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ON FUNCTIONS WITH A FINITE OR LOCALLY
BOUNDED DIRICHLET INTEGRAL

MATTI VUORINEN

1. Introduction

The modulus of a curve family is an effective tool in the geometric function
theory and in the theory of quasiconformal and quasiregular mappings (cf. [1], [13],
[18], [19]). The aim of this paper is to show that the modulus method applies to the
study of real-valued functions as well. We shall give an approach to the theory of
Dirichlet finite functions, which is based on the well-known connection between the
Dirichlet integral of an ACL" function u and the modulus of the family of curves
joining given level sets of . In this approach the modulus method has a role similar
to that of the length-area principle in [7] and [17]. We shall extend some results, which
were previously known in the case of quasiconformal mappings, to the case of Dirich-
let finite functions (cf. [21], [24]).

A function u: R" —R is said to have a finite Dirichlet integral (or to be Dirich-
let finite) if u is ACL" and if

(1.1) S n Vul" dm <.

In this paper all functions are required to be continuous. We shall consider the
following weaker condition: u is ACL" and there are numbers M, B€(0, =) such that

(1.2) i ey | VI dm = B

for all x€R;, where D(x, M) is the hyperbolic ball in R”, with the centre x and
radius M. If (1.2) holds, u is said to have a locally bounded Dirichlet integral.

In the preliminary Section 2 we prove, using the modulus method, that functions
of R". which are monotone (in the sense of Lebesgue) and have a locally bounded
Dirichlet integral are uniformly continuous with respect to the hyperbolic metric
of R’, . In Section 3 we prove that a monotone function satisfying (1.1) and having a
limit o at O through a set ECR",, has in fact an angular limit o at O provided that
the lower capacity density of E at 0 is positive, cap dens (£, 0)>0. Similar results for
some other classes of functions were given in [21] and [22]. An example is given to
show that the condition cap dens (E, 0)=0 is not sufficient here. As an application
of the results of Section 3 we can prove that a Dirichlet finite quasiregular mapping
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f: R".~R", f=(f1,...,fs), will have an angular limit (o, ..., ®,) at 0 if each coordi-
nate function f; has a limit o; through a set E; with cap dens (E;, 0)>0. A related
result for bounded analytic functions was proved by F. W. Gehring and A. J. Loh-
water [4]. In Section 4 we shall give an example illustrating the behaviour of a mono-
tone function satisfying (1.2). The topic of Section 5 is the behaviour of a monotone
function at an isolated singularity. In the final section, Section 6, we prove a variant
of the Iversen—Tsuji theorem for monotone Dirichlet finite functions.

2. Preliminary results

We shall follow, as a rule, the notation and terminology of Viisild’s book [18],
which the reader is referred to for some definitions etc. Some notation will be intro-
duced at first.

2.1. For x€R", n=2, and r=0, let B"(x,r)={z€R": [z—x|<r}, S"~'(x,r)=
dB"(x,r), B"(r)=B"(0,r), S"~'(r)=0B"(r), B"=B"(1), and S"-'=0B". If
x€R" and b=a=0, then we write R(x,b,a)=B"(x,b)\B"(x,a) and R(b,a)=
R(0,b,a). The standard coordinate unit vectors are ey, ...,e, If ACR", let
A, ={x=(xy, ..., x,)EA: x,>0}. The hyperbolic metric ¢ in R’ is defined by the
element of length do=|dx|/x,. If x€R" and M=0, we write D(x, M)={z€R',:
0(z,x)<M}. A well-known fact is that the hyperbolic balls are balls in the euclidean
geometry as well, for instance

2.2 D(te,, M) = B"((tcosh M)e,, tsinh M), t=0.
For x,y€R" the following formula holds [2, (3.3.4) p. 35]:

g x=yP
(2.3) cosh o(x, y) =1+ P

nJn

Sometimes we shall regard B" as a hyperbolic space as well and use the same symbols
as in the case of R".. The hyperbolic metric ¢ is then defined by do=2|dx|/(1—[x[?).
The counterpart of (2.2) for B” is

_ x(1—tanh?(M/2))

Y T T [xPtanh® (M)2)
(1—|x[2) tanh (M)2)
1—|x* tanh® (M)2)

(2.4) D(x, M) = B"(y, 1)

2.5. Monotone functions. Let GCR" be an open set. A continuous function
u: G—R is said to be monotone (in the sense of Lebesque) if

max u = max mi = mi
axu(x) = max u(x), minu(x) = minu(x),

whenever D is a domain with compact closure DcG.
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2.6. Remark. It follows from the above definition that if € R, then each com-
ponent A0 of the set {z€G: u(z)>t} is not relatively compact, i.e., An(OGU
{e=})#0. A similar statement holds if = is replaced by =, <, or =. Hence mono-
tone functions obey a sort of maximum principle.

2.7. The modulus of a curve family. Let I be a family of curves in R". The modulus

of I' is defined by

M) = gér}(fn f Q" dm,
where F(I') is the family of all non-negative Borel functions ¢: R"—R'U{e} with
f ,0ds=1 for all locally rectifiable yeI'. For the properties of the modulus the
reader is referred to Vaisidld's book [18]. If E, F, GCR", then A(E, F;G) is the
family of all curves ycG joining E to F in the following sense: JNE#0#yNF.

2.8. Condenser and its capacity. A pair (4, C) is said to be a condenser if ACR"
is open and Cc A is compact. The capacity of E=(A4, C) is defined by

(2.9 capE =cap(4, C) = inffRn [Vul* dm,

where u runs through the set of all ACL” functions with compact support in 4 and
with u(x)=1 for x€C. An alternative definition is

(2.10) cap (4, C) = M(A(C, d4; R") = M(4A(C, 04; A)).

Ziemer [26] proved that (2.9) and (2.10) agree for bounded 4, from which the same
conclusion for unbounded A follows easily. A compact set £ in R” is said to be of
capacity zero if cap (B"(t), E)=0 for some ¢=0 such that ECB"(¢).

The following lower bound for the Dirichlet integral of an ACL” function will be
applied several times in what follows. In fact, it is the easy part in the proof of (2.10).
The proof is standard (cf. [1, p. 65], [9, p. 577], [26, Lemma 3.1]).

2.11. Lemma. Let u: G~R be an ACL" function, —eo<a<b<-oe, and let
A, BCG be such that u(x)=a for x€ A and u(x)=b for x€B. Then

M(4A(4, B; G)) = (b—a)"'f61Vul"dm.

2.12. Remark. In classical complex analysis one often uses a different capacity.
The connection between the classical capacity and the above one has been studied in
[1, p. 70] and in [13].

We next give a proof of the fact that a monotone ACL" function with a locally
bounded Dirichlet integral is uniformly continuous with respect to the hyperbolic
metric. For the sake of technical reasons we shall consider functions defined in B”,
but with small modifications one can prove a similar result for functions defined in R", .
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2.13. Lemma. Let u: B"=R be a monotone ACL" function satisfying (1.2).
Then

, 0
u)—u() = Clog 4] a-ni-n,
where r=tanh (¢(x, y)/4) and C is a positive constant depending only on n, M, and
B in (1.2). In particular, u: (B", 0)—~(R,||) is uniformly continuous.

Proof. Clearly we may assume u(x)<u(yp). Since the right side depends only
on x and y through the Mobius invariant quantity ¢ (x, y), we may assume x=re;=
—y, r=tanh (o(x, y)/4) (cf. (2.4)). Let

E = {z€B": u(z) = u(x)},
F = {z€B": u(2) = u(y)},
I, = A(E, F; B"(Vr)).
Then by Remark 2.6 and [18, 10.12]
1
M, = cnlogV—F.
Lemma 2.11 yields

M) = [u@)—u@)|™" [~ [Vul"dm.

BY(Y/n)
In view of (1.2) the integral can be estimated from above in terms of B and the follow-
ing number

k= inf{p: B(/r)C j@lp(xj,M)}.

An upper bound for k can be found by a method involving estimation of the hyper-
bolic volume of U{D(x, M): |x|=Vr}. (For details see[25, Section 9]). This method
yields the estimate

n = — 1—n
Sy V" dm = d(1=Vry=,

where d is a positive number depending only on »n, M, and B. The desired estimate
with C=2"d/c, follows from this and the preceding estimates.

The uniform continuity in 2.13 can also be proved with the help of an oscillation
inequality of Gehring [3, p. 355]. (See also Lelong—Ferrand [7, p. 7]). For n-dimen-
sional version of the oscillation inequality see Mostow [12]. The oscillation inequality
is applied in the proof of [18, 10.12], which was exploited above.

2.14. Remark. For large values of ¢(x,y) the above upper bound is not
sharp. Indeed, one can replace the factor (log(1/r))™*(1—r)*"" in 2.13 by
(1-+log ((1+r)/(1—r)))-const., which yields a better estimate for large values of
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2(x, ). Such an estimate can be deduced from the above version of Lemma 2.13, in
particular, from the fact that « is uniformly continuous.

A continuous function »: R, ~R,U{0}, R, ={x€R: x>0}, is said to satisfy
a Harnack inequality if there exist numbers A€(0,1) and C,=1 such that (cf. [23])

(2.15) max v(z) =C, min v(2)

B"(x, Ar) B"(x, Ar)
whenever B"(x,r)CR’. The next result should be compared with [5, p. 200].

2.16. Corollary. If u: R". ~R is a monotone function satisfying (1.2), then
e* satisfies (2.15) for every A€(0,1) with

—1/n (n—1)/(2n)
og €, = (oez] (127

>

where C is the number in 2.13.

Proof. Fix A€(0,1). Choose B"(x,r)cR". Then r=x,, where x=(xi, ...
s X,), and @(B"(x, Ar))=log ((14+4)/(1—2)) by (2.2) or (2.3). For z, y€B"(x, Ar)
we get by 2.13 and by some elementary inequalities that

1 —1/"[ 1+/1 )("—1)/(2")
— = Cln - —
w@—u)| = (log1] (14

from which (2.15) for e follows.

3

We shall now give examples of functions satisfying (1.2) in B".

2.17. The function ug. Let F be a relatively closed subset of B". For x€B" set
(cf. [23, 3.6])
up(x) = exp(—o(x, F)).

As shown in [23], the function u has some extremal properties for appropriate choices
of F. For x,yeB" and o(x, F)=o(y, F) we get
lup () —up(y)| = |e7¢*F) — 70D = e P[] _g=0|
=e tNg =e7¢™No(x, y) = o(x, y),

where a=¢(y, F)—o(x, F). Similarly |up(x)—uz(y)|=0(x,y) for o(x, F)=
o(y, F) as well. Next we apply [22, 2.11] to get

Q(X,y)é’log(l—{- x—J] ]S [x—y|

dx)—[x—yl) = dx)—|x—y|’
for y€B"(x,d(x)) where d(x)=d(x,dB"). Therefore
lim sup 19— )] = lim sup ! 1

yox x—7] vox D dX)—x—y] A



182 MATTI VUORINEN

It follows that uy is locally Lipschitz continuous and hence ACL". Fix M >0. Then
we get by (2.4) that

ey Vit @I dm () = ey QO dm () = ex(n, M),

In conclusion, uy satisfies (1.2). Note, however, that u; is usually not monotone.

2.18. Remark. It follows from [5, p. 23, formula (2.32)] and (2.4) that all
bounded harmonic functions satisfy (1.2).

3. Behaviour at an individual boundary point

For ¢€(0,n/2) let C(p)={y€R" : (yle,)>|y|cos ¢}, where (z[u) is the inner
product > z;u;. A function u: R’ —~R is said to have an angular limit « at 0 if, for
each ¢€(0, 1/2), lim,.o, xecep) #(x)=0a. A function u is said to have an asymptotic
value « at 0 if there exists a continuous curve y: [0, 1)>R". with u(y(f))—o and
y(H)~0 as t—1.

3.1. Lemma. Let u: R, ~R be a monotone ACL" function satisfying (1.2) and
let ECR", be a measurable set such that

lin(} m((R\\E)NB"(r))r=" = 0.
If u(x)~a as x—~0 and x€E, then u has an angular limit o at 0.

Proof. The proof follows from 2.13 and [23, 6.13].

3.2. Remarks. (1) It is not difficult to show that the assumption in 3.1 is equi-
valent to the condition that u has an approximate limit « at 0 [23, 6.3]. For the defi-
nition of an approximate limit see [23, 6.1]. For a related result see J. Lelong—Ferrand
[7, p. 16] and [21, 5.9].

(2) The monotone ACL? function u: R% —~R, u(x, y)=arc tan (y/x), satisfies
(1.2) (but not (1.1)) and has infinitely many distinct asymptotic values at 0 but no
angular limit at 0. Hence an approximate limit in the hypotheses of 3.1 cannot be
replaced by an asymptotic value.

For EcCR", x¢R", and t=>r=0 set
M,(E, r,x) = M(4(S"*(x, 1), EnB"(x,1); R"),
M(E, r, x) = My (E, r, X).
The lower and upper capacity densities of E at x are defined by
capdens (£, x) = lirrn_’ionf M(E, r, x),

capdens (E, x) = lirp_ sup M(E, r, Xx).



On functions with a finite or locally bounded Dirichlet integral 183

3.3. Lemma. Let u: (R, 0)~(R,||) be uniformly continuous, let bER',
by~0, and let u(b,)—~B# . For every e>0 there exists M¢(0, ) and p=1
such that

lu(x)—pl<e, x€Eky= kLZJpD(bk, M).

Moreover, if there exists @€ (0, n/2) such that bcC(p) for all k, then there exists a
positive number ¢ depending only on n, ¢, and M such that

cap dens (Ep, 0) = ¢ = 0.

Proof. The first part follows from the definition of uniform continuity. For the
proof of the second part we assume b€C(¢), k=1,2,.... It follows from (2.2)
that FyCEy,

FM = kU B”(bk* bkn(l—e—M))7
=p

where by, = |b| cos ¢ is the n-th coordinate of b;. Hence the proof follows from [18;
10.12]. For more details see [21, 2.5 (2)].

3.4. Theorem. Let u: (R", 0)~(R,||) be a uniformly continuous and Dirichlet
finite function and let EC R, be a set with cap dens (E, 0)=0. If u(x)—-o as x—0,
x€E, then u has an angular limit o at 0.

Proof. Fix ¢€(0,7/2). Suppose, on the contrary, that there exists a sequence
(by) in C () with b—~0 and u(b;)~pf«. We shall assume that — co=g<ff< oo}
in other cases the proof is similar. Let B, be the b -component of the set
B={z€R" : u(z)>(2+2p)/3} and let A={z€R": u(z)<Qa+p)/3}. Since u is
uniformly continuous, there exist by Lemma 3.3 numbers M =0 and p€N such
that D(b,, M)c B, for k=p and

cap dens (B, 0) = ¢ = 0.
Since cap dens (E, 0)=0, it follows from [21, 4.3] and [20, 3.8] that
M(A(4, B; R%)) = M(4(4, B; RY)[2 = <.
A contradiction follows from (1.1) and 2.11.

3.5. Remark. The condition cap dens (E, 0)=0 is satisfied for instance if E
is a curve terminating at 0. This fact follows from [18, 10.12]; for details and other
sufficient conditions for cap dens (E, 0)=>0 see [21]. On the other hand, there are
compact sets E of zero Hausdorff dimension with cap dens (E, 0)>0 (cf. [21, 2.5

A3)).

We shall now construct an example showing that the condition cap dens (E, 0)=0
would not suffice in 3.4.
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3.6. Example. There exists a monotone ACL" function u: R% -R with a
finite Dirichlet integral such that for a sequence r,—~0 with O<r, <7,

(@) u kL~J1 ST (rge-1) = 1,

(®) u

U S5 (re) = 0.
k=1

Let ry=1. Select r,1€(0,r/2), k=1,2,..., such that

1—n
(3.7) [log ”‘] <27k,

Pr+1
Define u: R, ~R by u(x)=1 for x€R"\B" and

_ log|x|—logry .

u(x) = 5 Pog—1 = |X| = ry, XERY,
() log(rgk_l/rzk) 2k—1 | | 2k +

log ry,—log |x| .
log (rau/Tax+1)

for k=1,2, .... It follows from (3.7) that (1.1) holds (cf. [18, 7.5]). Clearly u is mono-
tone and satisfies (a) and (b). In addition, capdens (B, 0)=>0, B=J;", " *(ry)
and u(z)—0, as z—0, z€B, and u fails to have an asymptotic value and hence an
angular limit at 0. Therefore the condition cap dens (£, 0)>0 in Theorem 3.4 cannot
be replaced by cap dens (E, 0)=0.

u(x) = Fox > |X| = rogi1, XERY,

3.8. Theorem. Let u: R".—~R be a monotone and Dirichlet finite function, let
(bR be a sequence with (b, by)=4M for k#h, and let a,€D(b,, M). For
each ¢>0 let P,={keN: |u(ay)—u(by)|=¢}. Then

card P, = Az—:—”/Rn [Vul*dm,

where A is a positive number depending only on n and M.
Proof. Fix e=>0. Let
Ay = {z€R: [u(2)—u(ay)| < o/3),
B, = {z€R": Ju(2)—u(by| < ¢/3},
I'y = A(Ay, By; D(by, 2M)), keP,.

From 2.6 it follows that the a,-component of A4, meets dD(b,,2M), and that so
does the b,-component of By, when k€ P,. It follows from the conformal invariance
of the modulus [18, 8.1], from ¢(a;, b,)<M, and from (2.4) that

tanh M

M(Fk) =cC, logm =C, (lOg 2)8_M



On functions with a finite or locally bounded Dirichlet integral 185

holds for k€P,. Let A=Ucp, 4k B=Jy¢p,Bx and I'=4(4, B; R"). Since
0(by, by)=4M for k#h, it follows that {I';: k€ P;} are separate subfamilies of I'.
Hence we get by [18, 6.7]

SkenMT =MD = (2) [ Wulram

The desired upper bound for card P, follows from this and the preceding inequality
with 4=(3"e™)/(c, log 2).

3.9. Remark. A similar result holds for a uniformly continuous Dirichlet
finite function u: (R, ¢)—(R, | |) as well, but with a more complicated dependence
on the Dirichlet integral and the modulus of continuity of the function.

3.10. Theorem. Let u: (R", 0)—~(R,||) be a uniformly continuous and Dirich-
let finite function, let (b)CR"., by~0, u(b)—~p and let M€(0, ). Then u(x)—~p
as x—0, x€ UD(b,, M).

Proof. In the case of monotone functions the proof follows from 3.8. The general
case follows from 3.9.

The next theorem has its roots in [24], where a similar result was proved for quasi-
conformal mappings. We shall omit the proof since it parallels the proofs of Theorems
3.8 and that of [24, 4.9]. For the statement of the theorem the following condition
is needed. Let (@) and (b,) be sequences in R”. tending to 0 and let Jy=J[ay, b
be the closed geodesic segment in the hyperbolic geometry joining @ with b . Thus J;
is the arc between a; and b, on a circle through g, and b, which is orthogonal to
OR".. Suppose that there exists a positive number M such that

(3.11) 0(Ji, J) =M =0 for ks h.

As in [24, 4.9], condition (3.11) is needed to guarantee that some curve families are
separate.

3.12. Theorem. Let (a;) and (b,) be sequences in R', tending to O and satisfying
(3.11), let u: (R, @)~(R,||) be uniformly continuous and Dirichlet finite, and let
ua)~a, ub)~B. If 3ola,b) "=, then a=p.

Proof. The proof is similar to the proof of 3.8 and [24, 4.9]. The details are left
to the reader.

3.13. Remarks. (1) Theorem 3.4 was proved by V. M. Mikljukov [10] in the
case when the set E is a curve and the mapping is vector-valued and of class BL.

One variant of Theorem 3.10 for these mappings was given by G. D. Suvorov [17,
p- 122].

(2) It should be observed that Theorem 3.12 follows from Theorem 3.10 in the
case liminf g(ay, b;)<ee.
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(3) We shall next show that condition (3.11) cannot be removed from the hypo-
theses of Theorem 3.12 even in the case of continuous mappings (and, a fortiori, in
the case of uniformly continuous Dirichlet finite functions). Let u: R, ~R be a con-
tinuous function such that u(a,)—0, u(b,)—1, where a,, b,—~0. We shall construct
two new sequences (@) and (b,) with {a;}=1{a@} and {b,}={b;} for which (3.11)
fails to hold and for which > o(a, by)'~"=ce. To this end, let p;=1, p;11=>p;
be an increasing sequence of integers such that

(Prs1— P 0@, BT = 1]k
for all k=1,2,.... Set

a;=4a; and b; =b, if pi=j<pii1
Then a,b,~0 and > o(a, b)) "= hold while u(a)—0, u(b)—1.
We show that Theorem 3.12 is sharp in a sense.

3.14. Theorem. Let (b,) be a sequence in R". with |b, |<|bi|, by—0, let
ay=|b;|e,, and suppose that (3.11) holds. If 3 o(ay, by)' ™" <o, then there exists a
monotone Dirichlet finite function u: R". —~R having an angular limit 0 at O and satis-

Jying u(by)—1.
Proof. Since a,=|b|e,, we obtain by (3.11), (2.2), and (2.3) that

b
0(Jis Js1) = 10g~———| d =M=0.

It follows that the annuli R(|b;|4, |b;|/4) are disjoint when A=e™/% Let w,€R".
be a unit vector such that b, —by,e,=cw,, where b, is the n-th coordinate of b, and ¢
is a positive number such that |b,|2=c2+b},. The balls B,=B"(|b,|wy, ), =
lbg|(1—1/A) are then disjoint. Let 7= Ibk— | wk|. It follows from (2.3) that

t < 2|by] exp (—e(ay, b))

(for more details see[23, (2.4)]). Since 30 (g, by)'~"< <=, it follows that o(ay, by) > =
as k—oo. By relabelling and passing to a subsequence if necessary we may hence
assume, in view of the above estimate for 7, that t,<r, for all k. Choose now a
monotone ACL" function u, such that (cf. 3.6)

u | RONBy = 0, | R B (|by|wye, 1) = 1,
1—n
J ‘ n - wn—'l r_k
dy _-/R’l [Vu, " dm =—5 (log ] .
There exist numbers k, and c¢(n, M) such that for k=k,

dy = c(n, M)o(ax, b)'™".

Set uzzkgko .. Then u is monotone, ACL", u(b,)—~1, u(te,)=0, =0 and u has a
finite Dirichlet integral, as desired.
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We shall next give some applications of the preceding results to the theory of
quasiregular mappings. A continuous ACL" mapping f: R, —~R" is called quasiregu-
lar (qr) if there exists a constant K€[1, =) such that

sup |f/(x) h|" = KJ,;(x)
|h]=1

a.e. in R"., where J is the Jacobian determinant of f. A sense-preserving homeo-
morphism is quasiregular if and only if it is quasiconformal (qc). For the basic parts
of the theory of qc and qr mappings the reader is referred to [15], [18]; [19]. For the
following result see ReSetnjak’s book [15, p. 118].

3.15. Lemma. The coordinate functions fy, ..., f, of a qr mapping f: R} —~R’,
f=(f1, .--s fn), are monotone.

3.16. Theorem. Let f: R".—~R" be a qr mapping with

fm Vfilrdm <o, j=1,..,n.

If fi(x)~a; as x>0, x€E; and cap dens (E;, 0)=>0, then f; has an angular limit
a; at 0, j=1,2,...,n

Proof. The proof follows from 3.15, 2.13, and 3.4.

3.17. Remarks. For bounded analytic functions a result similar to 3.16 holds
without a condition about finite Dirichlet integral (Gehring—Lohwater [4]). In the
case of bounded qr mappings f: R".—~R" such a condition is, however, necessary if
n=3. This fact follows from an example due to Rickman [16].

4. On the behaviour at a typical boundary point

In this section we shall study the behaviour of a Dirichlet finite function at a
“typical” boundary point. We shall employ the following result of ReSetnjak [14].

4.1. Lemma. Let u: R, —~R be an ACL" function with a finite Dirichlet in-
tegral. Then there exists a set ECOR". such that every compact set F in E is of zero
n-capacity and such that u has an essential value at every point of OR"\E, ie.,
for every x€OR'\E there exists a number o with

1"1—13(1) r fB';(x, 1) lf(J’)—Ot] dm = 0.

4.2. Theorem. Let u: R" ~R be a monotone ACL" function with a finite
Dirichlet integral. Then u has an angular limit at every point of OR'.\E, where E is
as in 4.1.
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Proof. Since u has an essential value at the points of R, \ E, it has an approxi-
mate limit as well by [23, 6.7 (1)]. By 3.1 and 3.2 (1) it has an angular limit, too.

We next show that 4.2 fails to hold for monotone functions satisfying (1.2) but
not (1.1).

4.3. Example. There exists a bounded monotone ACL? function u: R% -~ R
satisfying condition (1.2), having an asymptotic value at each point of a dense subset
of OR’,, but having no angular limits.

Divide the square Q=[0, 1]X(0, 1] R®. into four equal squares by joining the
midpoints of opposite sides with (euclidean) segments. Repeat the division in those
resulting squares which have one side on the x-axis. By continuing this process we get
a division of Q into closed squares Q7: i=1,2, ..., j=1,...,2" of constant hyper-
bolic size, where Qf has euclidean side-length 2. Join the center of Q7 by (euclidean)
segments to the centres of those two adjacent squares in {Q{,,: j=1,2,...,2+1}
each of which has a side lying on a side of Q/, for each i and /. As a result we get two
distinct ““treelike” infinite polygonal curves approaching the x-axis. The union of
these curves will be denoted by 7.

Define u(x)=0 if x is located on a side 4 of a square Q) and ANT=0 and
u(y)=1 if yeT. In (int Q)\T define u in such a way that u: Q—Ru[0, 1] will be
monotone, have all partial derivatives, continuous in U (int Q))\ 7T and

(4.4) [Vu(z)| = 253 for ze(int Q)\T,

j=1,2, ..., 2% Extend the domain of definition of u to R2+ as follows. If Imz=>1,
set u(z)=0. If p€Z and z€Q+{(p, 0)}, then z—(p, 0)€Q; set u(z)=u(z—(p, 0)).
Then u is defined in R% , has an asymptotic value 1 at the points of TnIRZ\ {c}
through the set 7" and is monotone, and it follows from (4.4) that (1.2) holds. More-
over, it is clear that » has no angular limits.

5. On isolated singularities and Phragmén—Lindelof-type behaviour

A function with a finite Dirichlet integral need not have a limit at an isolated
singularity. To see this fact we may consider the function in Example 3.5 and extend
it by reflection in R’ to a map »: R™\{0}—R with a finite Dirichlet integral and
with no limit at 0. This function is not, however, monotone although v|R". indeed is
monotone.

5.1. Theorem. Let u: R"™\{0}~R be a monotone ACL" function. If u has no
limit at 0, then

. " 1
hrﬁ.})nf-/‘xu,:) [V dm/log-?- = 0.
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Proof. Suppose that there are sequences {g,}, {b;} in B"™\{0} with a, b,—0
and u(a)—o, u(b)—~pf#o. We may assume —oo<a<f<oco. Let 4, be the g-
component of the set

A ={ze RN\[0}: u(z) = (204 B)/3},
and B, the b,-component of the set

B = {ze R™\{0}: u(2) = 2B+)/3}.

By 2.6, 4,n{0, =}#0B,n{0, =} for all large k. There is a sequence () such that
either 0€4; for all j, or =€ 4; for all . Consider the first case, the proof being
similar in the second case. For 7€(0, 1) set

I, = A(B, 4,,; R(1, 7).
Suppose that 0¢B, for some k such that |b|<|a; |. Then we get by [18, 10.12]

(5.2) M) =c, logll-)t—'i = ¢,log |b | +c, Iog%; t < |by.

Otherwise <€ B, for all k such that |b|<la;| and thus S"~'(r)nB#0 for all
r€(0, la; |), because b,—~0 (cf. 2.6). Hence (5.2) holdsin this case for all 7€(0, |a; |)
by [18, 10.12]. Lemma 2.11 yields

M) = [ﬁ]"fc [Vul" dm,

where C=R(1, t). This estimate together with (5.2) gives the desired lower bound.

5.3. Corollary. Let u: R"™\{0}—~R be a bounded monotone ACL" function
and let a=liminf,_qu(x), f=lim sup,.ou(x). Then

o ; L _ ;
lim },nf( fRM IVl alm)/logT = ¢, (f—a)",
where ¢, is the positive constant in the proof of 5.1.

A counterpart of condition (1.2) for the ACL" function u: R™\{0}—~R is the
following one. There are constants u€(0, 1) and 4=0 such that

(5.4 fB |Vu"dm = A, B, = B"(x, u|x))

for all x¢ R"™\{0}. From a standard covering argument (cf. [25]) and from (5.4) it
follows that

(5.5) / ey V" dm = (0, A, p)

for 1€(0, 1), where d(n, A, 1) depends only on n, A and u. Furthermore, it follows
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from (5.5) that for t€(0, 1/2)

1
(5.6) fRM |Vul"dm = c(n, 4, p)log—.

A direct calculation shows that the monotone ACL? function »(x, y)=y?%(x%*+y?),
(x, )€ R2\{0} satisfies (5.4) and (5.6), but v fails to have a limit at 0. This example
should be compared with 5.1.

According to Theorem 5.1 a monotone function with a finite Dirichlet integral
has a limit at an isolated singularity. A natural question is whether a similar result
holds for a countable sequence of isolated singularities.

5.7. Example. There is a monotone ACL” function u: R™\{27%e;: k=
1,2, .. nN{0}>R with
lim u(x) =1, tll{)11+ u(—te;)) =0

x—>2"%e;

k=1, 2, ... with a finite Dirichlet integral. The existence of such a function « can be
seen by a direct construction. Clearly » has no limit at 0.

The next result is a Phragmén—Lindelof type theorem.

5.8. Theorem. Let GCR" be a domain such that M(R"™G,r,0)=6=0 for
all r=ry, andlet u: G—~R be a monotone ACL" function. If

limsup u(x) =1
x>y

for all yedG\{<}, then either u(x)=1 for all xcG or
hiﬂi,nf I [Vu|"dm/log t = 0.
Proof. Suppose that u(xg)=c=>1 for some x,€G. Let E={x€G: u(x)<

(2+¢)/3}. Then OGCE by the assumption. Let F be the x,-component of {z€G:
u(z)>(14+2c)/3}. Then «€F by 2.6. Let

T, = A(E, F; GAB'(1), 1=r,,
I, =A(E, F; B"()), t=r,.

By the geometry of the situation it follows that M (I')=M ([ (cf. [18, 11.3] and
(2.10)). From [20, 3.5] we obtain

M) = c(n, ) logt

for large values of ¢. The proof follows from Lemma 2.11.
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6. Some properties of boundary values

Next we shall compare the limit values of a monotone Dirichlet finite function on
the closure of its domain of definition to the limit values on the boundary.

6.1. Theorem. Let u: R".—~R be a monotone Dirichlet finite function and let
ECOR". be a compact set of capacity zero with OCE. Then

lim sup u(x) = lim sup (limsup u(y)).
xe;R’}f\E

Proof. Since cap E=0, it follows that 0€ (OR".\E) ([15, p. 72]) and hence the
right side of the above equality makes sense. Denote the left and right sides by 4 and
b, respectively. Clearly @= b. Hence it remains to be shown that 4 =b is impossible.
Choose @ and b such that b<b<a<d. Let r=0 be such that

(6.2) limsupu(y) < b
y->x

for all x€(AR"\E)nB"(r). Choose a sequence (@) in B (r) with u(a)=>a
and |a|<r/k. Let A, be the a,-component of the set {z€R".: u(z)>a}. It follows
from 2.6 that A, (AR" U{=})#0 for all k. From (6.2) it follows that A,n(Eyu
(OR.N\B"(r)))#0 for all k. Let B={z€R": u(z)<b} and I;=A(4, B; R}). It
follows from 2.11 that

(6.3) MTY =(@=b)" [, Vul"dm <.
If 4,n(EnB"(r))=0, then M (I',)=o> because 4, is a connected set and cap E=0

(cf. [18, 10.12]). Otherwise A,N(OR"\B"(r))=0, and since cap E=0 and 4,
is connected, we get by [18, 10.12] that

M) = c,logk.
In either case we obtain a contradiction with (6.3) when k- ee.

6.4. Remark. By inspecting the above proof we see that the condition cap E=0
can be weakened. In fact, it suffices to assume that ECOR", is a compact set which
has no interior points (in the topology of dR”",) and which satisfies M (p, IR, \E)= o
for all y€E in the sense of [9].

6.5. A bound for a Dirichlet finite function. Let u: R". —~R be a monotone
Dirichlet finite function, let ECR”,, and let  have a continuous extension, denoted
by u, to the points ENdR", such that u(x)=b for x€E. Define

(6.6) o(x, E) = inf M(4(C, E; RY)),

where the infimum is taken over all continua C with x€C and Cn(JR", U {e})=0.
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It follows then that
(6.7) u(x) = b+[( th \Vul*dm) /o (x, E)|'"

for all x€R",. This estimate follows directly from Lemma 2.11 and Remark 2.6.
In fact, this idea has been applied several times in this paper. The inequality (6.7)
suggests that the quantity o(x, ) is of some interest in the theory of Dirichlet finite
functions.
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