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Ä PROBLEM OF BURKHOLDER AND
THE EXISTENCE OF HARMONIC MAJORANTS OF lxlzIN CERTAIN DOMAINS IN Rd

MATTS ESSEN ANd KERSTI I{ALISTE

1. Introduction and results

Let Rd (where d>2) denote a d-dimensional Euclidean space with x:(x1, x2, ...
...,xa), l*l:(Zl=rx?)u2 and xr:lxl cosq;0=E=n. Let ä>0 begivenandcon-
sider the o'approximately conical" domain

7: {x: lxl = 1, 0 = E < arc tan (ä log lxl)}.

For what values of å does lxl have a harmonic majorant in 71
When d:2, there is an equivalent question in terms of He-theory (cf. [3, p.

281); let F5be a univalent analytic function mapping the unit disc U onto 7. For
what values of å is F6 in HL(U)? This is an example of Burkholder 12, pp. 115-1161,
who showed that

Fa€.Ht, ö = 2ln,

Fu|Ht, ö > 2ln,

the result (l) by exhibiting an explicit harmonic majorant and, Q) by using his "gene-
ralized subordination". In fact, (1) and (2) as well as

(2a) Fö( Ht, ö > 2ln

follow easily from well-known estimates of harmonic measures (cf. [7], and [a).
The purpose of tlis paper is to study a corresponding problem in Rd. We need

some known results on harmonic majorization in Rd, d>2. Assuming that a given

point xo belongs to the unbounded domain D, let D, denote the component of
Dn{x: l.rl=r} which contains xe. Consider the harmonic measures with the follow-
ing boundary values:

(1)

(2)

(I
0),(x) - t o

(l
u,(x): 

t o

on AD,n {x: lxl - r} nD,
on the rest of 0D,,

on 0D n {x: l"l > r},
on 0D n {x: lxl = r}.

koskenoj
Typewritten text
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It is clear that if l*lo, 0-p{-, has a harmonic majorant in D then

then lxle has a harmonic majorant in D. Burkholder's results on Brownian motion
imply that (3)<+(4), see [, Theorem 2.2, p. 189, Theorem 3.1, p. 191], provided
that the complement of D is not thin at -.

Thus, to find an answer to our problem, it is sufficient to study the harmonic
measure ar,. We can use a method of Carleman and give an analogue of (1) for d>3
(for this we refer to [8]). To prove an analogue of Qa) we have to prove t]at, for re-
maining values of ä, the integral in (4) will be divergent. For this we need estimates
from below of, co,, which for the plane case follow from some version of Ahlfors'
"Seöond distortion inequality", (see [6, pp. 3-4]). However, t]ranks to the nice geo-

metry of 7, we can prove the necessary estimate of crr, in Rd also fot d>3.In fact, T
is "approximately conical" and we can work with harmonic minorants in successive

inscribed cones. This is analogous to an "approximately cylindrical"'case, treated in

[6, pp. 24-26], where the derivative of the "Nevanlinna mean" of a harmonic mea-
sure, weighted with a first eigenfunction, is considered.

To state the results we use the following notation. Let, for ä>0,

(3)
and that if
(4)

(5)

where
(6)

(6a)

[* u,(xo)r\-L d.r : *

[* o4(xo)rL-L d.r - *

T-Tö,d: {x€Ra: lxl >1", 0=E<E(lxl)},

E ?) - ! ir -ö -1 (1og r)-t + o ((tog ,)-'), r + o,

E'?) - ö-1 (1og r)-'r-t+O ((tog r)-t r-'), y +a.

We assume that E is increasing and twice continuously differentiable and satis-
fies the following convexity condition:

(6b) {t (r):EQ)*arctån (rE' Q)) is increasing, !=r= -, rlt' (r)=E' (r), r* -.
To explain this condition geometrically, consider the curve i-:{(r, q(r)),

r= 1) in polar coordinates in the plane. Then the slope of the tangent of f at (r, EQ))
is an increasing function of r. The boundary of Tis obtained by rotating.l'around the
x1-axis (for d:2 by reflecting f to the x1-axis).

On tle spherical cap {x: l*l:r, O=E=Eol;,, where 0=Eo<7r is given, consi-
der the Laplace-Beltrami equation and the correspondin g characteristic constant
co. Namely let ,10 be the first eigenvalue of

E)o-'-f'@))* Ao(sin dd-'"f(E) : o,

f'(0)-0, f(EJ-0, f(d>0 for 0=e<eo.
ffi(('i"
lrtol - !,

(7)
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Then ao satisfies

(S) ao@o*d-2) : 10, &o > 0.

In particular
1o: d-1, do: 1, for Qo : |n;

the corresponding first eigenfunctionf(q) is cos E for qo-nl2' From [5, (3.3)' Theo-

rem 2, Theorem 3 p. 140 and a(,S): UQS) p. 1531 it follows that

(9) *i,:#fEo):-2o6-1foa for eo:ln,
where oo is the area of the unit sphere in Äa, i.e. oo:2vdtzlf @12),for d>2, and

ul-L'

Let a,(x) denote the harmonic measure of T5,oa{x: l*l:r} with respect to

T5,on{x: lxl=r} and let o"(q):ar"((C,0, ...,0)).

Theorem l. Let y=l be giuen and let a, be defined as aboue. Thm

(10) c,r,(q) = C(plr) ((losa)/losr)|"!o|rc, r>Q>y=1,
where lalol:2oa-rloa and the constant C depends only on y and constants of Ta,a.

Corollary l. There exists a harmonic majorant of lxl in Ta,a if and only if
$ < 2oa-1f oa.

Proof of Corollary l. If ö=2oo-r.loo:lo!rl, it follows from (10) that (4)

and ihus also (3) do not hold. Consequently, there is no harmonic majorant. The "if"
part of the corollary follows from an inequality opposite to (10) proved by a method of
Carleman as in [8].

For simplicity, we have first restricted ourselves to the case when T5,a is almost

a half-space in Rd. Similar results are true for circular cones. Lel Eo€|O,nl be

given and let T5,a(Es) be defined as before, but with

E?) : eo_ö-' (log r)-i+O (0oS r)-r), r *@.

Let a,(x) denote the harmonic measure of T5,o(EJn{x: l:rl:1} with respect to
T5,o(E)n{x: lxl=r} and let c,r,(q):ar,((0,0, ...,0)).

Theorem 2. Let T>l be gium and let a, be defined as aboae. Then, with ao

giaen by (8) and ai:(dusldE)(Eö,

(11) ar,(e) = C(plr)nQogpfiogr)l't"lt6, r> Q=T=1,

where the constant C depends only on y and constants of To,o(EJ.

Corollary 2. Let po€]0, nl be giaen' Then lxlu has a harmonic majorant in

Tu.a(EJ if and only if ö= la6l.
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Remark 1. It
dlo=o. In general,

follows from standard results on
explicit expressions for d,s and alo

1d,s-+nE;L for d-2,
do:nqol-1 for d:4,

do:I,

the Legendre equation that
are not available; however

L
Qo: Tft,

(e)

d

1

z te)

:)?
-) 

e) ...)

d - 2, 3, ...,a'o : -2oo-rloo, Qo :

6d : Znotrlf @12), d = 2; cL: 2.

Remark 2. ln the plane case Corollary 2 canbe proved from Corollary 1 with
conformal mapping (cf. [7]) and Es c.an equal n.

Remark 3. Estimates from above and below of tle least harmonic majorant
u(x) of lxle in T5,o(Eo) are given in [8, Example 1]. In fact, u(x)=Clxlplog lxl for
sufficiently large x and this order of growth can be attained.

Remark 4. We have considered the most interesting, "logarithmic" case of
"approximate cones" {x: O=tp=E(r)}. The method of proof can be applied to the
case g(r): <po-e(r), for more general e(r). If [* e1r\r-tdr=*, E(r),/Eo, tQ):
q (r) + arc tan (rE' Q)),/ Vo, r!' (r) x E' Q)\0, the result corresponding to Theo-
rem 2 will be rtt,(q)>C(alr)%.

2. Proofs of Theorem 1 and Theorem 2

Some basic facts to be kept in mind are tle following. Let cpn be given andletf
be the corresponding first eigenfunction of (7) and ao the characteristic constånt as
in (8). Then

u(x): lxl'"f@)

is harmonic in {x€Ra: O=E<.cprl with boundary values zero.
For d:2 we know that f(E):sos ((nl2)ElEo), .o, for a fixed q,thevalue of f

increases as go increases. A corresponding result for the first eigenfunctions is true
in general. we include a proof given by Dr. J. B. Mcleod in Lemma 1 at the end of
this paper. However, due to discrepancies in angles, this fact alone is not sufficient
in our proof, and we have to consider error terms.

Proof of rheorem 1. we need some elementary Euclidean estimates. Let
the tangent at the point Q: (R, q (R)) on the curve f (see (5) and (6)) intersect the
polar axis at the point P:P(R) with radiusp(R). Let r(R) be tåe distance between
P and Q and let r/ (.R) be the angle between the line PQ and the polar axis. See Figure l.
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Then

(r2)

(13)

(r4)

p (A) -- l?((loe R)-zlö + o ((loe A) -')), Ä -> oo

r(Ä) - Ä(1 - ö-2(1oe R)-' + o((loe Ä)-)), R -->""

,/ (A) - ! n -(ö log Ä) -' + o((los R) -'), ,ft --' oo.

Rotating the figure around the axis, we obtain an open circular cone C(R) in Rd

with vertex at P and with the angle r/(R) between the axis and the line PQ.

Figure l. 
s& - 1)

We shall now consider radii R:k€Z+ and corresponding cones C(ft) and esti-

mate harmonic measures in successive cones. We shall write I instead of 75,a.

Let t be a given (large) number and let u be the harmonic measure of
Tn{x: lxl:t\ withrespeclto Tn{x: l"l=r}. Letusassumethatfor some kEZ*,
k<t, we have

u(x) ? mr,fr,QID, x€T, lx- P (k)l :, (k),

where ru* is some positive constant,lfl is the first eigenfunction assosiated with the zero

r/(k) (see 11), and ry' is the polar angle between the segment from P(ft) to x and tlre
axis. Let a(k) be the characteristic constant corresponding to t/(k).

We shall now pass from /c to k-1. Let 4 denote the polar angle between the seg-

ment from P(k-l) to x and the axis. Then 4-.rlr and rlr(k-l)=t(k). Also let

(16) q(k-l) : p(k)rr(k)-p(k-r),
see Figure 1. Now we compare u(x) to a suitable harmonic minorant. Assume that

(17\ "fo(t) = snf*-'(q), x(C(k-L), lx-P(/c)l : r(k),

(1 s)

'lr r (k)
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with a positive s1 to be estimated later, and rlr and q being defined as above. In factn

for {:71 one can take so:l in (17); however, since in our case tlt=q wehave to

us€ J1:l - an error term, for large k. Using (17) and (15) we now compare u to

u (x) : m v s v(lx - P (k - l)l I e (k - t))'{r' - tt 7o -' rr,
in C(k-l)n{x: lx-P(/<)l<r(ft)}. By the comparison principle for harmonic

functions it follows that u(x)>a(x). In particular,

u(x) = moso(r(k-I)lp(k-t))'<t'-D.fo-'QD, x(7, lx-P(k-l)l : r(k-1).

Now define

(18) trtk-L: mysT(r(k-l)lp(k--t1)"rr'-tt.

Then

u(x) = m*-rf*-rQD, x(.7, lx- P(k-l)l : r(k-l),

an analogue to (15), and we can go on iterating the procedure.

we recall that z is the harmonic measure of In{x: lxl:t} with respect to zt'
Choose the largest integer M such that p(M-I)+e(M-l)</. Then, by the com-

parison principle in C(M)n{x: lxl=t},

u(x) = (r(M)ll"@ "f*({), x(C(M), lx-P(M)l : r(M),

where now ry' is the polar angle between the segment from P(M) to x and the axis.

Since t=p(M) this gives us tåe following valae for myl:

(1e)

We note that
(20)

tn*r x (r(M)l a(M))d(M!..

M x, t(I-ö-1(log t)-').

By itcration we obtain from (15), (18) and (19) the following estimate for qQZ+,

q>3i
(2t\ u(x) =- ilI,?(k)le(k)Xo) II{=o*,'r

: II {= n Q @) | r (k + r))'(o) II 
* 

o(r (k + t) I e (k))n(r) II {= 
" 
*,' o

: A1A2A'' 26: (p(q)i-r(q), 0, ...,0).

Here, the first factor Atin the product will yield the desired estimate of u(x),while A2

and As contain error terms due to discrepancies between radii and angles in the dif-
ferent inscribed cones; these c4n be collected into a constant factor. To be exact, we

hzve u(x):ar(p(q)*r(q)) while we want to exhibit crt'(q) and require g rather than

q and t rather than M in the final estimate. However, we shall see from (20) that it is
possible to substitute t for M by changing a constant in the estimate of the harmonic

measure and a similar situation applies at the otler end. Thus (21) will yield Theorem

1o after Ar,Azand Ag have been discussed.
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Estimate of Ar.Using (14) and

a (k) : t + q()(l' &) - i ") 
+ o ((* fr,> - i "1'1

where u!r:(duoldqö(nl2), we obtain

u(k) : l-atoö-t (log k)-1+o(0og t )-').
For r(k\ use (13). Thus

tog A1 : Zy a(k) (log r(k) -log r(k+ 1))

- - Zy (l-ui,a-, (og k)-t)k-L x log(qlM)*aiä-l(og logM-loslog q)

witl error terms Ofi Qogk)-zl{-r1 that can be estimated by constants.

Estimate of A2.With a(/c) given above and r(k) and e(k) as in (12), (13) and (16)

we obtain
log A, : Ztr a (k) (log r (/c + 1) - log q (/s))

: -fi a(k) log(1+(p(k +1)-p(k))lr(k+t)) = ö-'Zy Qogk)-z1r-t,

which again can be estimated by a constant.

Estimate of As.Here we are concerned with l/se, where ^rp 
should be a sufficienfly

good estimate from below of the quotient of eigenfunctions (see (17)):

(22) {o(lt,), .
f*r1r11= 

so

where ry' and q are angles as in Figure 1 and lx-p(k)l:r(k), 0<-4<rlt(k-l).
Using (12), (13), (16) we obtain

Q3) f(k) : t-4 :5-t(sin,/)(log k)-21"-t*O((lock)-3k-1), k -*.
Also r/(ft)-rlt(k-l)-P(k) and (from (6a), (6b))

Q4) ,lt(k)-,lt&-1) : 5-r Qogk)-z1r-t+O ((1og k)-t1r-t1.

We denote the first eigenvalue in (7) corresponding to Eo:lt(k) by )'o:11111

and the first eigenfunction in (1)by "f@,,1), which is analytic in E and in 1. We need

an estimate of ,1(fr-1)- ).(k), obtained from

Qs) 0 :f({/(k-r), 1(k-t)) : f(L(k), 1(k))+({/(k-1>-,t'(k))

. ffi w rur, 
^ 

(k)) + (^ (k - - t) - I (k)) # ({t (k\, 
^ 

(k)) +error terms

with f(lr(fi, ),(k)) zero andpartial derivatives to be estimated. It follows from (7)

that

(sin E1a-z 
U(9' \ : -1I'(sinq)d-zf(E, ),) dE
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and thus \fl0E=0,0=E=Eo, and (0f1ilfi([(k),),(k)) is uniformly bounded for
say /c=3.

By a result about eigenfunctions, stated in Lemma I at the end of this paper,

0f/il,=0, O<<p€eo. Ttus (0fl0l)(,lr(k),,t(/c)) is uniformly bounded away from
zero for k>3 and it follows from (25) that

(26) 1(k- 1) - A(k) : o (k-1 (los k)-'), k -> oo.

We shall now return to tåe quotients (22). By monotonicity of/ (with respect to g in
[0, Eol) and by Cauchy's mean value theorem, for 0=q=rlt (k-l), we obtain

"foW)
fr-Jrll

(27)

= (W#! + (,t, (k) -,t, (r" - r>) ffi
+ (]"(k) - 

^(k 
- r\ #) I 

YSPP. I (k)etq,,L & - t)t.

Using uniform boundedness of the second partial derivatives, uniform boundedness

away from zero of the denominator, for say (112)rlr(k-l)=((k)={r&-l), k>3,
and Q4) and Q6) we obtain, for (ll2)rlr(k-l)=q={/(k-l),

We need the estimate in (27) also for 0=4=Ql2)r! (fr- 1). This follows by writing

fo(t):fQr+P(k),1(k)) as fQt,1(k-l))+terms containing first partial derivatives,
since for 0=q=(Il2){/(k-L), k>3, the denominator fo-rQD:f(n,I(k-l)) is

uniformly bounded away from zero. Thus we have Q7) for O=n<.{r(k- l), and

using this estimate to define so for large k (cf. (n)), we see that A":Ilso can be
estimated from below by a positive constant, there being no problem with a finite
number of factors at the beginning. This concludes the proof of Theorem 1.

Proof of Theorem2. It is sufficient to indicate changes in the basic approxima-
tions, for O<Eo<.v:

(l2a) p(R) : A ((log Ä)-25-t (sin eo)-1*o((log.R)-3)) R *-

(13a) r(.R) : R(l-(logft)-zj-r(tan EJ-L+o((togÄ)-')) Eo# tn, R *-

eag f (R): eo-ö-t(logR)-l+o((loglR)-r), A *-

Q3a) f(k) : r-r1sin /) Gin Eo)-'(log k)-z1r-r*o((log /.;-'k-'), k *-.
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The proof follows as in the previous case, with some slight modifications, e.g. for
obtuse gq.

Finally, we state a lemma the proof of which is due to Dr. J. B. Mcleod, Oxford.

This lemma is used in our proof of Theorem 1 to prove that |flil' is bounded away

from zero on a suitable set.

Lemma 1 (J. B. Mcleod). Consider the differential equation

(i) h(n{v)#)*M(E)r(d: o

-r#))-pf2=0, o- E<Qo,

,(#r'-r#)

with initial conditions /(0):1, f'(0):0. Let )' be a positiae parameter and p(p):
sinn-2E, n:2,3,4, .... Denotethefirst positiae zero of f by Eo:Er()"), 0=Eo=n,
andf(d by f(E, )") to emphasize the dependence of f on ).. If )"r>)'r, then f(9, ).r)=
f(E,1r) for 0=-E=-Eo().r), with equality only at E:Q.

Proof. The result certainly follows if (0101)f(q,1)=0, with equality only at
g:0. Differentiating (i) with respect to l, we obtain

(ii)

with

(iii)

Multiplying (i) by AflAl and (ii) bV f and subtracting, we have

h[nrvthffi\*Aprr>#

*b(#,
so that

(iv)

is strictly increasing and so (from (iii)) strictly positive, except at E:Q. Further,
(i) implies that

f " + (n - 2)(cot rp) f ' + )'f : 0,

f"(o): -)'(n-l)-t
and so 0f1il.=0 for sufficiently small positive g. Now suppose, contrary to whatwe
have to prove, that Dflil":0 first at E:Er, O<Qt1Qo. Then necessarily 0f' 101>O
?t E:Et, so that (iv) is non-positive, giving the required contradiction.
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