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ON MEROMORPHIC FUNCTIONS CONTINUOUS
ON THE STOILOW BOUNDARY

PENTTI JARVI

Introduction

In this paper we study meromorphic functions on an open Riemann surface
which extend continuously to the Stoilow ideal boundary (MC-functions). Our main
concern is how to classify the boundary elements into ‘‘essential” and ‘inessential”
points from the point of view of MC-functions. It goes without saying that for most
boundary elements the problem is banal: they are simply too ‘“large” to tolerate
nonconstant MC-functions nearby. For example, all boundary elements of positive
harmonic measure are out of the question [16, p. 265]. To exclude trivialities, we
confine ourselves to “admissible” points, i.e., to elements which have neighborhoods
carrying nonconstant MC-functions.

Chapter 1 is devoted to topological properties of MC-functions. In particular, we
exhibit the close relationship between the openness of extended functions and their
covering properties. In Chapter 2, we propose a definition for removable and essen-
tial boundary points. It turns out that removability can be characterized as well in
topological as in algebraic and analytic terms: via the openness of extended functions,
via the field property of MC-functions and via a certain function-theoretic null-class,
respectively. As an application, we give a solution to a problem proposed by Ozawa,
concerning certain classification principles for Riemann surfaces [10, p. 751]. In
Chapter 3 we give conditions, in terms of cluster sets attached to the ideal boundary,
which guarantee continuous extension of the functions involved. As a very special
case we obtain a recent result of Ishchanov [5].

We note in conclusion that some of the problems discussed in the present paper
have been touched, although from a somewhat different point of view, in our earlier
works [6] and [7].
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1. Topological properties of MC-functions

1.1. Let W be an open Riemann surface, and let ¥ be a subregion of W with
compact (possibly empty) relative boundary dy V. Then V is said to be an end of W.
We often assume, as we may without loss of generality, that dy}” consists of a finite
number of piecewise analytic closed curves. The (Kerékjartd-) Stoilow ideal boundary
of W is denoted by f and the relative Stoilow boundary of ¥ (see [15, p. 366]) by fy-.
The usual topological operations (closure A4—A, boundary A~—0A etc.) are to be
taken with respect to the compactified space WU (or V'Upy). The class of analytic
or meromorph’c functions on ¥ is denoted by A (V) or M(V), respectively. The sub-
class of A(V) (resp. M(V')) consisting of functions which have a finite (resp. finite or
infinite) limit at every relative ideal boundary element is denoted by AC (V) (resp.
MC (V). Whenever fis a function of class AC or MC, we let /* stand for the exten-
sion of /'to the (relative) ideal boundary. We say that ¥ is an admissible end if MC (V')
contains nonconstant functions. A boundary element p€f is called admissible provid-
ed there is an admissible end ¥V with p€fy.

Let ¥ be an end of W with nice boundary, and suppose that f€ AC(VUdyV)
is nonconstant. Assuming that z€ C\ f(dwV ), the index of z with respect to f (0w V")
is defined to be

i(z; fOw) = @07 [, darg(f(p)—2)
and the valence function, as usual,
Vo (2) = 2=z 1(D; /),
pev
where n(p; f) denotes the multiplicity of f at p. Then we have
Lemma 1. Suppose that z€ C\(f(OwV)0f*(By)). Then
Ve =iz F@wV)).

Proof. Fix z,cC\(f@wV)uf*(By)), and denote by d the distance between
{zo) and f(OwV)Uf*(By). For every pcpy choose an open neighborhood U, such
that OU, is contained in ¥ and f*(U,)=D(f*(p),d/2)= {Z€C||Z—f*(p)|<d/2}
From the open covering {U,|p€ By} of By pick out a finite subcovering {U, , ..., U, }.
Let (V) be a relative exhaustion of VuUdyV such that the components of V\V,,
are noncompact. Since F=f"" (zo)u(uf;laU,,i) is a compact subset of ¥, there is
a positive integer n, such that FC¥, for n=n,. Given any component C of V\F, ,
there is i€{l,...,k} such that CcU,. Let By,..., B, be the components of
oW, V. We 1nfer that each f(B,) is contamed in some D(f*(py),d)2), j=1, ..., k.
Thus the winding number of f(B;) with respect to z, is 0 for each i. We conclude from
the argument principle that

v (2 = i(z05 fOWV)). O
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Remark. The above result holds true even if z€f(dwV)\f*(By) provided
i(z; f(OwV)) and vy are given a suitable interpretation in case zEf(dw V) (see [12]).

1.2. Fix py€p and assume that p, has an admissible neighborhood, i.e., there is
an admissible end ¥ such that py€ . By passing to a subend and performing a preli-
minary linear fractional transformation, we obtain the situation where VudyV
carries a nonconstant AC-function f with f*(po) ¢ f(OwV).

1°. Assume first that f*(f,) is nowhere dense in C. Denote by G the component
of C\f(dwV) which contains f*(p,). By Lemma 1, n=i(z; f(dwV))=0 for
z€G, and there is an open neighborhood UcC of f*(p,) such that for each
z€UNS*(By) vep(2)=n. Now let V=V DV;>...FV;>... be a determining sequence
of p,. By applying the argument above for each j, we get a decreasing sequence of
positive integers (n;=i(f*(po); f(OwV))). The limit

n(pe; [ = 11112 n; =0

is called the multiplicity or the local degree of f* at p, (cf. [4, p. 301]). It is clear that
n(po; ) is independent of the choice of (V). Also, it is obvious that

(A) Vf*|V(Z) = 2,52(1”)5,? n(p; [*) = i(Z§ fOwV))

for every zeC\f(wV) (note that the procedure given before applies to each
PEBY)

2°. Assume then that f*(B,.) has interior points for every subend ¥’ of V for
which py€By-. Fix such a V', and let (V) be a relative exhaustion of V. Let F,
denote the closed set f*(By )\JS(V\V,), n=1,2,.... By continuity, f*(fy)C
f(V'\V,)), so that F, is a nowhere dense subset of f*(f,,) for each n. But clearly
F*ByINU, 1 F,c{z€Clvyy(2)==}. In other words, v, becomes infinite in a set
residual in /*(By). Therefore, given any neighborhood U of p,, we can find a sequence
of points (z,) in C such that z,—~f*(p,) and f~*(z,)n U is infinite for each n. Hence
there is no reason to define the local degree for /™ at p, in this situation.

1.3. Let X and Y be topological spaces, and let /: X—Y be a continuous map-
ping. Then f'is said to be open if f(U) is open in Y for every open set U in X. It is
quasiopen, provided that for any y€f(X) and any open set U in X containing a com-
pact component of f~1(y), y is an interior point of f(U). Further, f'is light if every
point-inverse f~1(y), €Y, is totally disconnected, and f is discrete if each point-
inverse is discrete, i.e., consists of isolated points. Clearly, a mapping is open provided
it is both quasiopen and light. For mappings of reasonably nice spaces — as is the
case in this paper — quasiopenness can be characterized by the condition df (U)c
f(0U) for each relatively compact open set U in X [20, p. 112].

We are now ready to state some useful results concerning the behavior of MC-
functions at the ideal boundary.
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Theorem 1. Let W be an open Riemann surface, let V' be an admissible end of
W with nice boundary, and let ge MC(VUdwV) be nonconstant. Let f stand for
g|V. Then the following statements are equivalent:

(1) f*: VUBy—~C=Cu{} is open.
(2) f* is quasiopen.

(3) f*(By) is nowhere dense in '8
(4) f*(By) is totally disconnected.
(5) vy is bounded.

(6) v;(2) is finite for each z¢C.

(7) f* is discrete.

Proof. Since f* is light, we immediately have (1)< (2).

(3)=(1): Suppose U is an open setin V' Uy and z,€f*(U). If (f*) 1 (zg)nV
is nonempty, z, belongs to the interior of /*(U) by the openness of f. So assume that
zo=f*(p) for some p€pynU. Then choose a subend V'’ of V such that pepfy.,

V'uBy.cU, f*(p)§fOwV’) and F*(V')=C. Next, pick out a linear fractional
transformation ¢ such that h=¢@o(f!V'UdyV’) is bounded. Plainly
he AC(V'UdyV’). Lemma 1 now applies to h. Thus, letting G denote the component
of C\Ah(dwV’) that contains h*(p)=¢(z,), we have i(z; h(dyV’))=m=0 for
z€G; further, GCh*(V'UpBy). We infer that z, is an interior point of f*(U). It
follows that f*(U) is open in C.

(1)=(4): Suppocte that f* gives an open mapping into C.Let Do€ Py be arbitrary.
By the compactness of fy, it suffices to find a subend ¥’ of V', with py€ By, such
that f*(By) is totally disconnected. Therefore, we may again limit ourselves to the
case that h=qo (f|V'wdyV’) belongs to AC(V'UdyV’), ¢ being a linear fraction-
al mapping. Assume now that C is a component of 4*(By). Fix a point zy€dC.
Modifying ¥’ slightly, we may assume that z,¢h(dywV’). Let G denote the compo-
nent of C\(0wV’) that contains z,. It follows from the openness of h* that
i(zg; h(OwV’))=m=0 (Lemma 1).

Next, choose r=0 such that the disc D(z,, r)CG, and set B=0CnD(z,, r).
Let z€B. We claim that (h*)~'(z) contains at most m points. Indeed, assuming
that we can find m+1 points py, ..., pm+1 in (h*)71(z), we can also find mutually
disjoint open neighborhoods U; of p;,i=1,...,m+1. But then ﬂ;”:l‘ W (U)NG
is an open neighborhood of z and hence contains points from C\A*(fy). Given such
a point z’, the inverse image h~1(z’) contains at least m+1 points (in V’), whereas
Lemma 1 gives vy y-(z))=m. We are led to a contradiction.

Thus, h*|(h*)~Y(B) is discrete. Since it also defines, as is readily seen, an open
mapping onto B, we may apply [2, Lemma 2.1]. It follows that the topological di-
mension of i*(By.n(h*)~1(B))=B is 0. We conclude that C reduces to a singleton.
This proves the implication (1)=(4).
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Since the implication (4)=(3) is trivial, we have now settled the equivalence of
conditions (1) to (4).

(4)=(5): The number of the components of é‘\(g(BWV)u f*(By)) is finite.
In each of them v, is finite and constant. The desired conclusion now follows from the
lower semicontinuity of v,.

(6)=(3): Suppose, for the moment, that /*(f,) has interior points. The argu-
ment of Section 2.1 then yields the result that v is infinite in a residual part of f*(fy).
This contradicts (6).

(4)=(7): Since discreteness is a local property, we may again refer to the results
of Section 1.2 about AC-functions: (7) is indeed a direct consequence of formula (A).

The implications (5)=>(6) and (7)=(6) being trivial, the proof is complete. ]

Corollary 1. Let W be an open Riemann surface, let 8 be the ideal boundary of
W and suppose that fe MC (W) is nonconstant. Then either

(a) f*(P) is totally disconnected, in which case Vp(2)=2 ey n(p; f7) is
finite and constant, or

(b) the interior of f*(B) is nonempty, and the set {z€ Cly (2)=o} is residual in

£ B).
The next result, a direct consequence of Lemma 1, was given and utilized in [6].

Corollary 2. Let W and B be as above, and let f€ AC(W). Then f*(f)=
frWUp).

The following corollary provides a generalization of Stoilow’s uniqueness theo-
rem [17, p. 124].

Corollary 3. Let W be an open Riemann surface, and let V be an end of W
such that the set By is infinite. Suppose that fEMC (V) and f*(p)=0 for every
pEPBy. Then f vanishes identically on V.

To give an example of nontrivial AC-functions, take a compact totally discon-
nected set EcC such that m(E), the two-dimensional Lebesgue measure of E, is
positive and set

1@ = [, dm.

It turns out that f belongs to AC(é\E); for details see e.g. [3, p. 79—80].

Remark. We point out that all the results given in this chapter are of a purely
topological character. In particular, they remain valid if the analyticity of mappings
is replaced by interiority (in the sense of Stoilow). Of course, the requirement that
boundary elements be admissible can then be dropped. '
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2. Essential and removable boundary elements

2.1. We begin with some terminology. Let E be a proper closed subset of C. Then

FE is said to be of class N¢ if, for each domain GcC with Ec G, every function
G—C continuous on G and analytic on G\ E is actually analytic all over G. The
subclass of N constituted by the totally disconnected elements of N¢ is denoted by

N¢. It is known that every closed set E cC of o-finite linear mesure is of class N¢
and, on the other hand, no set whose Hausdorff dimension exceeds 1 is of class
N¢ (see e.g. [3]). In the natural way (see [6, p. 308]), the classes N¢ and N¢ can be
generalized for arbitrary Riemann surfaces.

Let 7 denote an end of an open Riemann surface W. We say that V' satisfies the
absolute AC-maximum principle if for each subend ¥’ of ¥ and for each f€AC (Vv
owV’)

sup {|/(p)|| peV’ L Oy V'} = max{| f(p)|| pCOwV"}.

Theorem 2. Let W be an open Riemann surface, let f be the ideal boundary
of W, and let p€B be an admissible boundary point. Then the following properties are
equivalent:

(1) Thereis anend VCW with p€py such that for every subend V' of V and for
every nonconstant fe MC(V’), f* defines an open mapping V'UBy—~C.

(2) Thereis anend VCW with p€py which satisfies the absolute AC-maximum
principle.

(3) There is an end VCW with p€pfy such that for every subend V' of V,
MC (V') constitutes a field.

(4) Thereisanend VCW with p€py such that for every subend V' of V and for
every feMC V'), f*(By.) belongs to N¢.

(5) There is an end VCW with p€py and a nonconstant function fin MC (V')
such that f*(By) belongs to N¢.

Proof. (1)=(2): Suppose that VW fulfils the hypotheses of (1). Let V'’ be
a subend of ¥V, and let f€ AC(V'UdywV’) be nonconstant. Since V’Ufy. is an open
setin V' UBy, f*(¥'UpBy.) is open in C. Therefore f attains its maximum at a point
on dyV’.

(2)=(1): Suppose VCW satisfies the absolute 4C-maximum principle, and
for some subend ¥V’c¥V and some nonconstant f€¢ MC (V") f* fails to be open. By
the equivalence (1)< (2) in Theorem 1, we can find a relatively compact open set
UcV’UBy. such that of*(U)d f*(U). Pick out a point zo€df *(U)\f*(0U).
It is clear that zy=f*(p,) for some p,cUnpy.. Now choose an end V’'cU
such that po€fy~. Plainly, zo¢ f(OwV”). Let z; stand for a point in C\ f*(V")
such that |z;—zo|<min {|z,—z||z€f(@wV")} (we may assume that f*(V") lies
in C). Denote by g the function p—(z—f (p))~' pEV”LORV”. Tt is clear that
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gEAC (V"L V") and |g*(po)|=max {|g(p)||p€OwV"}. We have obtained the desi-
red contradiction.

(1)=(5): Let ¥ be an admissible end with p€py, and let JEMC(VUiwV)
be nonconstant. Reducing ¥ and performing a preliminary linear fractional transfor-
mation, we may assume that f belongs to AC (V' UdwV). Since f* gives an open map-
ping of ¥ Uy into C, it follows from Theorem 1 that f*(By) is totally disconnected.
Thus we may arrange f*(By)nf(OwV)=0.

Let n stand for max {i(z; f((?WV))IzEC\f(awV)}. Then v,y (2) is bounded
by n, in view of formula (A) in Section 1.2. Let E; denote {zef* (By)lvyw(2)=i},
i=0, ...,n—1; then E,_,=f*(By). Since fis open, each E; is closed. Moreover, we
claim that each E; belongs to N¢.

Assume that E, is not of class N¢. By a standard application of Cauchy’s inte-
gral formula (see e.g. [6, Lemma 4]), we can find a nonconstant function g in
AC(@\EO). Clearly gof belongs to AC(V). Since g (E)c(gof)*(By), and
g*(E,) contains interior points (see Corollary 2 to Theorem 1), we conclude by Theo-
rem 1 that (gof)* is not open. This contradicts (1). Suppose next that, for some i,
E; is of class N¢, and fix a point zy€ E; \E;. Choose a neighborhood U of z,
such that AU is an analytic Jordan curve with dUN(f*(By)uf(@y¥))=0 and f~* (V)
contains j (j=i+1) relatively compact mutually disjoint Jordan regions ¥ in V'
such that each z€U has exactly i+1 antecedents in U,’;=1Vk (with due account of
multiplicities). Then f|V\\i_,¥ assumes no value in E;;;nU. Now E;,nU
must be of class Nz, for otherwise — reproducing the argument given above — we
would again arrive at a contradiction with (1). Since z, was arbitrary, and belonging
to N is a local property (see e.g. [6, p. 308]), we infer E; 1€N¢. It follows that
E,_1=f*(By) is of class N¢.

(5)=(4): Suppose VW is an end which carries a nonconstant MC-function
fo with fo*(By)EN¢. Let ¥ be a subend of V. Modifying V'’ slightly we obtain
Fo@wV )i (By)=0. Let G be a component of C\fy(@wV”) such that f5*(By)n
G#0. Then v,y is finite and constant, say , in G\fo (By). Assume that
fEMC (V') is nonconstant. By an argument familiar from the context of compact
Riemann surfaces, it can be shown that f satisfies on fo '(G\ fo"(By-)) an identity

[P+ aof) =0,

where ay, ..., a, are meromorphic functions on G\ fo (By-). Arguing as in [6, p.
309], it can be shown that for each 7, a; admits a meromorphic extension over
1 (By)nG (this is the point where use is made of the assumption fo"(By)€Nc)-
Henceforth we regard each g; as defined and meromorphic all over G.

Denote by G the Riemann surface of the relation

P(z,w) = w'+ 3" a (2w~ =0, z€G,

i.e., the totality of pairs (z, w,), where z€G and w, is a function element with center
z and associated with the equation P(z, w)=0. Note that G is a finite union of con-



40 PENTTI JARVI

nected Riemann surfaces. The functions c¢: (z, w,)=z and »: (z, w,)—>w,(z) are
meromorphic on G. Obviously, f*((/5) (/s (By)NG)NBy)=v(c 2 (fo* (By)NG)).
Hence by [6, Lemma 2], f*((fo") " (fs"(By)NG)nBy) is of class N¢. Being a finite
union of sets of this kind, f*(B;.) also belongs to N¢.

(5)=(3): Suppose V and fe MC (V) satisfy (5). Fix p€pfy. Asin[6, Theorem 8],
there is a subend V’'cV with p€f,. and an analytic function f,€ AC(V'): V'~D=
{zEC|]z[<1} such that, given any g€ MC(V’), one can find a unique h€ M (D)
satisfying g=ho f,. Making use of this composition, we can readily obtain the con-
clusion.

(3)=(2): Suppose there is a subend ¥’ of V' and a function f€AC (V' Uiy V")
with max {|f(p)|| p€dwV '} <max {|f*(p)||p€V’}=r. Pick out a point pycpy-
such that |f*(py)|=r. Let ¢ be a conformal mapping of the disc D(0, r) onto the
half-strip {z€C|Rez<0, |Im z|<1} such that f*(p,) corresponds to the point — co.
It is clear that the functions h=exp (pof) and g=exp ((1—i)-pof) belong to
AC(V'WowV’) (exp stands for z—e7); moreover, h(p) and g(p)—~0 as p-—p,
in V’. Now choose a sequence of points (p,) in V’ such that p,—p, and

"Re ((pof)(py))=-—n for large n. Then |h(p,)|=exp(—n) and |g(p,)|=
exp (—n+Im ((¢of)(ps)). Hence [g(p,)/h(p,)|=exp (Im (@of)(p,))), whence
exp (—D)=|g(p)/h(py)|=exp (1) for large n. We conclude that

(%) lim (g/h)(p) # 0, o=
et

Similarly, a simple calculation yields arg g(p,)=Im ((¢of)(p.))—Re((@of)(p,)
and arg h(p,)=Im ((pof)(p,)). Thus, argh(p,) remains bounded, while arg g(p,)
varies unboundedly as n—e. Hence arg(g/h)(p,) also varies unboundedly as
n—oo. But this state of affairs is in apparent contradiction with (). The implication
follows.

The remaining implication (4)=(1) follows immediately from Theorem 1. [

In view of the preceding theorem, it seems reasonable to make the following defi-
nition (cf. [7, p. 320]):

Definition. Let p€f be an admissible boundary element. Then p is said to
be (AC-)removable if there is an end V' with p€fy and a nonconstant function
fEMC (V) such that f*(By) is of class N¢. Otherwise p is called essential. A closed
subset " of f is said to be removable if each element of " is removable.

It is clear that the removable boundary points constitute a relatively open sub-
set of f.

Suppose W is parabolic. Then every admissible boundary point is removable;
indeed, given any end VW and any fe MC(V), f*(By) is of logarithmic capacity
zero (see [9]). More generally, the same is true of Riemann surfaces satisfying the
absolute 4B-maximum principle ([12], [10], [6]); this case can be characterized by the
relation f*(By)€Np [6, p. 304] (for N and other standard null-classes see [1] or [15,
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Chapter I1]). It is to be noted that there are even parabolic surfaces which entirely
lack admissible boundary elements [4, p. 298].

2.2. Our next theorem describes the class of globally defined MC-functions in
case f§ is removable.

Theorem 3. Let W be an open Riemann surface, and suppose that the ideal
boundary B of W is removable. Then either

(a) MC(W)=C, or

(b) MC (W) is a field algebraically isomorphic to the field of rational functions on
a compact Riemann surface W', which is uniquely determined up to a conformal equi-
valence. Moreover, the isomorphism is induced by an analytic mapping of W into W’.

Proof. Suppose that MC (W) contains a nonconstant function f. By definition
and by Theorem 2, each boundary element p€f has a neighborhood U, with U,
in W such that f*(BnU,) is of class N¢. By compactness, we can pick out
Up,s--s Uy, such that fc Ui_, U, - Hence f*(f)c U= f*(BnU,), whence f*()
is of class N¢. The theorem now follows from [6, Theorem 6]. [

A local counterpart to the preceding theorem is

Theorem 4. Let W be an open Riemann surface with ideal boundary f, and
suppose that p€p is removable. Then there is an end V of W with p€ By, and an AC-
function fy: V—~D={zeC|z|<1} such that, given any feMC(V), one can find a
unique g€ M (D)(=the class of meromorphic functions on D) satisfying f=gof,.
Accordingly, MC (V') is isomorphic to the field M (D).

Proof. See [6, Theorem &]. [J

Suppose next that an end VW has finite genus. Then ¥ can be imbedded con-
formally in a compact Riemann surface U*. Therefore ffy can be realized as a subset
of U*. Thus, it makes sense to ask what f, looks like near a removable boundary
point. An answer is given by

Theorem 5. Let W be an open Riemann surfuce, and let VW be an end of
finite genus. Suppose that dwV is a finite union of analytic Jordan curves and By is
removable. Then there exists a finite Riemann surface V* and a compact subset ECV™*
of class N{. such that V is conformally equivalent to V*NE. Further, V* is uniquely
determined up to a conformal equivalence.

Proof. Let p€py,, and choose a planar end V'CV such that p€pfy., oy’
is a Jordan curve, and MC (V) contains a nonconstant function f. Assume also that
V'’ satisfies condition (4) in Theorem 2. By [11, Theorem 3], we can find a Jordan
domain GcC, a compact totally disconnected set FCG and a sense-preserving
homeomorphism ¢: ¥V’—~G\F. Further, f,, and F being totally disconnected,
¢ admits a homeomorphic extension ¢*: V’Ufy,—~G. Consider the continuous
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mapping g=f*o(¢p*)"1: G—C. 1t is clear that g is light. Also, g|G\F is open
and sense-preserving, and g(F)=/*(By.) is totally disconnected (of class N¢ in
fact). Hence by [18, Theorem 9], g is light and open on G. By Stoilow’s theorem [17,
p. 121], there is a plane domain G’, a sense-preserving homeomorphism : G—~G’
and a meromorphic function # on G’ such that g=hoy. Asin[7, p. 319], we see that
Yoe defines a conformal mapping V’'—~G\W(F). Further, by condition (4) in
Theorem 2 (Y o0¢*)(By.) is of class N¢.

Altogether, for each p€py there is an open neighborhood U,CVUfy of p
and a homeomorphism @, of U, onto a plane domain such that @,[U,\fy is con-
formal and &,(B,NU,) is of class N¢. The very definition of N implies that the
transition mappings @,0®;': @, (U,nU,)~®,(U,nU,) are actually conformal.
Accordingly, V' Up, can be given a conformal structure, compatible with that of V,
which makes V' Up, a finite Riemann surface. Clearly, By is of class N¢ in V*=
VUpBy (seel6,p. 308]). Hence we may set E=fy; the inclusion mapping i: V—-V*
defines the desired conformal homeomorphism V—V*\E.

To prove the uniqueness, suppose that the pairs (V4*, E;) and (V3*, E,) have the
required properties. Let ¢,: V->Vi"™\F; and @,: V—~V,"\E, denote the related
conformal homeomorphisms. Then ¢@=g@,00;" maps V;*\E; conformally onto
Vo*\\E,. Since E; and E, are totally disconnected, ¢ admits a homeomorphic exten-
sion ¢*: Vi*—>¥;*. Finally, E, being of class N¢ in 74, ¢* is conformal throughout
nee o

Remark 1. Asappears from the proof, the uniqueness of ¥* follows already from
the requirement that the set E, the realization of the ideal boundary, be totally discon-
nected. It should be noted that there are realizations of removable boundaries which
contain proper continua. This state of affairs derives from the fact that there are sets
of class N¢ which do not belong to Ngp.

Remark 2. Suppose fe MC (V) under the hypotheses of the preceding theo-
rem, and let ¢ map ¥V conformally onto V*N\E with E in N¢. Then fogp~l€
MC(V*\E) and, since E€N¢, (fop Y)*=f*o(¢p~)* is meromorphic in V*.
In this sense, fcan be continued to be “meromorphic” on the ideal boundary.

Our next theorem gives a criterion to recognize the situation described above.

Theorem 6. Let W be an open Riemann surface, and let VW be an end
whose relative boundary 0wV consists of a finite number of closed analytic curves.
Suppose AC (VU V) separates the points of V WOV, and for each fe AC(V UdwV)
and for each subend V' of V

m max {| f(p)|| p€dy ¥’} = sup{|/(p)| | €V’ Udy V'}.

Then there exists a finite Riemann surface V* and a compact subset ECV™ of class
N¢ such that V is conformally equivalent to V*\E; V™ is uniquely determined up to
a conformal equivalence.
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Proof. Since AC(V'LdyV) is point-separating, and each fedC VuowV)
attains its maximum on &V, it follows from a theorem of Royden [13, Theorem 3]
that 7 has finite genus.

Let fEAC(VuUdyV), and let KCVUBy be a compact set. By assumption
and by the total disconnectedness of fy, it is readily seen that | f*(po)| =
max {| /*(p)||p€0K} for each po€K. Therefore, taken as an algebra of functions
defined in V Uy, AC(VUdyV) constitutes a maximum modulus algebra in the
sense of [8]. Hence by [8, Theorem 1], every f€AC(VwoyV) defines a quasiopen
mapping f*: VUBy~C. By Theorem 1, f*(By) is totally disconnected.

Fix a nonconstant f€AC(V udyV). Combining [11, Theorem 3], [18, Theorem
9] and Stoilow’s theorem as in the proof of the preceding theorem, we infer that there
exist a finite Riemann surface ¥ *, a compact totally disconnected set ECV* and a
conformal homeomorphism ¢: ¥V —V*\E. Of course, V'* can be taken as a sub-
region of a compact Riemann surface V. Suppose E fails to be of class N¢ in ¥* (and
in V). By [6, Lemma 4], we can then find a nonconstant function g in AC(V\E).
Further, by Corollary 2 to Theorem 1, g* VHcgt(V)=g"(E)=(gop)* (By)-
Hence go, albeit a member of AC (V' udyV), by the reflection principle, does not
attain its maximum on dy V. This contradicts (1).

The uniqueness of ¥ * is proven as in the preceding theorem. [J

Remark. It seems possible that Theorem 6 remains valid even if condition (1)
is imposed only on V. Actually, a result of this sort holds for the algebra of bounded
analytic functions on ¥, as shown by Wermer [19] and Royden [13].

2.3. A Riemann surface W is said to satisfy the absolute AB-maximum principle,
briefly W€y, if

sup {|£(p)|| p€V L Oy V'} = max {|f(p)| | pEowV}

for every end V'CW and for every f€ AB(V udyV) (=the class of bounded analy-
tic functions on V' wdy V) (see [12], [10]). Further, ¥ is said to belong to the class
@, if, for every end VW, the cluster set Cl1(f5 By) of every fEAB(V WiwV)
attached to By is totally disconnected [10]. Finally, ¥ is said to belong to the class
of, provided that AB(V UdyV)CAC(V udyV) for every end VW [10]. As to
the inclusion relations between these classes, it is immediate that ZC.sp; further,
the work of Royden [12] readily brings in the equality . z=Zp (see [6]). In the next
theorem, it will be shown that «/z=%, also. This settles a problem proposed by
Ozawa [10, p. 751].

Theorem 7. The three classes defined above coincide:
‘/%B = @B = &{B

Proof. Tt remains to prove that &/ . Assume the contrary, and let W be a
Riemann surface in &3\ %5. By definition, there exist an end V'CW and a func-
tion f€ AB(V UdyV)=AC (V' LiyV) such that f*(fy) contains proper continua.
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Hence by Theorem I, f*[VVUf) is not open. By Theorem 2, we can then find a
subend 7’ of V" and a function gin AC (V' Udy V') such that max {}g(p)f]pe owV’}<
r=max{[g*(p)\]p€7’}=max{]g*(p)l!péﬁw}. Pick out a point p,€By. such
that [g*(py)|=r.

Let ¢ be a conformal mapping of the disc D (0, r) onto the strip domain bounded
by the lines Rez=0 and Rez=1 such that g*(p,) corresponds to the point +ooi.
Clearly, exp (pog) belongs to AB(V'0oyV’). Yet exp (pog) fails to have a limit
as p—p, in V’. This contradiction completes the proof. [J

Corollary. Let W be an open Riemann surface. Then W satisfies the absolute
AB-maximum principle if and only if AB(V WowV)=AC(V owV) for every end
Vcw.

Remark. In case IV is planar or, more generally, has finite genus, the equality
y=My follows immediately from a result of Rudin. In fact, whenever pcoW is
an essential boundary point in the sense of Rudin [14, p. 333], there exists an analytic
function fin AB(W), bounded by 1, such that CIl(f; p), the cluster set of f at p,
equals D(0,1) [14, Theorem 14].

3. A condition for continuity

3.1. Let V' be an end of an open Riemann surface I¥, and let f be a nonconstant
bounded analytic function on V. Suppose that no CI(f; p), p€ By, separates the plane
(note that each CI(f; p) is connected) and CI(f; BV):UPQ,VCI (f5 p) is nowhere
dense in C. We say that p€ B, is a generalized antecedent of a point z€ C with respect to
S provided there is a sequence of points (p,) in ¥ such that p,—~p and f(p,)—~z as
n—co; in other words, p is a generalized antecedent of z if and only if z€CIL(f; p).

Let V7 be a subend of V such that dy V"’ is contained in ¥ and consists of a finite
number of piecewise analytic closed curves. We will need the following generalization
of Lemma 1.

Lemma 2. Suppose that z€C\(f 0wV )OCL(f; By)). Then
v (2) = i(z; fOw V).

Proof. Fix zye C\(f(dwV’')UCL(f; By)), and denote by d the distance bet-
ween {zy} and f(dwV")UCL(f; By). Forevery p€py,. choose an open neighborhood
U, such that dU,c ¥V’ and z, can be joined to <« by an arc in C\FU,,{\ V’); this
is possible because C\CI (f; p) is assumed to be connected. From the open cover-
ing {U,|peBy} of By pick out a finite subcovering U, U, }. Let (V) be a
relative exhaustion of V’Udy V'’ such that the components of V’\JF, are non-
compact. Since F={J_, oU, », 18 @ compact subset of V’, there is a positive integer
no such that FcV, for n=n,. Let n=n,. For every component C of V'\},
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there is i€ {1, ..., k} such that Cc U, Let By, ..., B,, be the components of
owV, nV’. Since each f(B)) is contained in some f(U, NV’), the winding number of
f(B;) with respect to z, is 0 for each j. It follows from the argument principle that
Vf|V'(Zo):i(Zol fOwV"). O

We will extend the notion of local degree to the generalized antecedents. So fix
po€By, and let z,€CL(f; po). Let ¥’ be a subend of ¥ with py€fy- such that
OwV’'cV and z,¢ f(dwV’). Since every neighborhood of z, contains points z from
C\CIL(f; By) with f=1(2)nV’#0, i(ze; f(OwV’))=0 by the preceding lemma. It
also appears from Lemma 2 that i(zy; f(wV"))=i(z: f(OwV")) whenever V' V"
Thus, it is reasonable to set

n(pos zos f) = inf{i(z(ﬁ f(aWV/))},
where ¥’ runs over all subends of ¥ with py€fy and z,¢ f (0w V). It is clear that
n(po, 2o £)=0. Further, the definition gives rise to the formula
(B) 2 pes-1@nv n(p; f)_*—ZPEEglV('f )n(p, z; ) = i(z; fOwV")

P
for every zeC\f(OwV").

Remark. We point out a consequence for future use: Let py€fy, let V’
be a subend of ¥ with p,€By-, and let z,£Cl (f; p,). Then there is an open neigh-
borhood U, cC of z, such that vy (z2)=n(po, o3 f) forevery zeU, \CL(f; By).

3.2. We are going to show, roughly speaking, that meromorphic functions with
meager cluster sets on an admissible end admit continuous extension to the ideal
boundary. Besides, we obtain a condition for removability of the ideal boundary.

Theorem 8. Let W be an open Riemann surface, and let V be an admissible
end of W. Suppose f is a nonconstant meromorphic function on V such that CL(f; By)
is of class N¢ and no C1(f; p), p€ Py, separates the plane. Then f admits a continuous
extension to By, a fortiori, f*(By) belongs to N¢. Accordingly, By is removable.

Proof. Since the problem is local and CI(f; fy) is nowhere dense, we may
assume, passing to a subend and performing an auxiliary linear fractional mapping,
that £ is bounded on VudyV. Similarly, we can find a nonconstant bounded func-
tion g in MC(V).

As the first step, we will prove that g*(fy) is totally disconnected. Let z,¢
CI(f; By). Modifying V slightly, we obtain z,¢ f(0wV'). Let m stand for the positive
integer i(z,; f(dwV)), and denote by G the component of C\ f(dy}') that contains
zy. Set U=f"1(G\CI (f; By)). By virtue of Lemma 2, g satisfies on U an identity

g"+ 2 (a;0f ) g" " = 0,

where aj, ..., a,, are bounded analytic functions on G\CI (f; By) (cf. the proof of
the implication (5)=(4) in Theorem 2). We proceed to show that each a; can be
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continued to be analytic all over G. So fix z€Cl (f; f,)nG for a while, and let (z,)
be a sequence of points in G\ CL (f; fy) such that z,—~z. Letp;, ..., p O Gy, ...\ Gr
be the antecedents or the generalized antecedents of z, respectively. Suppose
Uyy ooy U, U 1y ooy Upye are mutually disjoint open neighborhoods (in VUfy)
of the points py, ..., g, such that oU, lies in V for each j. By formula B and the en-
suing remark, all antecedents of z, lie in Uf:'l‘ U; forlarge n. It follows that a,(z,)—~
2}‘:1 n(pj;f)g(pj)—l—zjlf;ln(qj, z; £)g*(q;)- We conclude that g, admits a con-
tinuous extension to Cl (f; fy)nG. Further, by the assumption concerning CI(f; ),
a, can be regarded as analytic all over G. Obviously, a similar reasoning applies to
Gy voey Uy
Denote by G the Riemann surface of the relation

€)) P(z,w) =w"+2" a;(2)w"" =0, z€G.

Note that the number of the components of G is at most m. The mappings
¢: (z, w,)y—z and v: (z,w,)—>w,(z) are analytic on G (cf. the proof of Theorem 2).
Choose r, >0 such that D(zy,7;,)=G. Then Ezozv(c‘l (C1(f; By)nD(z9,7,)))
is a compact and nowhere dense subset of C.

Now let z, vary over CI(f;B,). From the open covering {D(z,r,)|z€
CL(f; Bv)} of CL(f; By) pick out a finite subcovering {D(zy,7.), ..., D(z;, 7. )}
We will complete the first part of the proof by showing that g*(fy)clJ;_, E,.
So let p€ Py, and choose a sequence of points (p,) in ¥\ f~*(CI1(f; By)) such that
p,—p. We may assume, passing to a subsequence, that f(p,)—>z€Cl(f; p). Now
z€D(z;, r,) for some i€{l, ..., s}. It is clear that (f(p,), g(p,)) satisfies a relation
of type (13, say P(f(pn), g(p,))=0, for large n. By continuity, the same holds for
(z,g*(p)), ie., P(z,g*(p))=0. But this implies that g*(p)€v(c'(z)). Hence
g"(p)EE, . Thus g*(By)cJ;_, E. . Soby Theorem 1, g*(fy) is totally disconnected
as was asserted. We note that the rémovability of By could now be readily established
by observing that E, € N¢ for each i. Of course, this also follows from the claim we
are going to prove next: that CI(f; f) is totally disconnected.

The set g*(fy) being totally disconnected, it obviously suffices to prove that
CL(f; BV)m-D_(z(,,_rzi)cc(v”l(g*(ﬂV)mEL)) for each i€ {1, ..., s}; of course, ¢ and »
here stand for the center mapping and the value mapping associated with the point z;.
So fix i€{l,...,s}, and let z€Cl(f; By)nD(z;,r,). Pick out a point p€p, such
that z€Cl(f; p). Then we can find a sequence of points (p,) in ¥ such that p,—p
and f(p,)—z. Clearly, we may also assume that f(p,) ¢ CIL(f; By) for all n. Now,
(f(Pa), g(py)) satisfies a relation of type (1), say P(f(p,), g(p,))=0, for large n.
By continuity, the same is true of (z, g*(p)). Hence there is a function element w,
with center z associated with the relation P=0 such that »(z, w,)=g*(p). But this
means that z€c(v™1(g"*(p))c(v(g*(By)NE;)), whence the claim follows. Now,
by conncetedness, each CI(f; p) reduces to a singleton. Therefore f'extends to a con-
tinuous mapping of Vuf,. 0O
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Corollary 1. Let W be an open Riemann surface, and let E be a closed, totally
disconnected subset of W. Suppose [ is a meromorphic function on W\E such that
the closed parts of C1( f; E) are of class N¢ and no C1(f; p), p€E, separates the plane.
Then f can be continued to be meromorphic on W.

Proof. Fix p€E, and choose a relatively compact region ¥ in W such that
peV and EnoV=0. Certainly ¥\ E is then an admissible end of W\E. It follows
from the preceding theorem, in view of the remarks following Theorem 5, that f can
be extended to be meromorphic in a neighborhood of p. Since p was arbitrary, the
proof is complete. [J

The next result is due to Ishchanov [5].

Corollary 2. Let G be a plane domain, and let E be a closed totally disconnected
subset of G. Suppose f is an analytic function on G\E such that Re f admits a conti-
nuous extension to E and takes a constant value there. Then f can be extended to be
analytic on G.

Proof. By assumption, we have a continuous function 4 on G and a constant ¢
with h|G\E=Ref and h(p)=c for all p€E. Plainly, this implies Cl(f; p)cL=
{zeCRe z=c}u{e=} for each pcE.

Fix py¢E and let G’CG be a Jordan domain with p,€G’, dG'CG analytic
and dG’nE=0. Pick out a finite point z,€ L\ f(0G"), and choose r=0 such that
D(zy, r)nf(0G')=0. Then v,en; is finite and constant, say n, in D(z,, r)N
{z€C|Re z=<c}; similarly, there is a nonnegative integer n” such that v, g z(z)=n"
for z€D(z,, r)n{z€C|Re z=>c}. It is now readily seen that there are at most n’+n”
points p;, i=1, ..., k, in EnG’ such that z,cCI(f; p;). Thus for each p€ EnG"\
{p1, ..., px} CL(f; p) is a proper subset of L. By Corollary 1, /" admits a meromor-
phic extension f* to G’\{ps, ..., px}- But p;, i=1, ..., k, being now isolated singu-
larities, f* can be taken as meromorphic all over G”. Since the arising of poles evidently
contradicts the hypothesis of the corollary, the assertion is proved. [J
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