=0 a.e. on any set where f is constant.
In particular, if u and v are real functions of the class W', (), then the function

g(x) = max{u(x), v(x)} = —;—(u(x)+v(x)+ lu(x)—v(x)])

belongs to W,!,,.(2) and for almost all x€Q

Vu(x) if u(x)=ov(x),
Ve ={Vv(x) it u() = o).

The same holds for A(x)=min {u(x), v(x)}=(1/2)(u(x)+v(x)—u(x)—v(x)).
Now we pass to the deeper results concerning Sobolev spaces, that is, to the

imbedding theorems and LP-estimates. Our starting point is the local Sobolev—

Poincaré inequality in the standard form. We state without proof the following
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Lemma 1.4. Let Q be a cube or a ball in R". Then for every ucW3;(Q),
1= p<n the inequality

(1.24) (J [ —uglp dx}'"? = C(n, p) ([ IVu(x)[ dx)""”

Q Q

holds with the universal constant C(n, p), p=np/(n—p). (The best value of C(n, p)
in (1.24) of course depends on whether Q is a cube or a ball.)

The proof of this lemma may be easily derived from the classical versions of
Sobolev’s inequality; see [35].
The local Poincaré’s inequality is stated in the following modified form:

Lemma 1.5. If u€W(Q),1=p<e<e, then for any 0=c=1
1/p nf 1/
125 (flum—ugrdx) = [%] “diam 0 f [Vulrdx)
Q Q
where Q may be a cube or a ball.

Proof. We prove (1.25) under the restriction that #€C(Q). The general case
needs only a standard approximation argument. We begin with the formula

1 1
u(x)—u(y) = f%u(tx-i—(l—t)y)dt: f(x—y, Vu(tx+(1—10)y)) dt

for x,y€Q. Integrating with respect to y€oQ and applying Holder’s inequality
and Fubini’s theorem we get

(1.26) U@ —ttgg = f [ (x—y, Vu(ix-+(1—0y))drdy,
dQ 0

()~ gl = (diam @ ( f [ [Vu(tx+(1-1)y)| dedy)’ =
aQ 0

= (diam Q)? ff ]Vu(tx+(1 - t)y)’P dtdy.
Hence e

S 14— gl dx = (diamQ)”fl[ff]Vu(tx—i—(l—t)y)!dedy] dr.
Q 0 @ 40

Now for ¢ fixed, change the variables (x,y)—>(&,{)€0QX20 é=tx+(1—1)y,
(=x—y. Clearly dxdy=dfd{ and we get

f1ue) o dx = @iam 0y (2)" f vuco az.
Q Q

This proves (1.25).
The Sobolev and Poincaré inequalities imply the following estimation in the
borderline case:
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Lemma 1.6. There exists a constant v=v(n)=>0 such that for every v€W,(Q)
and any 0<o=1 the inequality

(1.27) fevalv(x)—uw(/“w”" dx =2
Q

is true; here Q is a cube or a ball and vll,=([q [Vo(¥)|"dy)''".
Proof. Inequality (1.24) with p=n/2 reads as follows:

( f lu(X)—uQ]" dx]lln = C(n)diamQ ( f‘Vu(x)[n/z dx]
¢ Q

2/n

Hence

(f‘u(x)l”dx]l/" =C(n) diamQ(fqu(x)l”/zdx]2/"+ f]u(x)ldx.
Q Q Q
Let ¢=0. We substitute e*"=*¢! for u, getting |Vu|=¢|Vv|e?*~"lec and

(f eto—reol)" = o Cn) diamo  f Volrzerdo—vooliz) " 4 fedo—toal =
Q Q Q

=¢-C(n)diamQ ( f]Vv]"]ll" [ femlv-vael]l‘/"-i- 1+¢ f o —v,0letl?—vocl.
0 ] 0

Here we have used the Holder inequality and the inequality e'=1+t¢', valid for
t=0. Again by the Holder inequality and by (1.25)

fll;_anleﬂ"-anI = [fe”alv_”aol]un [ f fv“‘UaQIn]lln
Q Q Q

C(n) diam_Q_ (Qf e"Elv—anIJI/n [Qf|Vv|"]1/n.

4

(femomreal)” =14 2L ( fomemsoa] 5ol

Q

[iA

Therefore

Here and later the same letter C(n) is used to denote various constants depending
on the dimension only. The lemma immediately follows from the last estimation
if we put e=0/(2C(m)|Vo],).

Let now p be strictly greater than n=dim Q. Identity (1.26) (with o=1)

implies
1jp

1
() —ug) = (iam 0) [ ( f [Vu(ty+(—nx)rdy) .
()
For ¢ fixed by changing the variable y—~&=ty+(1—1)x€Q we get the estimation

fvu(y+(—nx)pdy = = S vu@edz.
¢ ¢
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Hence we conclude

(diam Q)*-"/»
p—n

1 n/p
u(x)— ug| §(diamQ)(fqul”]”z/ Pt = p(V/r) IVull,.
Q 0

Therefore if x, y€Q, then

(1.28)
L
@) —u ()] = [u(0)—ug|+|u(y)—ug| = %(diamg)w/ﬂ( S vup)r.
Q

As a simple consequence of (1.28) the following local form of Sobolev’s imbedding
lemma is obtained:

Lemma 1.7. Let Q be a cube or a ball in R" and let uEW;(Q) with p=>n.
Then for a constant C(n) the following estimate holds:

(1.29) w0 =) = X ey (J 1wy

In other words, u is Holder continuous on Q and the Hilder exponent o=1—n/p=0.
For another approach to Sobolev’s inequality see Lemma 7.1 from Section 7.

1.5. Elementary calculus of differential forms. The calculus of differential forms
will be useful and, in a sense, even essential in some global geometric problems of
the theory of quasiregular mappings. A general p-form ® in a domain @ of
R", or a differential form of rank p, denoted p=r1k w, 1 = p=n, will be written as
(1.3 W= > @y, dX" .. dx'»

1=si<..<i,=n

with @; ; (x), called the coefficients of the p-form w, taken from some function
space defined in Q; usually that will be C*(Q), k=1, .... However, the case of
some subspaces of W,"(Q) will also appear. We shall then say that the form w
belongs to the respective function space. The product dxiia ... Adx'» in (1.31)
is the exterior product of differentials dx’, obeying the anticommutation rules
dx' Adx) = —dx’ ndx'. The general anticommutation relation for the exterior
product is wAe=(—1)" 9 Aw if tkw=p and rk ¢=q. For smooth or CXQ)
forms the operator of exterior differentiation d is defined by the formula dw=
2dw; ; AdxX'A ... Adx' with do; ; being the differential of the function @ s
n do; wip g s

dwilmip = jgl'ledxl.

The operator d is connected with the exterior multiplication as follows:
d(w; A Wy) = dwy A 0+ (— 1)@y A dw,,

where p=rk w;. Moreover d?=dod=0.
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The form  such that dw=0 is called closed while the form w=d¥ for
some (p—1)-form ¥ is said to be exact. The pull-back f*w is defined for any
p-form o defined in the range of f (w(y)sz(y),.r“,.pdy"l/\.../\dy"v) as the
p-formin Q

frox) = Jo(f())..qdf A Adfis, y=f(x), x€Q.

It preserves the exterior product f*(w A @)=f*w Af*¢ and commutes with dif-
ferentiation df*w= f*dw.

If we speak about the form  defined on a closed domain Qc R", we under-
stand that o is defined on some open neighbourhood of @ in R" The restric-
tion wly, of the form ® in @ to the boundary submanifold 02 of a regular
domain @ is defined as ol|;,=i*w, where i:0Q-~Q is the natural inclusion.

Integration of a smooth (n—1)-form w defined on Q obeys the fundamental
Stokes’s formula

(1.32) ] do = f o,
Q 0

which we shall use only in most simple cases.

The norm |w(x)| at the point x€Q of the l-form w=27_, w;(x)dx’ is
defined as coming from the Euclidean scalar product (w, ¢)(x)=2w;(x)¢;(x),
|o|?={w, w). The scalar product (at the point x€Q) of two p-forms w=
O1A...AO,, 0=TiA... AT, (O; and 7; are l-forms) is defined as

(w, @) = det (O, ;)

and extended to general p-forms by linearity. Then the elementary Hadamard
inequality
1017 ... A, =[64]...16,l

holds and expresses the fact that the volume of the n-parallelepiped spanned by
the forms (covectors) @i, ..., @, does not exceed the volume of the coordinate
n-rectangle in R" with edges equal to the length of the edges of the parallelepiped.

1.6. Divergence free vectors and adjugate Jacobian. A vector function v=
@, ...,o"), v: Q—R" is said to be divergence free in the domain Q if v€ L .(Q)
and for each test function @cCyq (£2)

(1.33) [ @), Vo (x)ydx =0

If v€W',.(2), then the integration by parts reduces (1.33) to the first order
partial differential equation
(1.34) divo =3 ‘9”“ =0.
0x
An important example of divergence free vectors will be the columns of the
so-called adjugate Jacobian. If A is a square nXn matrix, we define the adjugate
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matrix adj 4 by the algebraic identity
(1.35) AadjA =detd-1,

where [ is the unit matrix. So, if A4 is invertible, adj 4=det A A~!. The entries
of adj4 are (n—1) homogeneous polynomials with respect to the entries of A.
The components of adj 4 are called cofactors of the components of A.

The explicit formula for the entries of adj 4 may by written

(1.36) (adj A)f = ) Zk Epp i, ASLAKE L ARy Ske Alrt Ak,

where ¢, is the Kronecker’s fundamental covariant tensor, &,  ,=lI,
&k, =0 unless all k; are distinct; ¢, , changes its sign if two k; are inter-
changed and 67 is defined likewise.

If f: Q—>R" is a mapping, then we denote by adjf=adj(Df) the adjugate
Jacobian of f.

Lemma 1.9. Let f:Q—~R" be a mapping of the class Wi_; 1,(Q). Then
each column of the adjugate Jacobian adjf of f is a divergence free vector.

Proof. 1f f is of the class C?(Q), the entries of the adjugate Jacobian adjf
are continuously differentiable and the equality divadjf=0 follows by direct
differentiation of columns of adjf. Indeed, by (1.36) we have

»d(adjf)r _a_(ik f ko-1 Ofkrer 3fk,,]
pg; oxr p;; k.%,,gkl'"k" O0xP \gxt ™" gxP=1 gxP+1 T gx"
kp;éq
n (92fx af'k\,) . n _
kp=q v#Ep
ki=s
This is because the expression
o
0x' 0xP Z; Ox'
v#p

is symmetric in i and p but the interchange of i and p results in the interchange
of k; and k,. Since ¢, is skew symmetric the sum under consideration vanishes.
In a weak form we write the above identity

(1.37) [ Dn(x)adj f(x)dx =0

for every test mapping 5: Q—R" of the class Cy(2). To complete the proof of the
lemma we observe that for fcW', . () adj f belongs to L} (2) and by an
approximation we extend the validity of (1.37) to such mappings.
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Corollary 1.1. Let f: Q—~Q be a mapping of the class W, 50c(Q) and let
¢: Q' —~R" bea CYQ') mapping with zero divergence. Then the vector (adjf)o(f)
is divergence free. In partzcular (adj f)f]lfI" is divergence free for mappings
f:Q—R"—{0} of the class W,}.(2) nC(Q).

Proof. We may assume that f€C*(€). The formal calculation yields

A G0N = 3 55 GiNGe" (1= pz DGR a1
b3 i A0 < 043 a9 Z i

- Jf(X)Z 3fq -

Here we have used the identity (Df adjf); =J;0;. The last statement of the corollary
follows from the elementary equality

div H”_O for yeR"—{0}.

2. DEFINITION OF QUASIREGULAR MAPS

Since we shall study only local properties we will restrict our considerations
to mappings
2.1 [ Q —~R"
or in coordinates
yi= it %% .., x) i=1,2,..,n,

where Q is an open subset of R".
We accept the following analytical definition of quasiregular mappings.

Definition 2.1. Let K be constant K=1. The mapping (2.1) is K-quasi-
regular in Q if
22) a) W, }10e (),
b) IDf(x)|"* = KJ(x) for almost every Xx€Q.

Here Df(x) is the derivative or the tangent map of the map f, which, as
recalled in Section 1, is meaningful at almost every point x€Q if f is in the Sobolev
class W}o.(Q).

The smallest constant K for which (2.2) is true in @ will be called the dilatation
of f in Q. (In accordance with the literature it should be called outer dilatation;
however, in this paper we avoid the word “‘outer” since we shall not introduce any
other concept of dilatation.) A map f is quasiregular in Q if it is K-quasiregular
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in Q for some K=1:f is said to be quasiconformal if it is quasiregular and 1—1
in Q. The norm |Df| is understood as in (1.19) as the operator norm of the linear
map of the Euclidean space R".

It should be stressed explicitly that our definition of quasiregular mapping
does not assume the continuity of f. As a matter of fact we shall prove that the
continuity of the mapping f is a consequence of (2.2a) and (2.2b). In particular,
J will be quasiconformal if and only if it is a homeomorphism onto an open subset
of R". For abbreviation we shall write q.r. or g.c. for quasiregular or quasiconformal
mapping, respectively.

The map f is a local homeomorphism at a point x€Q if there exists a neigh-
bourhood Q,cQ of x such that the restriction f lo, is @ homeomorphism of
Q. onto f(L,). The branch set B, or more precisely B,(2) of a (continuous)
quasiregular map (2.1) is defined as the set of all x€Q such that f is not a local
homeomorphism at x. By is a relatively closed subset of Q. In general, for a q.r.
map the branch set B, is not empty. If B,=0, then the map f is said to be locally
quasiconformal.

As said in the introduction, we do not give here any specific examples of q.r.
or gq.c. mappings. We only mention that this is by no means a restricted class of
mappings: it contains any C' mappings with non-zero Jacobian; the generalized
solutions of broad classes of uniformly elliptic systems of first order with two inde-
pendent variables, the uniform limit of K-q.r. maps is K-quasiregular. For non-
trivial examples of quasiregular maps we refer to the existing literature, e.g. [28] or
[32], where more comments on the place of q.r. and q.c. mappings in analysis are
made. Here we only mention that our general conclusion in this paper will be that,
roughly speaking, K-q.r. maps form a class of n-dimensional mappings which is
closed under uniform convergence or almost uniform convergence on compact
subsets (or even under much weaker versions of convergence, e.g. L? convergence)
but which preserves all general analytical and geometrical properties of locally
invertible C'-mappings, except at the branch point set B, where they nevertheless
preserve some important properties of geometric and analytical regularity in the
sense to be explained later.

In connection with Definition (2.1) one more remark is due: when coupled with
the classical Hadamard inequality, (2.2b) takes the form of a “double inequality”

(2.3) J;(x) = Df]" = KJ, (%)

Thus (2.2b) can be viewed as an “inverse Hadamard inequality”. It is this “double
inequality”” character of (2.2b) which is responsible for the remarkable functional
and analytical properties of the class of mappings satisfying (2.2b). This point of
view was stressed in [8]. We shall see in the next section that a local LP-version
of (2.3) will take the form of ““inverse Holder inequality”” and the modified form of
“weak inverse Holder inequality” — and this fact will have important consequences
for the theory of q.r. maps.
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They are connected with the fact that the “‘inverse Holder inequality” has the
remarkable property of self-improving: when a priori assumed to be valid in the
LP-norm sense for functions in L2 (), it turns out to hold in the LEf*(Q) sense
for some &=0, implying, in particular, the increased degree of summability. This
fact lies at the basis of the most general regularity theory of quasiregular mappings
and weak solutions of p.d.e.

3. BASIC INTEGRAL INEQUALITIES

We shall write the fundamental differential inequality (2.2b) in the ‘‘weak”
integral form

(3.0 SoWIDfW"dx = K [ ()7, x)dx
Q Q

for any test function ¢ =0 of the class Cy(Q).

For studying the integral on the right hand side of (3.1) it is useful to remark
that the Jacobian J(x) of a mapping f: 2 R" naturally appears when we con-
sider the pull-back f*» to Q of the volume form v=dy' A ... Ady" defined in the
range of f
(3.2) Sffo=df'A . Adf" = J(x)dXPA L AdX"

Since fro=d[(— D) *f*df A ... AdfEA ... Adf")=df*w,, where w is the (n—1)-

form (— D Yy*dyt A ... ADFA ... ndy" for k=1, ..., n (the circumflex over a term
in a formula means that it is to be omitted), (3.2) shows that the volume form is
exact and we-can evaluate the integral (3.1) on the right hand side by applying
Stokes’s formula. We exploit this now.

Let @ and f be smooth, say of the class C*(). Then the integrand in (3.1)
can be written ¢ (x)J (x)dx=d(of*w)—dg A f*o for any (n—1)-form o such that
do=dy' A ... Ady". We then get

(3.3) o) J;(x)dx =~ [donfro.
I g
Lemma 3.1. For any feWX(Q) and @€Cy(Q) the estimate

(3.4) | [e@) I, dx| = [ Vo) |f&)—cl DG dx
Q Q

holds for every constant vector c€R".
Note that (3.4) also holds for ¢¢€ W,,I(Q) with Vg bounded.
Proof. First we establish (3.4) for feC*(Q). We take for o in (3.3) the form

o= % Z"l’ =Dy =) dy A ... /\2;"/\ LA dY"
=1



274 B. Bojarski and T. IWANIEC

getting
| [0x)J;(x) dx| é% [ 3 ldolifi=cildf* ... AAfiA A dfT,
Q2 o

By Hadamard’s inequality [df'A ... A din... Adf"|=dfY...|df] ..ldf"| = |Df|"
since |df*|=|Df]| for each i=1,2, ..., n. Now (3.4) is obtained by the obvious inequa-
lity |[f1—cl|=|f—cl|. If feW}Q)and Vo is bounded and ¢ is compactly supported,
then f€L™(Q) so Vo|f—c| |Df|""'€L1(Q) by Holder inequality. Therefore by
an approximation argument we are led to (3.4) in the general case. From (3.1) and
(3.4) we easily get the integral inequality

(3.5) ([ @) 1Df ) dx)"™" = nk( [IVE )P £ (x)—cl dx)"

valid for K-quasiregular mappings f€ Wﬁ 10c(£2), and any non-negative ¥, compactly
supported with bounded gradient. Really, put ¢=%" into (3.1) and (3.4). Then
by Holder inequality
[ Df1" = K[ | f=c| V] |Df 1"t = nK [ |f=c| V| | ¥Df "~
= nK ([ |f=c Ve () e i),
which gives (3.5).

We apply now (3.5) to the function ¥ with support in a ball B(x,, R)cQ
such that ¥ =1 in the smaller concentric ball B(x,, 6R), where 0<o<1. Specifi-
cally, we choose ¥ in the form Y(x)=#n(Jx—x,|) with n(t)=1 for 0=1=0R,
n(¢)=0 for =R and linear for sR<¢<R. Then

1
V¥ (x)] = (1—0)R
0 otherwise
and (3.5) gives for ¢= S B, B

6o ( foiprwra)”s gmen( flrw-

B(x,, 6R) B(x, R) B(xo, R)

for oR=|x—x)| =R

dx]
From this and the Poincaré inequality (1.24) (with p=n/2, p=n) we get our basic
estimation.

Lemma 32. Let f:Q—R" be a K-quasiregular mapping, and let BCQ
be a ball, O<o<1. Then

(3 (f1oreorax)™ = JE00 (S i)™

This estimation remains valid if we replace B by a cube Qc Q. The proof is almost
the same.
The last result of this section is the following generalization of Lemma 3.1.
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I.emma 3.3. Assume that the functions @,¥ and the mappings f,g are of

the class W(Q), that Vo, V¥ are bounded, ¢p—YEW(Q) and that f—geW} ().
Then the following inequality holds:

(3.8) | [0dr=27)| = 2 [IV@+D)IIf~gl(DS|+IDgh?

+3 J IV = 0)|111DrP=+ gl DgP ).

Let us remark that by a proper choice of ¢, ¥ and f,g we can obtain some
useful special cases of (3.8). Thus if ¢=%=1, we have

Proposition 3.1. Let f,geWX(Q) and f—geW}X(RQ). Then

3.9) [T dx = [J,(x)dx.
2 2

In particular, if f=(f%,f? ..., /") is a mapping of the class W}(Q) and one
of the components, say f* k=1,2,...,n, vanishes on 0Q (f"eW,,‘(Q)), then

(3.10) [Ix)dx = 0.
Q

In fact, for g=(f%, ..., %0, /%% ... f") we have f—gGI;an(Q), J,(x)=0 and
by (3.9) [J,= [,=O0.

The proof of Lemma 3.3. As usual, we can assume that ¢, ¥,f and g are
smooth since the integrals in (3.8) considered as functionals of ¢, ¥, f and g are
continuous. We write the integral of the left hand side of (3.8) by

G1)  [(el-v), =% f(go+¥’)(Jf—Jg)+% [lo—)(U;+7)
Q Q Q

and estimate the new integrals separately. By Lemma 3.1 we get

(3.12) |Qj (p—¥)(U;+J)| = |Qf (0 —¥)J;|+ |Qf (o—¥) |

= [IVe—)I(S1|DfI""2+1glID,I"™) since ¢—PECI(Q).
Q
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Furthermore

[+¥)U=I) = [(o+¥)df*A...ndf"—dg'A... ndg")
Q Q

= [ S (@+V)df' A AT Ad(f—g) Adg A . A dg"
0 i=1
=S (1 [dle+W)(fi—g)df* A Adf I Adg* AL A dg")
! Q
-> f(fi—g")de...Adfi—l/\d«pwf)mgf“/\.,.Adg".
i g

The first integral appearing in the expression vanishes by Stokes’s theorem
(f—g'cCL(Q)). Hence

G13) | [e+nU=d)|= [If-alV+P)| 3 DD
Q Q i=1
= [1f-¢l[V(e+ W) (Df]+|Dg)~".
Q

Finally (3.11), (3.12) and (3.13) imply (3.8).

4. MAXIMAL FUNCTIONS AND INVERSE HOLDER INEQUALITIES

4.1. Maximal functions. We shall make use of some techniques connected with
the Hardy—Littlewood maximal function operator. However, for our purposes,
it will be essential to introduce some generalizations and modifications of the theory.

We shall work in a fixed open cube Q, in R". Therefore the notion of the
maximal function will be localized to the cube Q,. For a function f€L?(Q,), 1=p,
we shall define the maximal function of order p by the formula

@.1) M, 1) =sup{( f1717)"": xc0 c 0y},
Q

where the supremum is taken over all parallel open subcubes Q of Q,. containing
the point x. For M, f(x) we shall write Mf(x).

Besides the maximal function (3.1) it is also of interest to study the weak maximal
function

4.2) WM, f(x) = sup{[ f{f]"]l/p: x€oQ, Q C QO}, 0<o =1,

aQ

and the Morrey type maximal functions

“3) M, ) = sup (e / )" o cal.
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The dependence of WM,f on o is not included in the notation, since for the
purposes of this paper it is enough to take o=1/2, which we do henceforth.

For «=n we have M, ,=M,f and for a=0 M, ,f(x) = [ flfl"]w-
2
For each 2=0

M, o if = My, fo My, (f+8) = M, , [+M,,, 8

However, only for a=n M, ,1=1.
The maximal functions M, ,f are closely related with the cubical a-dimen-
sional outer Hausdorff measure y,(F) defined for any subset FC R" by

v(F) =inf > |QF",
QcF

where the infimum is taken over all countable families & of coordinate parallel
subcubes of R" which cover F(FCUgy 5 Q). If F is Lebesgue measurable, then
9,(F)=|F|. The following lemma is a direct consequence of the Vitali covering
lemma:

Lemma 4.1. For every fEL?(Q,) and every t=0 the inequality

5{1
(4.4) 1 {x€00: My, f(0) =1 < o [If(0Pdx, p=1
4D
holds. For the case a=n we have the following generalization of (4.4): for 0<0 <1
5”
(4.5) mes {x€Qy, M,f(x) =1} < a—eyr |f ()P dx.

|[f@|=eot

Proof. For t=0 we study the distribution set E, f={x€Qy; M, , f(x)>1}.
Then for each x€E, f one can find a cube Q. such that x€Q,cQ, and

[1f G dy = [0,

Qx
By Lemma 1.1 we may choose a sequence Q. , v=1,2,... of disjoint cubes such
that |U,50, covers Uer,f O.DE, f.

Therefore
a/n — Ka a/n 5* 5%
WES) = Z PO =FZON <5 2 Sl == Qf 1P
v v v x U x,

5% .
=5 s Lf17s
which is identical with (4.4). ’
For 0=0<1 we define fo(x)=f(x)if |[f(x)|=10 and fo(x)=0 if |f(x)|<?0O.
Then |f(x)|=]fo(x)|+10 for each x€Q, and we get M, f(x)=M, fo(x)+10O,
which implies E,fCE;-gyfo- Here we used the additional assumption a=n.
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The inequality (4.4) applied to fy gives

5" 5”
Ea-eonfol < =gy J Vel = a—gys o

which immediately leads to (4.5).
The Calderon—Zygmund decomposition lemma allows us to prove some kind
of “weak inverse inequality” to (4.5).

Lemma 4.2. Let t=(f, |fIP)¥?. Then for p=1
4.6) (€0 My () = = 505 [IfPP
If=t

Proof. Define E, f as in the previous proof for «=n. Let & be the family
of disjoint subcubes of Q, defined by the decomposition Lemma 1.3. Then

[f()] =t for almost every x€Qy— |J O
ocF

and
P < ffP§ 2"t for each Q€Z.
Q

In other words, we have the inclusions
{x€Qo; |/ =t} c U QcEf,
Qs

the first inclusion being understood as valid up to a set of Lebesgue measure zero.
Hence.

P = 1 ip
Efl= Zlol= 3 . f =y [Pz [IfP

ue 1f]>1
QcF

This completes the proof of the lemma.

It will be convenient to introduce the distribution function 4,(¢) of the maximal
function M,f. For p=1 we put A,(¢)=A(¢). Lemmas 4.1 and 4.2 give some
estimates for the distribution function A,(f) for t—. In particular, they imply
that the maximal function M, f is finite almost everywhere in Q, if fcL?(Q,)
and can be used to prove that the Hardy—Littlewood maximal function operator
Mf is a bounded operator in LP(Q,) for 1<p=eo.

Lemma 4.3. For any feL?(Q,),p>1 the inequality

@7 fimre = si f Vi
holds. ’
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Proof. We use (4.5) for p=1 and 0=0<1 and also the formula (1.16) and
Fubini’s theorem, getting

n

flel"= pf oD dr = I—S%fmﬂ’-z( [ 17Goldx)de

0 If1>o6t

[0-Lr()]

- oL Jure J ﬂ’—zdf)dx:(p—l)ef:f’la—@)gf oo

Parameter @=(p—1)/p<1 minimizes the last expression giving (4.7) with e=
(1+1/(p—1)~*

The inverse inequality (4.6) implies the important estimate of L’-norm of
f in terms of the L*-norm of f,s=p and LP-norm of the maximal function MF.

Lemma 4.4. Let p=s=1 and feL¥(Q,). Then
pls n
(4.8) firr=(fire) + 20z fim.re.
Q Q P g

Proof. Since (4.8) is invariant under the substitution p’=prt, s'=s1, f'=|f 1/
with some t=1, it is easily seen that the general case of (4.8) follows from the case
when s=1. Therefore we prove it for s=1 only. Put #,= fQ0 |f]l. We estimate

(4.9) f fr=f |f1"+ f fe=at [+ [
If1=t, fl=to |f1=ty 1£1=1,

Now in the second integral of the right hand side of (4.9) we apply the formula of
integration by parts

[ w=—frp ' Sl d=n" [If]

11>t [f1=>= If1>1o

+=1) [ [1/@)dx)de
ty |fl><
The inequality (4.6) yields

ffp-z( [ /()] dx)de =2 j ‘c"‘ll(f)d‘r=% [ mrie.

ty Ifl== Mf=>t,

Here we have used the formulas (1.16), (1.17). In view of (4.9) we conclude
2" (p—1
[ireoras =g f17@lax+ZE=D fppcopdx
Qo QO QO

which is identical with (4.8) for s=1.
Combining Lemma 4.3 and (4.4) we get
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Proposition 4.1. Let s,p be such that 1=s=p, p=1 and let fELP(Q,).
Then

(4.10) fle|P<5—E”—[ f )= f M1

4.2. Inverse Holder inequality. The inequality (4.10) is a crucial tool in the
following proof of the advertised self-improving character of inverse Holder in-
equalities (see F. Gehring [14]).

Theorem 4.1. Assume that the function fcL1%Q,),s>1, satisfies the inverse
Hélder inequalities

@.11) ( flreorax)” = ¢, flreodx
Q Q

Jor each subcube QCQ,, with the constant C independent of the cube Q. Then
for each p=s such that
_ 10%p(p—s)CY

-1
the function f belongs to LP(Q,). Moreover
/
(@.12) ( fr@rda)”=c, flrdx
Qo QO

with the constant C, depending only on n,p,v. One can take
[ 4n ep2 1/p
o lp-1(—v)

Proof. The formula (4.11) implies that M, f(x)=C,Mf(x) for every X€Q,.
Then (4.10) and (4.11) give

(= f e ax = [ fuera)” = 5;”—2”[]’ 7).

Since |[f(x)|=Mf(x) a.e., the estimate (4.12) follows.

C,.

Remark. The inequality (4.12) remains true for every subcube QcQ, with
the same exponent p and the same universal constant C,. This is clear because
we could use the cube Q as our basic cube Q,. Theorem 4.1 has been proved for
a function fEL”(Q,). Therefore, strictly speaking, our proof gives only the in-
equality (4.12) with the universal constant C, if we a priori know that f&L”(Q,).
The following observation helps to settle this point. If f15(Q,) satisfies (4.11),
then there exists a sequence of continuous functions f,€C(R") such that f,—f
in L¥(Q,) and f; satisfies the inverse Holder inequality (4.11) with the same constant
C, for each cube Q strictly contained in Q,. Therefore we are justified to apply
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(4.12) to the functions f, getting
1 .
[flf,J"] "=, fjfkl for every Q cc Q.
Q Q

Now the application of the Lebesgue convergence theorem and Fatou’s lemma gives
the desired conclusion that f€L”(Q,).

The explicit proof of these facts is postponed to the proof of the more general
Theorem 4.2, where an analogous approximation problem arises.

4.3. Weak inverse Holder inequality. It is essential for the foundation of the
theory of quasiregular mappings in R", as well as for a number of important pro-
blems of partial differential equations, to have an analogue of Theorem 4.1 for
weak inverse Holder inequalities. By this we mean inequalities of the form

(3.13) ( firora)” =c, flrwldx
aQ Q

assumed to hold for any coordinate parallel subcube QcQ,. Here o is a fixed
constant O<o<1 and C, is assumed to be independent of the cube Q, though
in general it will depend on o¢. In this case we have WM, f(x)=C Mf(x). For
our purposes it is enough to consider ¢=1/2. To handle this more general case
we shall need to modify Proposition 4.1 by introducing the localizing weight factor
o(x) and the weak maximal function WAM,f(x) with ¢=1/2 (see Section 4.2).
For simplicity we assume that Q, is the unit cube, Qo= {x€R"; |x||<1} where
| xli =max |x'|. As a weight factor ¢(x) we take the function

(4.14) 0(x) = (I—=[lxy”s = 1.
Obviously ¢(x)=0 on the boundary of Q.
Proposition 4.2. Let s, p be such that 1=s<p, p=1 and let JELP(Qy). Then

2pn /s —
@isy  fomr =2 fire) o 222 f owm, g,
Qo p_] Q p_l Qo
Proof. To prove (4.15) we first show two pointwise estimates:
(4.16) oG MG = 20 Moo 3 f 17)7,
3 npjs /s
@ eer=(3)" le@wanseorae( fir)™
Q

We derive them simultanously. For a point x€Q, let O be an arbitrary coordinate
parallel subcube of Q, containing x. The two terms on the right hand side of
(4.16) and (4.17) correspond to two possible cases.
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Case 1. 1—|x||=2|Q|"". In this case
sup (1—[y[) = 3|Q*"
y€Q

and we have

@.18) (ferirr)™ = 3mipe( fire)" =30 f1rr)™

Q Q Q
Also

4.19) g(x)Qf fi = 3migps( f1rr) = 3"“[ f 71"
Q

Case 2. 1—|x||>2|Q"". Hence 1—|x|=>2|x—y| for every y€Q and con-
sequently we get

3 (1=ll) < inf (1=151) = sup (1= 11) = 3 (1= ).

Furthermore, the double cube 20 is a subcube of Q,. In particular,

1—|lx|
=yl —

IIA

% =2 foreach y€Q.

Therefore we can obviously write

— nfs
@) 0@ fif1= f (7o) eoolar =2 folfl = 2morco.
Also ¢ ¢ | ¢

(f1ar)” = o [Qf (=) o )Ide] = (3)" e (f )"

4.21)

3 nls
= (3] ecomnt, s
The last inequality follows from the fact that 20 Q,. Now (4.19) and (4.20) imply

(e f17) =2 \ngrcow+3ws( f 171"
Q

0

and (4.18) together with (4.21) yield

[Qf |Qfls]pls = (_g_)lmls lo (X)WM, f(x)|P+ 3"?!s [Qf IflS]p/s.

These estimates hold for every x€Q, and each cube Q such that x€QcQ,.
By the definition of the maximal functions the estimates (4.16) and (4.17) follow.
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If we integrate (4.16) over Q,, then apply (4.10) to the function ¢f and use
(4.17), we get (4.15). In fact

Sewr=2 f of 37 fur R (f o)™

L 2re10%ep(p—s) f|Msgfl"+3"”"[f|f|s]m
p—l [o2) 2

3npls 5 ep? L goois 3ne/sne’s 10" ep (p—
p—1 p—1

pls

2] [Qof 77)

3 pnls
(-2—] 2Ps10"ep (p—s)

p—1

S lowm,f1e.
Qo

Finally simplifying the terms in front of the above integrals we get (4.15). From this
Proposition we deduce the fundamental

Theorem 4.2. Assume that the function f€L(Q,), 1<s, satisfies the weak

inverse Holder inequality
s 1/s - . 1
(4.22) [G_Qf]f(x)l dx) = C; Q;f lf(x)| dx, where o= 5
for each subcube Q of Q, with the constant C independent of the cube Q. Then
for each p=s such that
(4.23) v = 10211"%:—31 cr<1
the function f belongs to LF, (Q,) and the uniform estimates
1/ 1/s 1
4.29) ( firera)”=c,( flrora)”, o=
aQ Q

hold for each subcube Q strictly contained in Q, with the constant C, depending

onlyon n, p, v.

Proof. First we assume that f is continuous in Q,. The inequality (4.22) means
that WM, f(x)=C,Mf(x) for each x€Q,. Then as in the proof of Theorem 4.1,
using (4.15), we get

[f 1) +102P"%’5):—51)C;’ f orIMf.
Q

0

On account of the assumption (4.23)

Sy = AL
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For x€0Qy,0=1/2 we obviously have o(x)=(1—1/2)"*=2-"/ and therefore

P e — AnAnp/s » ‘p 103n 15 )PIS
deo”rf(xm dx = 20m! Qon!Mfl ém(QfJJ!J’,

which is equivalent to (4.24) with
c - 103"
T p=D(A—w]"

and Q=Q,. Notice that the exponent p and the constant C, do not depend on
the cube Q,. Therefore we can apply the same reasoning to any subcube QcQ,
getting (4.24).

Finally we eliminate the assumption of the continuity of f by the following
approximation argument. We take an arbitrary subcube Q’ strictly contained in
O, and a mollifier function #(x) supported in a sufficiently small neighbourhood
of 06 R" which approximates the Dirac measure concentrated at the origin. The
convolution

Foy=nxfl= [n()fx=p)dy
o

is well defined in a neighbourhood of Q and it is continuous. It is easy to verify
that for every cube Qc @’

[ firrax)™ = ( f( [ro1se-p ) ax)™

aQ aQ R
= [10)( fira—pldx)" ar.
R" aQ

Here we used Fubini’s theorem and Minkovski’s inequality. From (4.22) we get
(foolf(x=p)Fdx)"*=C, fo | f(x—y)|dx. Hence

( f1Frax)™ = ¢, [n0) f1ra—pldxdy =, fI1F)ay.
R" Q Q

aQ

Now we are justified to write (4.24) for the function F
1/ 1/s
(4.25) (fIF@Prax)” = c,( f1F@rdx)
o0 0

with C, independent of the mollifier function 5. By Young’s inequality

(f1Ee)" = [ fasirir )" = imwaen ( f170)" = (f 170)"
Q Q Q Q
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and we obtain from (4.25) the uniform estimates
1/p N1/s
(fiee)"=c,(fur)
aQ Q

with C, independent of 5. This shows that |f|=lim;. .. n;* | f| belongs to L?(aQ)
and satisfies (4.24). The limit is taken over a sequence of mollifier functions #;
tending to the Dirac measure. This completes the proof of the Theorem.

5. CONTINUITY AND DIFFERENTIABILITY

We discuss here some important direct consequences of the previous estimates
with the intention of applying them to quasiregular mappings.

5.1. LP-integrability. Let us recall that every K-quasiregular mapping f:Q - R"
is assumed to belong to W' .(Q). Lemma 3.2 shows that the first generalized
derivatives of f satisfy a weak inverse Holder inequality (3.7). Now, on the basis
of Theorem 4.2 we can prove that f actually belongs to W}, .(2) with an exponent
p strictly greater than n. After these remarks we can formulate the following
precise result.

Theorem 5.1. Let f: Q—~R" be a K-quasiregular mapping. Then there exists
p=pn, K)=n depending only on n and K such that feW, L oc(Q). Moreover,
for every compact subset FCQ the estimate

6 (e e = g e  f 17 e

holds with C(n, p, K) independent of f, F and Q.

Proof. A local estimate immediately follows from (3.7) and Theorem 4.2 so
that for every subcube Qc2QcQ we have

/ In
(52) [ S s dx)” = C[ f DI dx) ",
where C depends on n, p and K. This reads equivalently as follows:

(-3 [1Df@)P dx = C (diam Qy'~* ([ 1Df GO dx)™".
Q 20

To go further, we shall consider the partition of R" into closed congruent cubes
with sides parallel to the axes and such that the interiors of two cubes of the partition
are disjoint. The collection .# of these cubes will be called a mesh of cubes in  R".
The diameter — diam .# — of the mesh is defined as the common diameter of
cubes in . Let diam .4 =(1/2) dist (F, 0Q). Then for each cube Q¢c.# which
touches the set F the double cube 20 is contained in Q. Therefore it follows
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from (5.3) that

Ff prr= 2 [Ipfl = 20-"Cldist (F, o))~ ( f D7 1)
QNF=p 2 QﬂF;éﬂ
= 2¢-"C[dist (F, ag)]"—P( Z’ [1Df 17", since  pjn = 1.
ano?Q

We observe that each point x€ R" is contained in at most 3" of the cubes from
the family 2.4 ={2Q; Qc.#} of double cubes. Hence

. [iorr=3 [ ipfir=3 [l
Q%%#aw gk 4
QNF=g

Finally we get
f IDfIP = Jp—n, 3pC[diSt (F, 39)]"_1’ ( j' ‘Dfl")p/",
F 2

and the proof is finished.

5.2. Holder continuity.

Theorem 5.2. Any K-quasiregular mapping f: Q—~R" is Hélder continuous
on any compact subdomain FC Q. The Holder exponent o=a(n,K) depends
only on n and the dilatation K, =K while the Hilder coefficient depends on n, K,
the geometry of the sets F, Q and on the norm ([q |Df|")'"

for every x, y€F.

Proof. Suppose first that F=Q isa cube and Q=20. By Sobolev’s imbedding
Lemma 1.7 and by the inequality (5.3) we get

(5.5) S~/ = Cn, p)lx—y=r( [ DfIP)”

Q

<o Y o

for every x,y€Q. This gives (5.4) with a=1—n/p=>0. The general case follows
from this particular one by use of routine methods. We omit the details.

Theorem 5.2 is surely much weaker than the precise and deep result of F. Gehring
(see [13]) and it has only qualitative value. However, even this result on the conti-
nuity of quasiregular mappings has fundamental consequences in the study of
geometric properties of QR mappings.
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5.3. Differentiation of QR mappings. In this section we show how the dif-
ferentiability properties of quasiregular mappings follow from L estimates of
derivatives of the mappings. In agreement with our approach we are not interested
in the greatest generality. Let f: Q—R" be a mapping and let x,€Q. We say
that f is differentiable at x, if there exists a linear map L: R"—R" such that

(5.6) S(xo+h) = f(xo0)+Lh+o(|h])

as the vector h€ R" tends to zero. We call L the differential of the map f at the
point x,. Obviously f is continuous at x, whenever it is differentiable. If f is
differentiable at x,, then its partial derivatives at x, exist and the differential is the
linear transformation identified with the Jacobi matrix Df(x,), but the converse
is not true. It can be shown that there are mappings in the Sobolev space W,},.(€)
with p=n not admitting differentials at any point of Q. Nevertheless for p=>n
we have [11]

Proposition 5.1. Any map feW,},.(Q) with p>n is differentiable at almost
every point x€Q and its differential is equal to Df(x,) the generalized Jacobi matrix.

Proof follows from the Lebesgue theorem. Indeed, since Df€Lf, (), the
Lebesgue points of Df form a subset Q' of full measure in Q (see (1.7)). For
each x,€Q" we have

tim f IDf()=DfGxoP dy = 0.
B(xy, 1)

Let us put g(x)=f(x)—f(xo)—Df(xo)(x—xo); then g(xo)=0, gEW,o(R) and
Dg(x)=Df(x)—Df(x,). By Sobolev’s inequality (5.5) we get

£ —f (k)= Df (x) (x—x9)| = g ()~ g (x|
=copr( f1per)” = copr( fIrm-preoras)” =ow

B(xg, 1) B(xg, 1)
for |x—xo/=r. This implies (5.6) with L=Df(x,). In view of Theorem 5.1 we have

Theorem 5.3. A quasiregular map is differentiable at almost every point.

6. VARIATIONAL INTEGRALS

6.1. A special divergence type equation. To move further in our study of
analytical properties of quasiconformal and quasiregular mappings, we shall need
some particular properties of weak solutions of divergence equations

(6.1) divA(x,Vu) =0
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with A(x, ¢)-the function from QX R" into R" of the form

(6.2) Ax, &) = 5 (GERE O EG(E,

where G=G(x) is a symmetric positive definite nX#n matrix-valued function with
measurable entries defined in a domain Qc R" and satisfying the uniform estimate
(6.3) 2P = (G, &) = e

for almost all x€Q and all ¢€ R" with some constants «, , O<a2= f32.
The equation (6.1) is obviously the Euler—Lagrange equation for the functional

6.4) I(u, Q) = fF(x, Vu)dx with F(x, &) = (G(x)¢&, V2
Q
The weak solutions of (6.1) and the minima of the functional 7(u, Q) are looked

for in the Sobolev space W,'(2). This means that for any test function n€W(Q)
the integral identity

(6.5) [(A(x, Vu), Vnydx =0

2
holds. In the terminology of Paragraph 1.6 it expresses the fact that the vector
A(x, Vu) is divergence free.

For convenience we collect some elementary properties of the integrand
F(x, &) and the vector functions A(x, ¢) in

Lemma 6.1. For almost all x€Q and all £,{¢R" we have
(6.6) SN = (A 9.8 =5 Flx. &)
6.7 (A 0. 0l = 5 Bl

(68) (A(x, = A 0,60y =" |~ = 2 (2] | —cp

Proof. The properties (6.6) and (6.7) are obvious. To get (6.8) we remark that
G admits the representation G=0%"Q. Then A(x, &)¢=(n/2)|0|"20*Q¢ and thus

(A, )= A 0, £=0) = 5 (02205~ 10208, 0: ~ Q)
= 02— QUR(QE !+ 101"+ (102 — QL) (1QE* — ¢ =)
= % |QE—QC(lQe" 2+ 10L"2) = _4n_ (G(E=0), E—=O(GE, Y12

G Qo = Lo~ R(el-t it = 2 (3 e
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6.2. The function ¥ = —In lfi. Suppose that 7 Q—’Rn\{O} is a quasiregular
mapping, ie., fEW,.(2) and

(6.9) IDf(x)I" = KJ,(x) for almost every x€€Q.

We define the matrix-valued function

D* f(x) Df (x)
(6.10) G (x) = Jg (x)#"
I otherwise.

if Df(x) exists and Jy(x) #0

By (6.9) we see that G~'(x) is defined everywhere in Q as a symmetric positive
definite nXn matrix such that det G"(x)=1 and

2 = (G, &) = KAME
Hence the inverse matrix, denoted by G(x), satisfies
6.(11) K=m|E]r = (G, &) = [E)%

which corresponds to the assumption (6.3) with a=K " and f=1. It follows
directly from the definition that for almost all x€ &

(6.12) (J;(x))"=2"G(x)D*f(x) = adj f(x), and Df(x)G(x)D*f(x) =J Ao,

where adj f(x) is the adjugate matrix (see 1.35).

Notice that (6.12) follows from (6.10) if J;(x)#0. In the case J;(x)=0 both
the left and the right hand side of (6.12) vanish because Df(x)=0; see (6.9).

Let us now consider the function u(x)= —In |f(x)|. We easily verify that

e S
Vu(x) = Df(x)——-‘f(x)12 .
Hence
(G(x)Vu, Vuy = | fI=H(GD*) f, (D) f) = | f I {(DIGDN) 1, f)
= SRSy = R
and

G(x)Vu = —|f(GD*f)f.

Therefore (G (x)Vu, Viy"=22G (x)Vu = — |f|~"(J$~2"GD* ) f= —(adj /() /1"
On the other hand, we know that the vector (adjf)f/|f|" is divergence free (see
Corollary 1.1). Thus we have proved

Lemma 6.2. For any quasiregular mapping f: Q—R"—{0} the function
u=—lInl|f| is a weak solution of the equation (6.1) with G(x) satisfying (6.11).
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6.3. Basic estimates of weak solutions.

Proposition 6.1. Let u be a weak solution of (6.1). Then for every test func-
tion @€Cy(Q), =0 with bounded gradient V¢(x) and for every constant ¢ the
Sfollowing inequality holds:

613 ([o@Fue ) = 2 [ ¥t —eray "
2

Q

If the weak solution u is positive in Q, then the function v=Inu belongs to Whee(R)
and satisfies the inequality

I RV

for every @eWH(Q).

Remark. Since u(x)+e is also a solution of the equation (6.1) for every
constant &, we may assume for the proof of (6.14) without loss of generality that
u is strictly positive, i.e., u(x)=e>0 for some &.

Proof. In both cases we use the integral identity (6.5) and a proper choice of
the test function #. To get (6.13) we take n(x)z(p"(x)(u(x)—c-)EW,I(Q). Then
Vi=ne" " Yu—c)Vo+¢"Vu and

f(p" (A(x, Vu), Vu)ydx = —n fq)"‘l(u— ¢){A(x, Vu), Vo) dx.
o g
Hence, in view of (6.6) and (6.7) and by the Holder inequality

2 ol = n 2 [t ] [V [Vl
2 2
Q2 Q2

= n2ﬁ" (f(/)” 'Vu!")(”—l)/n(f’vq)!n’u—‘ci")l/n,
Q 2

s}
4

and (6.13) follows. To get (6.14) we substitute 7=¢"/u"~'¢}W*(Q). Then

since uVv = Vu

n—1

o"Vv
1 n—1) w1

and
(=1 [@"(A(x, Vo), Vo)dx =n [ @"(4(x, Vo), Vo) dx.
Q2 Q
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Hence by (6.6), (6.7) and the Holder inequality

na" n2p"
gy B L
Q Q

_ n22ﬁ" (f(pnlvvln]("—l)/"(f|Vq)In)1/”’
2] Q

and (6.14) follows.
As a consequence of estimate (6.13) we get

Corollary 6.1. If the ball B(x,,2r)CQ, then the Caccioppoli type inequality
n 1/n — nﬁn AT 2/n
(6.15) ( f [Vu(x)| dx) = —oc”r( f lu(x)—c| dx)

B(x4,1) B(x,,2r)
holds.

Notice that (6.15) is valid with B replaced by a cube Q with another co-
efficient which can easily be evaluated.

Proof. The inequality (6.15) arises when we put ¢ in (6.13) such that ¢(x)=1
in B(xy,r) and |Vo(x)|=1/r in B(x,2r). Taking c=fp, o #(y)dy and using
the local Poincaré—Sobolev inequality (see 1.24)

( f o= [ as)"=conr( f iveorea)

B(x,, 2r) B(xy,2r) B(x,, 2r)

2/n

we obtain the weak inverse Holder inequality
1/n ) 2/n
[ f IVul"] =c(n,a p) [ f |Vu|"/2] .
B(x,, 1) B(x,,2r)
In view of Paragraph 4.3 we have the important

Corollary 6.2. Every weak solution u€W,'(Q) of (6.1) actually belongs to
some W,.(Q) with p=n. In particular, by Sobolev’s imbedding theorem, weak
solutions of (6.1) and local minima of the functional (6.4) are Holder continuous in €.

6.4. Conformal capacity. We recall now the concept of the m-capacity of the
pair (F, Q), where F is a compact subset of Q.

Definition 6.1. The m-capacity Cap,, (F, Q) of the pair (F, Q) is defined as

(6.16) Cap, (F, Q= inf [[VoI", olr=1, m=L
PEWm(Q) 0

Obviously

(6.17) Cap,, (F, Q) = Cap,,(F/,Q) if FCFccQcQ.

The n-capacity will also be called the conformal capacity. The inequality (6.14)
can be used to estimate the L"(F) norm of the gradient of v =—Inu, where u is
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a positive weak solution of divergence equation (6.1), in terms of conformal capacity
of the pair (F, Q).

Corollary 6.3. If v=Inu and u=0 is a weak solution of (6.1), then for
every compact subset FC Q the inequality

(6.18) (J1vor)= 2P (cap, (£ o
holds.
In particular, if B(x,,r)CB(xy, R)CQ, then
e (B Y o,
(6.19) B(xo,fr) Vol" = [(n_l)a”) In""Y(R/r)’

where w, is the volume of the unit sphere in R".

Proof. The inequality (6.18) follows if we take the infimum on the right-hand
side of (6.14) over all admissible ¢, =1 on F. The inequality (6.19) is obvious
if we assume the conformal capacity of the pair (mﬁi B(xy, R)), R=n known.
A simple derivation of this fact will follow from some considerations below: see
the formula (6.24).

6.4. Existence and uniqueness. So far we did not use the important property
(6.8) of the function A(x, &). It expresses the fact that the “form” (A(x, &)— A(x, {),
¢—{) is positive definite and has familiar consequences of monotonicity. Specially
(6.8) implies that the non-linear Dirichlet problem

(6.20) divA(x,Vu) =0, x€Q
(6.21) u—pEWHQ)

for a given @€W*(Q) has a unique weak solution u in W (Q). Moreover, the
maximum and minimum principle (comparison principle) for weak solutions of
(6.20—21) holds.
Both above facts are well known and their proofs are completely standard.
We discuss them for completeness. The solution of the Dirichlet problem is
obtained by minimization of the functional I(u, Q) over the subset of W(Q)
of functions satisfying the boundary condition (6.21). Let u; be an arbitrary

minimizing sequence for I(u, Q) such that uj—goelfi/,,l(Q), ie

. = 1 [ n/2 = i | \”/’ ‘.
Loin u=1VIVl§(Q) Qf(G(x)Vu, Vu)"'? dx ,lil?o Qf (G(X)Vu;, V"2 dx

u—p EWn(2)
By (6.6) we see that the norms [[u]| nq, are uniformly bounded. Hence the func
tions u; —(pEWl(Q) are uniformly bounded in lb' V7 (L) and consequently the set
{u;} is weakly compact in W'(Q). Any weak limit u=Ilim,_,.. u; is the required
solution of (6.20) and (6.21) because it minimizes the integral /(u, Q)
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In fact, let {(x)=(G(x)Vu(x), Vu(x)""?2Vu(x)e L""~V(Q). Then
[ (G V@), Va0 dx = [(G)Vu(), (())ydx = lim [ (GVuy,, )
2 Q Q

Vujk>1/2 <GC, C>1/2

Jk?

= fim Qf (GVu;
= [im ( [ (GVuy,, Vi) ( f <@g, oyt
@ Q
= ]i},/{;,(fg’G(x)Vu(x), Vu(x))" dx)('%—l)/n.
Q

Hence [ (G(x)Vu(x), Vu(x))"*dx =10

But in view of the definition of I, the function u must equalize the last
inequality. To prove uniqueness we assume by contradiction that #; and wu, solve
the problem (6.20), (6.21) and u;#u, as elements in W (Q). Therefore

(6.22) [ (A G, Vi) — A(x, Vuy), V) dx = 0
Q

for any n€ I/OV,}(Q). Since u; and wu, satisfy the same boundary conditions we are
justified to substitute 7(x)=u; —us€ W(Q) getting

f(A (x, Vuy)— A (x, Vi), Vi — Vi) = 0

Q
and by (6.8) [o|V(y—us)|"=0, V(uy—uy)=0, u;=u, almost everywhere in Q.
So we reached the contradiction.

Suppose now that we are given two solutions u; and wu, such that u;=u,
on 0Q. This means that the function y=min (#;—u,, 0) belongs to I/.V,,I(Q) and
thus can be used as a test function in the identity (6.22), which in view of (6.8)
implies that fQ [Vy"=0 or »=0, ie., wu;=u, almost everywhere in Q. This
last inequality holds everywhere in @Q on account of the continuity property of
the solutions u, and u,. This is exactly the assertion of the comparison principle.
In particular, letting u; or u, to be constants we immediately get the maximum
and the minimum principles.

As a consequence of the above remarks we get:

Corollary 6.4. The conformal capacity Cap, (F, Q) can always be calculated
from the unique solution to the weak Dirichlet problem

div [Vu|" Vi, =0 in O\F
(6.23) uy =0 on 0Q
u, =1 on OF.

When applied to F=B(x,, r)CB(x,, R)=Q, r<R, this corollary gives the
exact expression for the capacity of the pair (B(xo, r), B(xy, R)) used in the deri-
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vation of (6.19), namely,

_ In(lx—x|/R) — XX
W =R Ve = TR
and
6.24)  Cap,(B(xa, 1), B(xy, R)) = Vug(x)rdx = __©n___
( ) ap ( (xo r) (x )) r<lx—£;]<R l “ (X) ¥ ln"‘l(R/V)

6.5. A weak form of Harnack’s inequality. We shall show now that the basic
estimate (6.19) implies a principle of the Harnack type for non-negative weak solu-
tions of the class W,'(Q) of divergence equation (6.1). To achieve that we need
a sharpening of Sobolev’s imbedding inequality (1.27) in the borderline case W*(Q).

Proposition 6.2. (Weak local Harnack’s principle). Let u be a non-negative
function of the class W'(Q) such that for every cube Qc3QcCQ

)
(6.25) 3!Whu|:?gg
where v(n) is the constant appearing in Lemma 1.6. Then
(6.26) fuw=2fuw
3Q Q
Proof. Apply (1.27) to o=1/3 and v=Inu; then

fen]lnu—(lnu)q[ =2
3Q

flnu"
fu"éZeQ §2fe‘““":2fu"
3Q Q 0

by Jensen’s inequality (1.15) applied to @(¢)=e’. By iteration the inequality (6.26)
is immediately globalized as follows:

or

Proposition 6.3. Let {Q;},j=1,2, ..., N be a sequence of parallel congruent
cubes  Q;CQ  such that 30,CQ,Q0;nQ;#0 for j=1,2,...N—1 and
J=12,..., N (6.26) holds for each Q;. Then

(6.27) fm;a<mm1fw for i,j=1,2,...,N.
9 Q;

Proof. For N=2 we have

fwg ngzanfw
Q, Q,

30,

since obviously Q,c3Q, if O, Q,#0. The general case follows by iteration of
the above inequality.
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Combining (6.27) with the Caccioppoli type inequality (6.15) we can easily
prove the following version of the Harnack type inequality:

Theorem 6.1. For any compact subsets Fy and F, of a domain Q, Int Fy=0
and any divergence type equation (6.1) satisfying the condition (6.3) there exists
a constant C =C(n, a,, B, Fy, Fy, Q) such that for any non-negative solution u of
6.1) in Q the following inequality holds:

(6.28) [IVu@indx = € [ lu@)|" dx.
F, F,

Proof. We obviously may assume that u is positive. Then we can examine
the function v=Inu. For F, and F, given we choose a covering of F;UF, by
a finite number of coordinate parallel cubes Q;, ..., Oy with fixed sidelength
¢ small enough to satisfy the following conditions:

a) 20, C £,
b) 60, C Q for i=1,2,.., N
C) QiﬂQi.H #= 0 fOr i= 1, 2, ceny N—1
d) 6f‘wm ul" = VT(;? i=1,2, ..., N (see 6.25).
Such a choice can be made with the numbers N and ¢ depending only on n,a, 8
and the geometry of the sets Fy, Fp, Q. In fact, taking into account the uniform
estimate (6.19) we see that the condition d) and also the conditions a) and b) are
guaranteed by a choice of sufficiently small ¢ i.e., the size of the cubes Q; covering
the compact subset F; U F,. In order to have c) it is enough to take sufficiently
many of such cubes, say N.

Notice that the cubes O, ..., Oy can be chosen for example from a family
of cubes obtained by sufficiently small regular division of R". Condition d) in view
of Proposition 6.3 implies

fu"<(2 3mN-1 fu”<(2 ) e 1fu for i=1,2,..., N.
20Q; 20,

Now the Caccioppoli type estimate (6.15) yields

o C(n, o, B) C(n,Ot B, N) -
f|V | = (d1am0)” f fu for each i=1,..., N.

Since the cubes Q; cover Fy, the inequality (6.28) with C =Ne™"C(n,,8,N)=
C(n,a, B, Fy, F,, Q) follows.
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7. CAPACITY AND HAUSDORFF MEASURE ESTIMATES
FOR QUASIREGULAR MAPPINGS

Now we have at our disposal all tools needed to prove two important theorems.

7.1. A capacity estimate.

Theorem 7.1. Let f:Q—R" be K-quasiregular, feW'(Q), fZ0.%) Assume
O<M=sup,cq|f(x)|<oco. Let E be a compact subset of Q and denote E,=
{x€E; |f(x)|=t}). Then there exists a constant C depending on n,K,E, Q and
f, but not on t, such that
(7.1) Cap,(E,, Q) = Clnl‘"ﬁ—t/[- for t= %

Proof. We fix two open subsets @, and Q, of Q, suchthat Ecc Q,cc Q,cc Q,
and put F;=0,—Q,. Since f is continuous and f#0, there exists a compact
subset F, containing an open cube such that

(71.2) Jnf 1) =1 = % ~0.

Obviously F,cQ—E,=Q, for all .

The essential idea in the proof of the estimate (7.1), due to Resetnjak [30], is the fact
that the function u(x)=In (M/|f(x)|) is a weak solution of the equation (6.1) (see
Lemma 6.2) and the use of some barriers for u, constructed as weak solutions of
the same equation. The crucial property of A(x, &) in this construction is that it is

*) For simplicity we assume that f is defined and continuous on £.
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homogeneous in &; A(x, A&)=2A""'A(x,¢) for AcR. Definition 6.1 allows us
to take into consideration functions w€W*(Q,) satisfying the boundary conditions

(7.3) =0 on 9Q and ¢ =1 on OE,.
In particular, we can take as ¢ the weak solution ¢=u, of the Dirichlet problem

{div A(x,Vu) =0 in £

74 u,=0 on 0Q, u,=1 on OE,.
Then in view of (6.6) and (6.5) we shall have

2
n
nat

- no.— — 2
Cap, (E,, Q) = Qf Vu,|" = f<A (x, Vu), Vu,) = ng (A (x, Vu,), Vi)

for any function ne€W,'(w,) such that n—u,EWnl(Q,). On the other hand, any
function n€CY(2) such that

(7.5) n=0 for x€Q—-Q,, n=1 for x€

has this property if ¢=M/2. Therefore for any such n we have Vr(x)=0 if
x§ Fy; thus by (6.7)

Cap, (£, @) = o [ (A V). V) = (5] [iwur=19n
F, F,

B gr ey
F, F;
or, since n is arbitrary satisfying (7.5),

p

o

1A

76) Cap, (£, @) = (5] Can, (@ @( [1Vul)™"
Fl
Now we use the Harnack inequality (6.28) to estimate the right-hand side in (7.6).
Consider the function iI,(x)=u,(x)In (M/t) in the domain Q,. Both i,(x) and
u(x)=In (M]/|f(x)|) are weak solutions of the equation div A(x, Vu)=0 in the
open set {x€Q;|f(x)|>1}cQ, on the boundary of which we have u(x)=i,(x).
In fact, by the conditions (7.4) and by the comparison principle (see Paragraph 6.4)
1=u,(x)=0 everywhere in Q,; thus In(M/t)=u,(x)=0 in Q,. For every point
x from the boundary of {x€Q;|f(x)|>1} we either have |f(x)|=t, u(x)=In (M/t)=
ii,(x) or x€dQ and so u(x)=In(M/|f(x)])=In (M/M)=0=i,(x).
Now by the comparison principle we conclude

u(x) =i, (x) for x€{x€Q; |f(x)|=1}.
Since t=M]/2, then F,c{x€Q;|f(x)|=>1}. In particular, for x€F,

N . M _ M _
(1.7) i,(x) =u(x)=1In T In ip In 2.
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Since both F; and F, are compact subsets of Q,o, the Harnack inequality (6.28)
applied to the weak solution @, of the equation div (x, Vu)=0 in Q, gives

(7.8) [va=cC [ li]" < Cln" 2 (mes F,)
Fl Fz

with the constant C independent of the solution %, and, in particular, independent
of the parameter ¢=M/2. Finally (7.6) and (7.8) imply (7.1) with C=C (n,K, E, Q.
In fact

M

" - —n (n—1)/n
Cap, (£, Q) = [5] Cap}/” 9(1,92)[ J(m %) 1Vﬁ,|"] = Cltr =2
Fl

Corollary 7.1. Let f: Q—R" be a quasiregular mapping, f#const. Then
(7.9 Cap, (f~1(») =0 for every yER".
Here /~'(y) is the preimage of a point y under the mapping f.
Remark. The equality (7.9) should be understood as follows:
Cap, (Enf~1(p), Q) =0 for every compact E C Q.

Proof. If y=0, then (7.9) directly follows from Theorem 7.1 because

Cap, (Enf (), Q) = Cap, (E,, Q) = Cln“"TM for each 1= %

The full assertion is the consequence of this inequality applied to the shifted mappings.
Now, for a non-degenerate quasiregular mapping f: @~ R" we introduce the
modul of continuity

w(x,, F) =, sup  [f(x) —f(xo)]

x—xo|=r

defined for each x,€Q and r=(1/2) dist (x,, 0RQ).

Corollary 7.2. For each x,€Q there exist an exponent 7.=0 and a constant
C(xy) such that

(7.10) W (xy, 1) = C(xg)r*  for r = (1/2)dist (x,, 0Q).
In general, L and C(x,) may depend on the mapping f.

Proof. We assume for simplicity that x,=0, f(xo)=0. Fixa ball E=B(0, R)cQ
and rp<R such that M,=sup =|f(X)|=M/2=(1/2) sup,cqo |f(x)| for r=r,.
Then, in view of (7.1) and the obvious inclusion B(0, r)c {x€B(0, R); |f(x)|=M,}=
Ey, we get

M
M,

Cap, (B(0, r), B(0, R)) = Cap, (Ey,, Q) = Cln'~"
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or, in view of (6.24),
w, _ C
In""Y(R/r) — In""Y(M|M,)’

where C does not depend on r=r,. Hence
Y
w(xg, 1) =M, = M(’}?) , 2= (Clo)t"=D.

For ry=r=(1/2)dist (x,, Q) the inequality (7.10) may be easily obtained by our
taking possibly smaller constant C(x,).
7.2. Zeros of the Jacobian.

Theorem 7.2. For any quasiregular f: Q—R", f#constant in a domain
Q let N;={x€Q,J;(x)=0}. Then mes N;=0.

Proof. Assume that mes N,>0 and that x,=0 is a density point of N, ie.,

(7.11) tim 1B 1) = Ny|

lim ——IB(O, ) =0, B0O,r)cQ.

The Holder inequality gives

f IDf (x)|"* dx = f IDf(x)|"%dx = |B(0, r)— Nf|1/2( f D (x)|" dx)l'lz,

B(0,7) BO,r)—N, B,

Hence by the weak inverse Holder inequality (3.7)

f in‘n)l/n = 4KC(n)[ f ‘Df|n/2]2/n

B(0, r/2) B(,r)

=C(n, K) (_I%("T)’—r)fv_f‘)lln [ f]Df‘"}ll" — o) ( f lDfl")l/",

B(0,r) B(0,r)

where in view of (7.11) &(r)—0 as r—0. Iterating we get

f |ij"]1/n = e(r)e[%] € (%]8 (—2:71) [ lefl"]l/".

B(0,2-%r) B(0,r)



300 B. Bosarskr and T. IWANIEC

For any natural N we choose ry=ry(N) such that the numbers e(ry), £(ro/2),
e(ro/4), ..., e(ro/2"°1), ... do not exceed 2=V for k=1,2,.... We then have

/ lDfln]”"é('zl‘]Nk[ S o) =wreregr ( f 1)

B(0,2~Fry) B(0, ry) B(0,rg)

For each r=r, there exists k such that 2=*r,<r=2-*+1,. Then

( fiore)"=2(  f o)

B(0,r) B(0,2-%+1r)

= 2r()—N(2—k+1r0)N [ f !Dfln]lln = 21+NFO_N rN ( f !Dfin]lln_
B(0,ry) B(0,ry)
This means that

[ f |Df|”]l/" = C(N)r¥*Y for r=ry= ry(N).
B(0,r)

By Theorem 5.2 (see also 5.5) we have

Sup [fCI=Con K)( [ IDfP)" = Cn K, Nyre
x| <r, B(O, r)
for any N. This, however, is incompatible with Corollary 7.2.

7.3. Outer Hausdorff measure. Our nearest aim is to show relations between
capacity and the outer Hausdorff measure y,. We return to the considerations of
Paragraph 4.1.

The following Lemma generalizes the local Sobolev imbedding inequality.

Lemma 7.1. Let Q, be a cube in R" and ucCy(Q,) and let 1<p= oo,
O=n—o<p. Then there exists a constant C =C (n, a, p) such that

(7.12) lu(x)| = C(n, a, p) (diam Qo)'="»**/P M, Vu(x)

Jor each x€Q,. It reduces to Sobolev’s inequality for a=0.

Proof. We assume that Q,=Q(0, R) and u is a function defined in R" with
zero values outside Q,. For every x€ R" we have

oo

ux) =— [ [% fu(x—f—ty)dy] dt=—f°° f &, Vux+ 1) dy .

0 Q(0,1) 0 Q(0,1)
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Hence

[ VuCx+iy)dyde = f( f Vuidy) dr

0 Q@1 0 Q(x,r)

= [ f i [ fwa)a

0 Q(x.r) R Q(x.n)
R

= 2@-m/p f[lQ(x S f [Vui"] pa=m/p gy

1
T DR

lu (x)|

1A

R
f Vul = 20="P M, Vu(x) f pla=nir dy
Q(0, R) 0

(QR)1—"/p+alp 1 , 1/p
2(71—1) ( |Q(0, R)la/n Q(O:{;) [VM‘ )

pz(a‘")lp 2(x=m)/p
=PL  Ri-weralr L Vu(x) b S RTUPRIP M, Vu(x)
@ n—1 “p

+

~ a—n+p

(x—n+np) 2(z—n)/p R1—n/p+a/p
B (p—n+a)(n—1)

M, ,Vu(x),
which is (7.12).
Combining this with Lemma 4.1 we immediately get

Lemma 7.2. Under the hypotheses of Lemma 1.1 the inequality

San , o, d 0p+a¢—n
T13) g (x€0y: fu()] = 1) = e P )L,lamQ) [ vule

holds for every 2.=>0.

Proof. By (7.12) and (4.4) we have

ya {X€Q0, lu(X)I = )“} = ya {xEQO; Ma,pvu(x) = ;” (diam Qo)n/p—a/p—lc—l}

5
p
= TC " (diam @,y 71 f (Vul?.

As an important consequence of the estimation (7.13) we obtain

Lemma 7.3. Let F be a compact subset of QC R" such that Cap, (F, 2)=0.
Then y,(F)=0 for every O<a=n. In particular, y,(F)=0 and thus F does not
contain any line-segment.

Proof. Let u be an arbitrary C(Q) function such that u(x)=1 on F and
let Q, be a cube containing Q. Therefore

P2 (F) = 7,{x€Q0; [u(x)] = 1/2} = C(n, 2) f Vil = C(n, %) [Vul"
(9]
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Since u is an arbitrary C{(Q) function, relevant for the definition of the n-capacity
of the pair (F, Q), then v,(F)=C(n, a) Cap, (F, 2)=0.
Finally using Corollary 7.1 we conclude:

Corollary 7.3. Let f: Q—R" be a quasiregular mapping such that f#const.
Then for any y the outer Hausdorff measure y, of the closed set f~Y(y) is
zero for any positive o

(7.14) 7.(f71(») = 0.

In particular, f~1(y) does not contain any line-segment.

7.4. An application to smooth QR mappings. We shall now show that any non-
constant and smooth quasiregular mapping f: Q—R", n=3 is a local homeo-
morphism. This is a basic fact distinguishing the two-dimensional theory from the
general case n=3. For n=2 holomorphic functions supply examples of smooth
quasiregular mappings having branch points e.g. f(z)=z* k=2, 3, ..., z=x+ix

The result proved below is weaker than the facts known in the literature.
However, we include this weaker result here to illustrate the application of our
methods.

We begin with the following simpler case:

Lemma 7.4. Let f: R"—R", n=3 be a quasiregular mapping whose components
are homogeneous polynomials of degree k,k=1. Then f is a homeomorphism of
R” onto itself.

Proof. First of all we observe that the Jacobian J(x) of the map f does not
vanish in R"—{0}. Contradicting this fact suppose that J(x,)=0 for some x,0.
Since f is quasiregular, Df(x,)=0. On the other hand, Df(x) is homogeneous of
order k—1; thus Df vanishes on the line {rx,; 7€ R'}. As a consequence of that
we get f(ixg)=const=0 for all real ¢. This contradicts Corollary 7.3. In a similar
way we prove that f(x)#0 for x0. Therefore f is a local diffeomorphism of
R"— {0} into itself.

Let us now consider the map ¢: §"~'—~S5"~' defined on the unit sphere $"~1
by the formula

Jx)
PO =T

This mapping is a local homeomorphism (even local diffeomorphism) follows
from the following observation: ¢=foh, where the map h:S"~'~R"—{0}
has the form h(x)=A(x)x. Here A=0 is the scalar smooth function, i(x)=
[f(x)|"". Such mappings as h transform diffeomorphically the unit sphere
onto a closed smooth (n—1) surface. Since f is a local diffeomorphism in R"— {0},
then ¢ is a local diffeomorphism on the unit sphere.

The crucial point in our proof is the following topological theorem: Any
local homeomorphism of $"~' into itself must be a homeomorphism onto §"~L.
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Here the assumption n=3 is essential. On the basis of this theorem we see that
¢ is a diffeomorphism of S"~' onto S"'. We shall derive from this that
f: R"— {0}~ R"— {0} is a diffeomorphism. Since we know that f is a local dif-
feomorphism, it suffices to prove that f is one to one. Let f(x%)=f(x?): then
o (xY|x )= (x¥|x2)), so xYIx'|=x?|x?. The homogeneity condition implies
FY/xtf=f(x»)/|x2%, whence |x'|=|x?| and x'=x% The lemma is proved.

Let us remark that the inverse mapping f~': R"—~R" is Holder continuous
with the Holder exponent a=1/k. The following theorem generalizes Lemma 7.4.

Theorem 7.3. Let f: Q—R" be a non-constant quasiregular mapping of the
class C=(Q), where Q is adomainin R", n=3. Then f is a local homeomorphism.

Proof. We investigate f in a sufficiently small neighbourhood of an arbitrary
point x,€Q. For simplicity we assume that x,=0€Q and f(0)=0. By Corollary
7.2 there exist an integer N and a constant C >0 such that

(7.15) sup |[f(x)| = Cr?

x| =r
for sufficiently small r=0. We use the Taylor expansion formula
F)=Py(x)+... + Py () +O(Ix["*),

where P, are homogeneous polynomials of degree k. In view of (7.15) one of
them does not vanish identically. Therefore we can write

J(x) = h(x)+R(x),

where h is a homogeneous polynomial mapping of degree, say k, 1=k=N and
R is a smooth mapping such that |R(x)|=0(|x[**"). Since f is K-quasiregular,
ie., |[Df(x)|"=KJ/(x), then |Dh(x)["=KJ,(x)+O(x*"*1~") and by homogeneity
of h we infer that h is also a K-quasiregular mapping. Now Lemma 7.4 implies
that h is a homeomorphic map of R" onto itself. This makes i possible to
examine the map f(h~(y))=y+R(h~'(y)) defined in a neighbourhood of y=0.

Obviously R(h=1(»)=0(lh*(»[+*)=0(y|**P") and Rh™' is a C=
map for y#0. This shows that Rh~* isa C*' mapping such that D(Rh™)(0)=0.
Finally we conclude that fh=' is a C! diffeomorphism in a neighbourhood of
y=0 (since Dfh~%(0)=I-the identity matrix) and consequently f is a homeo-
morphism in a neighbourhood of x=0.
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8. MEASURABILITY AND INTEGRATION

We will now briefly discuss the behaviour of the Lebesgue measure under
quasiconformal and quasiregular mappings and the closely related change of
variables formula for definite integrals.

8.1. Lusin’s condition 4 Let f: Q—~R" (Q is a domain in R") be a mapping.
Then f is said to satisfy the condition A" if for every set ECQ of measure zero
the image f(E) is also a set of measure zero. Let us recall that if f is a continuous
mapping, the condition 4" is necessary and sufficient in order that the mapping
transforms every measurable set into a measurable set. Indeed, let f fulfil the con-
dition . Since a measurable set 4CQ is a sum of a set E of measure zero and
an ascending sequence of compact sets E;, then f(4)= v, f(E;)Uf(E), where
Sf(E;) are compact and [f(E)|=0, whence f(A) is measurable. Conversely, as-
suming that f transforms measurable sets into measurable sets, let us suppose that
there exists a set E of measure zero such that F=f(E) has positive measure.
Then one can find a subset F’CF which is not measurable. Let E’CE be the
inverse image of F’ under the map f: E—~F. Then E’ is measurable as a subset
of the zero measure set E but the image f(E')=F’ is not measurable, contrary
to the assumption. In connection with the condition .4" we recall another essentially
more restrictive condition, introduced by S. Banach [33] and called the condition S.

We say that the mapping f: Q— R" satisfies the condition S if for each number
¢>0 there exists a ¢>0 such that, for each measurable set ECQ, the inequality
|E|<o implies that f(E) is measurable and |f(E) =e.

Obviously every mapping which fulfils the condition S also fulfils the con-
dition A",

Lemma 8.1. Let f: Q—R" be a mapping of the Sobolev class H{,I(Q),p>n.
Then f satisfies the condition S. Moreover, for each measurable subset E CC Q we have

@.1) f(B) = Cn, pE="7( [ |DFGo)Pdx),

E

where C(n,p) depends only on n and p.

Proof. First we examine a set ECc Q which is the union of disjoint cubes
Q,ccQ, j=1,2,.., E=v;Q;. For every cube Q; we have on account of (1.28)

/(@) = 2" (diam £(Q))) = C(n, p)(diam Q)= ( [ |Dfir)"™.

J

Hence by the Holder inequality we obtain

(8.2) Z Q) = Cn, p) (I (diamQ)y) =7 (3 [ |DfI)"”
J J J g

= Con, p)J(Z ]ij)l_"/p( f|Dﬂp)n/p = C(n, p)!Ell—n/p(leflp]"/p.
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Here |f(Q;)| means the outer Lebesgue measure of f(Q;). Now let E be an
arbitrary measurable subset, ECc , and let Q; cC Q be cubes with disjoint interiors
such that Ec u;Q;, 2;|Q;|=|E|+¢ for some ¢>0. Then by the inequality (8.2)

/E)] = 51| = Cn, p)(E|+e~"7 ([ |DfIP)"™
ue;

= C(n, p)(|El+8)1_”/P(f|Df|p)"/p.

Q

In particular, if |E|=0, we immediately get [f(E)[=0 since e may be chosen
arbitrarily small. In other words, f fulfils the condition .4". Hence f(E) is mea-
surable whenever E is measurable. Now one can easily derive the inequality (8.1)
from the last estimation and afterwords deduce the condition S. An explicit cal-
culation is omitted, being standard.

Lemma 8.1 implies at once
Theorem 8.1. Any quasiregular mapping fulfils the condition A .

8.2. Condition .#"~1. The map f: Q- R" is said to satisfy the condition A" 71
if for each set FCR" of measure zero the preimage f~Y(F) is also a set of
measure zero.

Theorem8.1. Any non-constant quasiregular map f: Q—R" satisfies con-
dition N 7L

Proof. We have to show that [f(E)|=0 implies |[E|[=0. Assume the contrary:
for some E of positive measure |f(E)|=0. Since f is differentiable almost every-
where (Theorem 5.3) and the Jacobian J,(x)>0 for almost each x€E (Theorem
7.2), there is a point xo€E which satisfies the following conditions:

a) X, is a density point of E,

b) f is differentiable at x,,

c) Jp(x9)=0,

d) x, is a Lebesgue point of the function |Df/".

Let Q;=0;(xy),/=1,2, ... be a sequence of cubes shrinking into x,. We then have

) 11Q—=E) _ |Q,—E[t—"r( 1 "7
o~ =cen(Fgr) g, L)

= con (GG ()

in view of (8.1). Letting j—~oo, we get by b) that the left-hand side of the above
estimation converges to J;(xo)>0. Now a) and d) imply that the right-hand side
converges to 0. The obtained contradiction proves the theorem.
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8.3. Banach indicatrix. First version of change of variables formula. A suitable
instrument for studying quasiregular mappings is the transformation formula for
definite integrals under general transformations not necessary one to one. For this
purpose we introduce the so-called Banach indicatrix N(y: f, Q) ofamap f: Q—~R"
(other names used in literature are crude multiplicity function or the counting
function).

Definition 8.1. Let f: Q—R" be a mapping and I>t E be a subset of Q. Then
N(y;f, E) = card {x€ E; f(x) = y}

Jor each y€R". We admit the values + e for the function N(y; f, E).

Theorem 8.3. Lot f: Q—~R" be a continuous mapping satisfying the con-
dition A. Assume that f is differentiable almost everywhere arnd the Jacobian
J ¢ (x) is integrable on Q. Then the function N(y:f, Q) is integrable in R" ard

(8.3) J1r@ldx= [N f.2)dy.
Q2 R"

Notice that in view of Lemmas 1.7, 1.8 and Proposition 5.1 any map of the
class W'(Q) with p>n satisfies all the hypotheses of this thcorem. In particular,
quasiregular mappings are in the range of our considerations. The proof of Theo-
rem 8.3 is based on an auxiliary Lemma 8.2.

By #,, k=0,1,2,... we denote the divicion of R" into half-closed cubes
of the side-length equal to 2~*, no two of which have points in common. Any
cube from ., ., arises by the dyadic division of a cube from .#,. By . we
denote the union of the families .#,, k=0, 1,2, ..., A=, .4,.

Lemma 8.2. Let f satisfy the hypotheses of Theorem 8.3. Then for every
m=1,2, ... there exists a subfamily Z,c \J;_, M, of disjoint cubes contained in
Q such that

& [lfml- [ |Jf(x)|dx'§%|ll for each I,
I

b) |2— U 1|=0,

1¢7,,

c) each cube 1€, is a subcube of a cube belonging to the family Z,

Proof. Fix the number m. We begin the construction of the family #,C U=, 4,
with the choice of cubes from .#,, which are contained in Q and satisfy the con-
dition a). Suppose by induction that the cubes from .4, are chosen as cubcs
belonging to &,,, k=m. Now each cube I€.#, , which is contained in Q, has
no points in common with any cube chosen before and fulfils the condition a) will
be included to %,

me
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The condition ¢) immediately follows from the above construction of %, and
from the observation that every two cubes from .# are either disjoint or one
includes the other. To verify the condition b) we suppose, by contradiction, that
Q—Urez, I is a set of positive measure. We find xo€ Q—Ujcs 1, which will
be a differentiability point of f and a Lebesgue point of the function |J;|€LY(Q).
There exists ko=k, (dist (x,, 0R2), m)=m such that for every k=k, the unique
cube [,€.4, such that xo€1, is contained in Q. Since x,¢J;c# 1, then I cannot
be a subcube of a cube belonging to the family %,,, and, in view of the properties
of ., I, is disjoint with every cube from %, N J,=.=-# . This means that

‘—f[%‘li— f1I,00ldx

On the other hand, since [/, are shrinking into X,

>L for k= k.
m

hm f[Jf(x)]dx = [J;(xp)| and also llm lf(l’l‘)! = |Jp(xp)].

The last statement follows from the differentiability of f at the point x,, ie.,
[(x)— f(x0)=Df (xo)(x —x¢)+O(Ix—x¢|). This gives the contradiction.

The proof of Theorem 8.3. We consider a sequence of integer valued functions
gm: R"=N={0, 1, ..., ==} defined by

gm(y)= 2 Xf(I)(y)’
Ies,,

where yp stands for the characteristic function of a measurable subset Fc R"
For every m we have the estimation

64— [ = [a00dy = [eldxsooel

In fact, if /€%, then by the condition a) of Lemma 8.2. we have

1 . 1
-— |I|—|—If|J,(x)| dx = Rnfx,(,)(y) dy = If)J,(x)]dx+W I1].

Summing up over all the cubes from %, and taking into account the condition
b) we get (8.4), noting that g, are integrable. Furthermore, we assert that

@5 0=g(M=g®=..=Ny; Q) and lm g,(y) = Ny; [ Q)

for every y€R"—f(E), where E=n=z1(2—Ujcs, 1) The above sequence of
inequalities follows from the property c): To prove (8.5) we observe that for
yeER"—f(E), f‘l(y)CUIEr I,m=1,2,.... Consider the case 1=card f~1(y)=
N=N(p;f, Q)<e. Let x1, x,, .. ,xNEQ be district points such that y=f(x;),
j=1,..., N. Therefore x;€Ucs I for m=1,2,..., j=1,2,..., N. Since the
side- length of any cube 1€ %, C iz A, does not exceed 27", then for sufficiently
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large m the points x;, X, ..., Xy belong to the different cubes of the family #,,.
The number of such cubes is obviously equal to g,,(»), which means lim,, ... g,,(y)=
N(p; f, Q). The case when card (f~'(p))=co is treated similarly and the case when
f~Y(»)=0 is obvious. Finally we observe that E is the set of measure zero because
of the property b). Since f is assumed to fulfil the condition .4°, then f(E) has
measure zero also. By (8.4), (8.5) and by Lebesgue’s theorem on integration of
monotone sequences we conclude that N(y; f, Q) is integrable in R" and the
formula (8.3) holds. This completes the proof of Theorem 8.3.

The integral formula (8.3) can also be used to derive the condition 4 ~! for
quasiregular mappings. In fact, this method gives a slightly more general result,
which we state here as follows.

Lemma 8.3. Let f satisfy all the hypotheses of Theorem 8.3. Assume additionally
that the Jacobian J(x) is positive for almost all x€Q. Then f fulfils the con-
dition A 71

Proof. Let E be an arbitrary measurable subset of @ such that [ f(E)|=0.
For every open set UDf(E) the preimage f~Y(U) is open and by (8.3) we have
Sl @ldx= [ [Jldx= [N(y; £ (U)dy = [N(y: £.f(U)dy
E R" U

F ()]
= [NG: £, Qdy.
U

Since N(y;f, ) is integrable on R" and U is an arbitrary open set covering the
set f(E) of measure zero, we get [ |/ (x)|dx=0.

Hence we conclude that |E[=0 on account of the assumption J (x)/=0
for a.e. x€Q. Therefore the lemma is proved.

Theorem 8.4. Let f: Q—R" be a continuous mapping of class WX (Q), dif-
ferentiable almost everywhere, J ;(x)=>0 a.e. arnd additionally satisfying the condition
N. Then for every u€L=(Q)

(8.6) Ju(f) I, dx = [u()IN(; £, Q) dy.
Q R"

Proof. Let us first examine the case when u=y,-the characteristic function
of an open set V' R". Then f~1(V') is open and by (8.3) we can write

S () @dx = [ J;@dx= [Ny L7 0)dy= [N £ 0dy
Q S v "
= [t ON@G; £ Qdy.
R"

We used the obvious equality N(y;f,f‘l(V))=N(y;f, Q) for each ycV. Since
both sides of (8.6) are additive functionals with respect to u, we get (8.6) for any
piecewise constant function u(y)=2., Cixy,, where V,; are disjoint open sub-
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scts of R". Since any u€ L=~(R") may be approximated by a sequence of piecewise
constant functions u, boundedly convergent to u almost everywhere, the sequence
u(f(x)) converges boundedly to u(f(x)) almost everywhere in Q. Here we used
the escential fact that f satisfies the condition 4 ~'; see Lemma 8.3. By the
Lebesgue convergence theorem we obtain (8.6) in the form asserted in the theorem.

8.4. Total variation in the Banach sense. Let f: Q—~R" be a quasiregular
mapping. The set function ¢ defined by the formula @(E)=|f(E)| is not additive
in general. Therefore the theory of derivation of set functions is not applicable
to . A relevant tool in the study of the measure of the image sets f(£) is the
theory of variation.

We recall the notion of the total variation of a map f: Q—R". Assume that
f is continuous. Then on each open set DCQ the Banach variation is defined by
(8.7 Va(f, D) = sup 1’? D),

F
where the supremum is taken over all finite systems & of closed intervals contained
in D no two of which have interior point in common. An interval I in R" is
a point set determined by the inequalities a'=x'=b’, (d'<b’) i=1,2,...,n. Let
us observe that Vy(f; -) considered as a set function defined on open subsets
of Q is completely additive in the sense that

(8.8) Va(f, uD)) = Z;V3(f, D)
for any sequence of open disjoint subsets D, Q.

From the inequality (8.1) we immediately see that any f: Q2-R" of the class
W' (Q), p>n is a mapping of bounded variation. More precisely,

89)  Vp(fs D=sup 3 |f(D| = C(n,pysup 3 [11="2( [ |Df1r)”?
F IeF F IeF '

= C(n, pysup (3 1) =2 [1DfP)"" = C@n, pl@f—7( [ D17 <.
F I1e¢F Ul 2
To simplify further considerations from now on we assume that feW'(Q) with
some p=>n. The formula (8.7) may be simply extended for D being composed
of closed intervals. In this way Vz(f; -) may be viewed as a function of intervals.
This function is additive in the sense that

Ve(fs Loly) = Ve(fs L)+ Vs(f; 1)

whenever I,,/, and I;ul, are intervals contained in £ and I, I, are non-
overlapping. In fact, the inequality Va(f; I)+Vs(f; L)=Vs(f;hv];) is ob-
vious. To show the opposite inequality we consider an arbitrary finite family & of
non-overlapping intervals Ic, Ul,. Let A={Inl; 1€ F} and H={In1ly; I¢ F}.
For each I€ # we have |[f(D)|=|fUnL)|+|f(Inl,)]. Hence

2 ) = ,,€Z¢ If(I’)i+I”§; U =Ve(fs I)+Vs(f; L)

1 2

ieF
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and
Ve(fs Lol =Vi(f; I)+Ve(f; L).

The inequality (8.9) shows that Vz(f; -) is absolutely continuous, that is, there
exists a number ¢>0 corresponding to each ¢>0 such that for every non-over-
lapping intervals 1y, I, ..., IyC Q the inequality |UJ;/;|<o implies Vy(f: Ul)<e.

Now we recall the fundamental Lebesgue theorem on the derivation of additive
functions of intervals.

Theorem 8.5. Let p be an additive function of intervals of bounded variation
and absolutely continuous. Then u is almost everywhere derivable ard

(8.10) p) = [ (x)dx
I

for each interval 1 Q (see [33]).
The derivative of u at a point x€Q, denoted by p/(x). is defincd as

W) = Jim 522,

where the limit is taken over an arbitrary sequence O, of cubes shrinking into x
such that x€Q,, k=1,2,.... It can be shown that for each fE W;(Q). p=>n the
derivative of total variation of f is almost everywhere equal to the absolute value
of the Jacobian of f. In this way we proved

Lemma 8.4. For any map feW(Q), p>n, the formula
(8.11) (i) = [V,@lde= [N: £ U)dy
v R*

holds, where U is an arbitrary open set in .

8.5. Topological index. Second version of change of variables formula. Let
f:2—R" be a quasiregular map. The topological index of a point z in the target
space R" with respect to the map f restricted to a sub-domain Dc Q is defined
only for (f, D) admissible points z. If D is a subdomain of Q with compact
closure DCQ, a point z of the target space of f is called (f, D) admissible if
z¢ f(0D), where 0D is the boundary of D, dD=D\D. The set Cp=C(f, D)
of (f, D) admissible points is then the complement of the compact set f(dD) and
decomposes into an at most countable number of N disjoint components,
I1=N=c, CD:Uf;ll C;uC., where by C.. we denote the unique component
containing the point o of R". C.. will be called the outer domain of the map f.

We shall use an analytic definition of the topological index [17]. For that
we shall need a special family of auxiliary “bump” measures, compactly supported
approximations of Dirac measures in R".

Let ¢%(r), 0=e=1, be an arbitrary family of C= functions defined for r=0
and such that ¢%(r)=0 for rze, ¢*(r)=const in a neighbourhood of r=0, e*(r)=0
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and
[or(yhdy =1.
&

Obviously the functions ¢°(r) can be taken in the form (r)=1/¢" P(r/e) with
some fixed smooth WEC(R), ¥(1)=0, ¥(1)=0 for [t|=]1, [ P(yDdy=1.
With ¢%r) fixed we set
0:(y) = ¢*(lz—yDdy

and obtain a family of n-forms in R" such that

a) o2 is compactly supported and for each (f,D) admissible z and for e
sufficiently small the support of ¢F, is contained in the open component of Cp
containing the point z,

b) ¢¢ is normalized

[ez(ndy = 1.
&

Definition 8.2. The topological index p(z;f, D) of the (f, D) admissible
point z is defined by the formula

(8.12) nGz D) =lim [,
0D

where f*0° =@*(|z—f(x)|) J;(x)dx is the *‘pulled back™ n-form on D.

Since z¢f(dD), [*¢° is compactly supported in D (for e=dist(z, f(oD))),
and the integral in (8.12) has sense for ¢ small enough. The topological index
u(z; f, D) is defined by the integral formula (8.12) as a real number, non-negative
for (orientation preserving) q.r. mappings, depending on the casual choice of the
bump forms o°. The basic property of the function u(z; f, D) is that it is integer-
valued and independent of the auxiliary choices. As a matter of fact it depends
on the homotopy class of the restriction f|0D of the map f to the boundary
dD only. However, at this moment we shall restrict our proofs only to those which
are important to our purposes. We notice first that for sufficiently small e, depend-
ing on dist (z, f(dD)), the integral (8.12) does not depend on &. Indeed, the nor-
malizing condition b) implies that ¢¢(p)—e}() is a differential of a smooth (n—1)-
form with small support contained in the neighbourhood of the point z: this is
immediately seen in local polar coordinates

M=) =d( [ (¢*@®—¢* (@) drdO) = do,
0

where r=|y—z| and dO is the volume (n—1)-form of the unit sphere in R"
Obviously the (n—1)-form @ is smooth and compactly supported in D. Therefore
[p f*dw=[,d(f*®)=0 by Stokes’s formula and [p fret=[p f*o} as asserted.
Thus for each z€Cp we can discard the lim in the formula (8.12). Consequently
we have:
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Corollary 8.1. The topological index u(z;f,D) is a continuous function
of zeCy.
Theorem 8.6. Let f be a quasiregular mapping of class Wh(Q), p=n,Dcc Q

and u(z) a bounded measurable function with support contaired in R™ f(0D).
Then

(8.13) fu(f(x))Jf(x) dx = fu(z)u(z; f.D)dz.
D R

Proof. Set K=supp u. Then Knf(0D)=0 and there exists an ¢,>0 such that

[f(x)—z| = ¢ =0 for x€0D, z€K.
By definition

u@ (D) = [¢(f®)—z)J,(x)dx for &—e,.

Let yxp(x) be the characteristic function of D. Multiplying (8.12) by u(z) and
integrating over R" with respect to z we get

[u@u( fD)dz= [( [o*(1f(0)— 2) ;) u(z) zp(x) dx) dz.
R" R

n Rn
Denote
u, ()= [o (y—z)u()d=.
er

By Fubini’s theorem we have

Ju@nu@; fiDydz = [u,(f(0)J(x)1p(x) dx.

R R"

By the well-known approximation property of the “‘mollifiers” % y|) we have
u,(y)~u(y) almost everywhere. Since f satisfies the .4 ~'-property, u,(f(x))—~
u(f(x)) almost everywhere. Therefore by the Lebesgue convergence theorem
we get

lim fus(f(x))J,(x)xD(x) dx = fu(f(x)).lf(x) dx
R” B
as desired

8.6. Further properties of the topological index. The two forms of the change
of variables formula make it possible to identify the two functions u(z; f, D) and
N(z; f, D).

Corollary 8.2. For any quasiregular map f: Q—~ R" and any open subset D c Q,
(8.14) u(z; f, D) = N(z; f, D)

Jfor almost every point z¢f(0D). In particular, u(z; f, D) is constant and integer-
valued on every component of Cy,. The topological index p(z; f» D) does not depend
on the choice of the auxiliary “bump” function @*(r).
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Proof. The properties (8.13) and (8.6) imply

fu(z)/z(z; f,D)dz = fu(z)N(z; fiD)dz
B

R™

for each bounded measurable u(z) with support cc R™\ f(0D). Hence (8.14) since
the left-hand side of (8.14) is continuous in z and the right-hand side is integer-
valued. The fact that u(z; f, D) is locally constant and integer valued is obvious.
The Banach indicatrix N(z;f, D) depends on f and D only; hence the last
assertion of the corollary. Thus we have shown that the topological index u(z; f, D)
is independent of the casual choices inherent in the definition. In fact we also see
that it is homotopy invariant.

Corollary 8.3. If f,,0=t=1, is a family of maps satisfying the conditions
of Definition 8.2 and d-pending “in a continuous way” on the parameter t, and if,
for all €0, 1] z¢ f,(0D). Then

u(z; fo. D) = p(z; fr, D).

Proof is immediate, since an integer-valued continuous function of r€[0, 1]
must be constant.

It is possible to derive an expression for the topological index in terms of the
homotopy class of the mappings f;,,- However, we omit the discussion of this
topic since we do not use it here.

Applications of the concept of topological index are based on the simple

Proposition 8.1. If z is (f; D)-admissible and z§ f(D), then pu(z; f, D)=0.
Equivalently
u(z; f, D)= 0 implies z€f(D).

Proof. Our assumptions imply z¢f(D). To compute u(z;f, D) we may use
any normalized n-form ¢ with support in a small cube with center z and diameter
<n~"*dist(z, f(D)). Since then f*¢=0 in D, the proposition follows from (8.14).

In view of Proposition 8.1 the topological index is an important tool, describing
the image set f(D) in the discussion of the solvability of the equation f(x)=z.
In this connection we mention

Proposition 8.2. If the point z belongs to the outer domain of the map f
then p(z; f, D)=0.

In fact, for z—< the equation z=jf(x) has no solutions x€D (since by
assumption f is bounded in D).

We shall also need

Proposition 8.3. Let {D;}i=1,2,... be a sequence of disjoint open subsets
of D. Assume that Dcc Q, z is (f, D) admissible and f~Y(z)nQc; D;. Then
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the point z is (f, D,)-admissible for each i and the topological index u(z; f.D;)
is non-zero for a finite number of indices {i} only and

u(z; f, D) = _5;#(2; /> D).

Proof. We show first that z€ f(D;) only for a finite number of indices {i}.
Really, if z=f(x)), xeD; k=1,2,..., then any accumulation point x, of the
sequence {x,} belongs to f~%(z). But x, does not belong to any one of the open
sets D;, and this contradicts our assumption. It follows that for a sufficiently
small neighbourhood . of the point z, the open subset f~%(w,) has a non-empty
intersection with an at most finite number of D;, say D, ..., Dy. Let the form
0. have the support in w,. Then

nz D)= [ = [o(f),(x)dx = [ o(f(x)J;(x)dx

D;

i

-

1

N N
=2 [o(f6)Ipdx = 3 u(z, £, D).

i=1p’
L3

since the open subsets D; are disjoint. This ends the proof.

9. GEOMETRICAL AND ANALYTICAL APPLICATIONS

9.1. The inverse mapping.
Theorem 9.1. Lot f: Q—Q" be a K-quasiconformal mapping. Then the
inverse map f~': Q' —~Q is K"~ '-quasiconformal.

Proof. Let us first observe that the algebraic inequality |4 "=K det 4 implies
|A7"=K"""det A= for an arbitrary invertible matrix 4. That is why the dilata-
tion of ! is expected to be equal to K"~'. Since the adjugate matrix adj 4=
(det A) A=, we have

©.1D ladj 4] = (K det A)"~VY/"  whenever |A4|" = Kdet A.

We begin with the integral identity
(©9.2) [D* o/ () dy =~ [adi*f(x)o(f(x)) dx
(024 o

holding for every test mapping ¢: ' —~R" of the class C(€’). To prove this we
use the change of variables formula (8.6) applied to the vector function u(y)=

D*o(y)f~*(»), getting
[DoMfdy = [(J,)D*o(f(xN)xdx (N £, Q) = 10 ().
Q (2]
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Consider the test mapping #(x)=¢@(f(x)), n€ WX(Q). Since Dn(x)=Do(f(x))Df(x),
by the definition of the adjugate matrix adjf(x) we have the formula

Dn(x) adj f(x) = J;(x)Do(f(x)) a.e. in Q.
Therefore

[0 dy = [(adi* f(x)D™n(x)x dx.
o Q

The differentiation rule yields (D*n(x))x = —n(x)+V(x, n(x)), where {x, n(x))
is the inner product of the vectors x and 5(x). Itis clear that the function ¥(x)=

{x,n(x)) belongs to W!(Q). Now we appeal to Lemma 1.9, which says that the
columns of the matrix adjf(x) are divergence free. The weak form of this fact
can be written as follows:

[adj* f(x) V¥ (x) dx = 0
Q
for each function ¥ from Wnl(Q). In particular, we get the equality
[D oW dy=— [adi*f()n(x)dx,
(o4 Q

which is the same as (9.2).
Now by (9.1) and by the Holder inequality we obtain

| [D* o) f ) dy| = KO0 [T, ()"0 o (f(x)] dx
ol Q

nj(n—1) dx)("_l)/" ]Qil/"
i

= K("—l)/"[fJf(x)’q)(f(x))
Q
— Ku=D/n |(/) (y)|n/(n-1) dy (n—1)/n IQ\ll/n.
(f oo

Here we have repeatedly used the change of variables formula (8.6). According to
the remarks of Section 1 this inequality shows that the map /' belongs to W)
and
9.3) ([1Df =1 () dy)in = K=Din QUi

o

As the map f~! fulfils the condition /", because f satisfies the condition A7,
Theorem 8.3 (applied to the mapping f~1) yields

(9.4) Q= [J0dy (NG f749Q) = 1a).
y
Therefore
©.5) [Ior 1) dy = K" [Jr-(»)dy.
(028 Q

This inequality may be written with @’ replaced by an arbitrary subdomain because
we could at the beginning restrict our considerations to an arbitrary subdomain



316 B. Bosarskr and T. IWANIEC

of Q. In other words, we are justified in cancelling the integrals on both sides of

(9.5) and writing
IDf ()" = K" M- (p)

for almost every y€Q’. This shows that =1 is a K"~!-quasiconformal mapping.

Remark. To write the formula (9.4) we need to know that the inverse map
[t is differentiable almost everywhere in €’. Since

J(x) _f(xo)=Df(xo)(x”‘x0)+0(|x_xoi)a Jr(xp) =0 for a.e. x,£Q,

in view of the #"~! property of / we immediately obtain
FEWM =L o) = (DF (x9) "= yo) +o([y—yoD)

for almost all y,=f(x,)€ Q.
9.2. Isomorphisms of Sobolev spaces ',

Corollary 9.1. Let f:Q—~Q be a quasiconformal mapping such that
FEWNQ), IDf(X)|"=K J {(x). Let v be a function from the Sobolev space W(Q').
Then the function u(x)=v(f(x)) belongs to W(Q) and

(9.6) [ IVu@)dx = K f Vo ()" dy.

In particular, the linear operator f,: W(Q)~WX(Q) defined by ( L0 =v(f(x))

is an isomorphism the norm of which does not exceed YK. Here the norm in I;an(Q)
is given by |ul|=([gq |Vu|")"".
Proof. If v€CY(Q’), then obviously ueW(Q) and Vu(x)=D*f(x)Vo(f(x)).

Hence [Vu(x)["=|Df(x)|"|Vo(f(x)I"=K Vo (f(x)"T ;(x). Since Vue WXQ), we
get by Theorem 8.4 that |Vo(f(x))|"/ ;(x) is integrable on © and

[IVu@ir =K [ Vo)l dy.

This may be simply generalized for an arbitrary » from WX(Q’) by an obvious
approximation. Let us remark that the inverse operator (f,)™': WX(Q)—~WX()
is equal to (f~%), with the inverse map f': Q' —Q.

Another direct consequence of the above results is the important observation
that the conformal capacity is K-invariant under K-quasiconformal mappings.
This means:

Corollary 9.2. Let F be a compact subset of a domain Q and let f: Q—~Q’
be a K-quasiconformal mapping transforming F onto a compact set F’'= f(F). Then

9.7) Cap,(F, Q) = K Cap, (F’, ).



Analytical foundations of the theory of quasiconformal mappings n K" 317

In fact, by (9.6) and by the definition of conformal capacity we have

KCap,(F, @)= inf K [IVo)'dy= inf  [IVu(x)ldx
velvi’}. ), @ uelw.‘.(mF s
v=1l on F’ u=1 on

= Cap, (F, Q).

9.3. Local topological properties of quasiregular mappings. Now we have all
the tools necessary to prove the fundamental fact that a quasiregular mapping is
discrete and open. We recall that a map f: Q—R" is discrete if for each x,€Q
there exists a neighbourhood @, of xo in @ such that f(x)#f(x,) for x€Q, —
{xo}. The map f is open in Q if the image set f(D) is open in R” whenever
D is an open subset of Q. These properties of q.r. mappings were first proved by
Ju. G. ReSetnjak.

We start with the following lemma.

Lemma 9.1. Let f: Q—R" be an orientation preserving map of class W;(Q),
p=n,J(x)>=0 for almost every x€Q. Let z€ f(D)—f(OD) for some subdomain
Dc=Q. Then
(9-8) pu(z; £, D) = 1.

Proof. Take as the density ¢(y) in the definition of u(z;f, D) a smooth
n-form ¢(»)dy such that ¢(p)=0 in a small neighbourhood of the point z€f(D)—
f(0D). Then

u(z; D) = [o(f(x)J;(x)dx >0

D

since  o(f(x))J;(x)=0 on a subset of positive measure (eof is continuous and
0(2)=0).
Now u(z; f, D) assumes only integer values. Thus we get

u(z; D) =1
as needed.

Proposition 9.1. Let f satisfy the assumptions of Lemma9.1. If N(z, f, D)<
+ o for a point z€ f(D)—f(0D), then

9.9) 1 = N(z, f, D) = u(z; f, D).

Proof. By assumption z=f(x;) only for a finite number of points x,D,
i=1,2,...,k. For i=1,..,k let D; be a small ball with centre x;, D;CD,
such that D;nD;=0 for isj. Then z{f(dD;) for i=1,...,k. Moreover,

k k

1=N(zf,D)= 2 N(z f, D) = é;u(z;f;Di) = u(z; f, D)

i=1
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since N(z,f, D;))=1=u(z;f, D;) in view of Lemma 9.1. Notice that the condition
N(z, f, D)<+ o assures that Lemma 9.1 is applicable. We also used Proposition8.3.
In contrast to (8.14) the inequality (9.9) holds for cach admissible z.

Now we introduce a convenient condition L.

Condition L. A sense preserving (/,(x)=0 a.e.in Q) mapping f€ WH(Q), p=n,
will be said to satisfy the condition L if for cach point x€Q there exists an arbit-
rary small spherical neighbourhood B(x,r) of x, B(x,r)cQ such that

(9.10) S()4 /(0B (x, r)).

The neighbourhoods B(x, r) satisfying (9.10) will be called quasinormal.

Proposition 9.2. If the mapping f: Q—R", feW!(Q), p>n, satisfies the
condition L, then for every domain D Q and any z€f(D)— f(dD) the inequality
(9.9) holds.

Proof. Set k=pu(z; f, D) and assume that (9.9) is not true. Let xq, ..., x,.,
be k+1 distinct pointsin f~%z)nD. Let B(x;, r;),i=1,2, ..., k+1, be a sequence
of disjoint quasinormal neighbourhoods. Then, as in the proof of Proposition 9.1,

k+1

k+1 = ;1' u(z; £ B(x;, 1)) = u(z; f, D) = k,

which is a contradiction.

Proposition 9.3. Let f be as in Proposition 9.2. Then for each point x,€Q
there exists a neighbourhood w, CQ such that

a) f(x)#=f(x) for x€w, and Xx#Xx,,

b) f (a)xo) is an open set.

Proof. Applying Proposition 9.2 to a quasinormal neighbourhood B(x,, r,)
of x, weconclude thatin B(xo,r,) there exists a finite number (= u(f(x,); /3 B (x,7,)))
of points x;, k=1, ..., N,f(x,)=f(x,). Thenany ball B(x,, r) with r<min {Ixe—xo|:
k=1, ..., N} satisfies the condition a). Since 1 (f(xo); f2 B(x,, r)=1, it follows
that u(z;f, B(xo,r))=1 for z sufficiently close to f(x,). Proposition 8.1 implies
then that z€f(B(xy,r))cf(D). Thus we see that a sufficiently small ball with
centre f(x,) is contained in f(D). This proves b).

Proposition 9.3 expresses the fundamental fact that the condition L for
a mapping f: Q—R" of class W' (Q), p=>n, implies that the mapping 1 is discrete
and open. Actually the assumption that f¢ W (Q) is superfluous; however, in
quasiconformal theory this weaker version is sufficient. Conversely, the conditions
a) and b) of Proposition 9.3 imply the condition L. The equivalence of the condi-
tion L and the conditions a) and b) for continuous orientation preserving mappings
of topological manifolds was proved in the paper of Titus—Young in 1962 [37].
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Lemma 9.2. Let A be a closed set in R". Then for every x€R" the outer
Hausdorff measure y,(A) can be estimated from below by

n(4) = Vl_—)’l{" =0; S(x, r)nA # 0}.
n

In particular, if y,(A)=0, then for each x€ R" we can find a ball B(x,r) of arbitrary
small radius r such that An0B(x,r)=0.

The last statement expresses the fact that the topological dimension of the set
A 1is zero.

Proof. Let # be an arbitrary countable family of cubes covering the set 4.
If S(x,r)nA#0, then S(x,r) intersects at leact one of the cubes Q¢ #. There-
fore the set of parameters r defined by {r=0; S(x, r) " A0} is covered by a family
of intervals of length diam (Q), where Q¢ . Thus

y1(A) = inf > |QV" = —1:inf > diamQ = —l—_—yl{r =0; S(x, r)nA = 0}
7 ocF Vi 7 oc7 Vn

as asserted.
As an immediate consequence of this lemma we get

Lemma 9.3. Let f: Q—R" be a quasiregular mapping, not reducing to a con-
stant map on any component of Q. Then f satisfies the condition L.

Finally in view of Proposition 9.3 we conclude:

Theorem 9.2. Every quasiregular mapping f: Q—R", f#constant, Iis
discrete and open.

9.4. Measure of B, and f(B,).

Theorem 9.3. For any quasiregular map f: Q—R", f#constant, mes B,=0.
Consequently also mes f(B,)=0.

The proof is based on two lemmas.

Lemma 9.4. Let f: Q—~R" be a mapping of class W,}(Q), p=n, J;(x)=0
a.e. Let x,6Q be a point of differentiability of f and a Lebesgue point for the
Jacobian, J;(xo)=0. Then there exists a neighbourhood D of X, such that the
point z=f(xo)€ f(D)— f(0D) and

9.11) u(z; f, D) = 1.

Proof. We may assume without loss of generality that x,=0, z=f(x,)=0.
Df(x,)=1 — the unit matrix. Since f is differentiable at the point x,=0, then the
expansion

J(x) = x+v(x),
holds, where v(x)=o(|x|).
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We take for D a ball B(0,r) with r small enough to satisfy |f(x)|=(1/2)|x|
for |x|=r. The point z=f(x)=0 is then (f, D)-admissible and

(9.12) uz D) =lim [ ¢ (f()) I, dx =lim [ o*(f(x)dx
B(0, r) B(0, r)

+lim [ ¥ (f(0))(J,(x)—1)dx,
0 5o, r)
where  0(y)=e~"¥(e7!|y)), YEC(RY), Y(1)=0 for t=1, [¥(|y|)dy=1. The
first limit is exactly equal to 1. In fact, for e=r, supp o%(f(x))cB(0, 2¢) and

lim fg‘(f(x))dx:lairr%s“" J ®(e x+e1v(x)) dx
B(O,r) -

B(0,2)

=lim [ P(y+ev@en)dy = [ ¥hdy=1.
B(0,2) B(0,2)
To estimate the second limit on the right hand side of (9.12) we use the fact that
Xo=0 is the Lebesgue point of the Jacobian and J,(x,)=1,

l /Qe(f(x))(J,(x)—l)dx|§s—" f (e~ x+e v (x)|)| |/, (x)—1] dx

B(0,r) B(0, 2¢)

=Ctn) [ 1;(0)—1ldx~0 as &-0.

B(0, 2¢)
This completes the proof of the lemma.

Lemma 9.5. Let f: Q- R" be a quasiregular mapping and let x, be a point
of differentiability of f ard the Lebesgue point for the Jacobian, J;(x,)=0. Then
[ is a local homeomorphism at x,.

Proof. In view of the previous lemma for sufficiently small quasinormal neigh-
bourhoods B(x,,r) of x,, the topological index

u(zif, B(xg, 1)) =1 for z€f(B(x,, 1))—f(0B(xo, 1)).

By Lemma 9.3, f satisfies the condition L and we are justified in using Proposi-
tion 9.2 getting
1 = N(z, 1, B(x, 1) = pu(z; /; B(xp, 1)) = 1.

In other words, the map 1 is 1—1 on the set f~Y(f(B(xq, 1))\ f(dB(x,, 1)) B(xy, 1),
which is open because f(B(x,,r))—f(0B(xo,r)) is open, and contains the point
X, because B(xo,r) is a quasinormal neighbourhood of x,. Since the map f is
open, the inverse map f~! is continuous. This shows that f is a local homeo-
morphism at x,. Finally, Theorem 9.3 follows from Lemma 9.5, which is applicable
for almost all points x,€Q, giving mes B,=0; the assertion that mes f(B,)=0
is a consequence of the 4" property of f.
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9.5. Composition of quasiregular mappings. The important question about the
composition of quasiregular mappings is somewhat delicate in the set-up of our
analytical Definition 2.1. It naturally splits into two questions corresponding to the
conditions a) and b) of the definition in Section 2.

Lemma9.6. Let @eW} () and let f: Q—~Q" be a quasiregular mapping
of a domain Q into Q. Then f,o=q@ofc W} (Q). Moreover, for almost
every x€Q

n k
(9.13) ) = Z—k—(f(x))—g%, i=1,2,..,n,

o(fx9) 0Q
oxt (x k=1 0)Y

i.e., the usual chain rule for dif ferentiation of the composite function holds.

Proof. Let x,€Q2 be an arbitrary point and let B =B(x,,r) be a quasinormal
neighbourhood of X, f(xo)€ f(B)—f(0B). Let DcC R"—f(dB) be the component
containing f(x,) and let ¢,(»), h=1,2,... be a sequence of Cg(D) functions
bounded in W(R") and approximating ¢ in the sense of W,;(U) for an open
U such that f(x,)¢UccD. Then V =f"YU)nB is a neighbourhood of x,. The
functions ¢,(f(x)) obviously belong to W,;!(2); the formula

(9(f*<P;.) (x )_ ‘9‘/"' b (f(x )) Bx i=1,2,..

holds for almost every x€Q, and (@,of)(x)—(pof)(x) for almost every x€V.
By the well-known property of Sobolev spaces it is enough to show that the
integrals

v

n

(@1 0f) ()

P i=1,2,...,n

are bounded uniformly in h. The quasiregularity of f implies

= K|(Vo) (SO I (x)

‘3(% o N
oxt

for almost every x€ Q.
Since V@, L=(R"), supp Vo, DC R"— f(0B), we are justified in using
the change of variables formula (8.13)

/

B

PICIRTAIEHNE
ox'

dx = KR..f Vo, ["u(y; f, Bydy = KDfle(y)i"u(y; fiB)dy.

Since D is the f(x,)-component of R"—f(0B), then pu(y;f, B)=u(f(x,); f, B)
for all yeD. The integrals f »|Vo,(»)|"dy are bounded uniformly in h, say
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by M. Hence

n

LA A1C0] g Ku(f(xo); f, B)- M

ox!

J

14

and the required uniform estimate follows.
Now we can prove

Theorem 94. If f: Q-Q' CR", and g: @'~ R" are K, and Ky-quasiregular
mappings, respectively, then the composition gof: Q—~R" is K- K,-quasiregular.

Proof. In view of Lemma 9.6 we have to prove only that the condition b) of
the definition is fulfilled with the dilatation constant estimated by K;-K,. The
chain rule of Lemma 9.6 gives the formulas

(9.14) D(gof) =DgoDf and Jy (x) = J,(f(%)- J,(x).
We need to prove the inequality
9.15) ID(gof)(X)|" = K; - Ky Jyor ()

for almost every x€Q.
This follows if we multiply both sides of the inequalities

IDf ()" = KiJ; (%)

IDg(fG)" = Ky J,(f(x))

valid for almost every x€Q. The first is clear and the second holds, for almost
every x€Q, since the map f satisfies the condition A 71,

and
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