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OI{ FUNCTIONS WITH A FINITE OR LOCALI,Y
BOUNDED DIRICHTET INITEGRAL

MATTI VUOR.INEN

L. fnhoduction

The modulus of a curve family is an effective tool in the geometric function
theory and in the theory of quasiconformal and quasiregular mappings (cf. [1], [13],
[18], [9J). The aim of this paper is to show that the modulus method applies to the
study of real-valued functions as well. We shall give an approach to the theory of
Dirichlet finite functions, which is based on the well-known connection between the
Dirichlet integral of an ACL' function u and the modulus of the family of curves
joining given level sets of a. In this approach the modulus method has a role similar
to that of the length-area principle in [7] and [17]. We shall extend some results, which
were previously known in the case of quasiconformal mappings, to the case of Dirich-
let finite functions (cf.l2ll, pal.

A function u; R"**R is said to have a finite Dirichlet integral (or to be Dirich-
Iet finite) if z is ACL' and if

f ̂
rlYul" 

dm < oo'

In tlis paper all functions are required to be continuous. We shall consider the
followingweakercondition: a is ACL' and there are numbers M,B€(0, -) such that

(1 .1)

(r.2) f ^. ,--lYul" dm.t D(x,M) '

for all x€Ro+, where D(x, M)isthe hyperbolic ball in R! with the centre x and
radius M. lf (1.2) holds, z is said to have a locally bounded Dirichlet integral.

In the preliminary Section 2 we prove, using the modulus method, that functions
of Ri which are monotone (in the sense of Lebesgue) and have a locally bounded
Dirichlet integral are uniformly continuous with respect to tåe hyperbolic metric
of Ri. In Section 3 we prove that a monotone function satisfying (1.1) and having a
limit a at 0 through a set EcR!, has in fact an angular limit a at 0 provided that
the lower capacity density of E at 0 is positive, cap dens (,E', 0) >0. Similar results for
some other classes of functions were given n l2ll and 1221. An example is given to
show tlat the condition cap lGns(A',0)>0 is not sufficient here. As an application
of the results of Section 3 we can prove that a Dirichlet finite quasiregular mapping
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f: R\*P, .f:(ft, ...,f), will have an angular limit (ct, ...,un) at 0 if each coordi-

nate functionfi has a limit a.; through a set E, with cap dens (E;,0)=0. A related

result for bounded analytic functions was proved by F. W. Gehring and A. J. Loh-

water [4]. In Section 4 we shall give an example illustrating the behaviour of a mono-

tone function satisfying (1.2). The topic of Section 5 is the behaviour of a monotone

function at an isolated singularity. In the final section, Section 6, we prove avariant
of the Iversen-Tsuji theorem for monotone Dirichlet finite functions.

2. Preliminary results

We shall follow, as a rule, the notation and terminology of Väisälä's book [18],
which the reader is referred to for some definitions etc. Some notation will be intro-
duced at first.

2.1. For x€N,n>2, and r=0, let B"(x, r): {z(N: lz-xl=r}, ,Sn-l(x, r):
08"(x, r), B"(r):3"19, 11, S'-1(r):f!'11;, B":8"(1), and Sn-L:08". If
x€R" and $>6>0, then we write R(x, b,a):3"1*,b)\B-'(x, a) and R(b,a):
R(0,å,a). The standard coordinate unit vectors ltl €11 ...1€,. lf AcR", let

A*:{x:(xt,...,xo)(A: )tn=0}. The hyperbolic metric q in R! is defined by the

element of length dq:ldxllx,.If x€Ri and M=0, we write D(x,It[):{z(R"+:
p(z,x)<M\. Awell-knownfactis thatthe hyperbolic balls are balls in the euclidean

geometry as well, for instance

(2.2) D(ten, M) : Bn((rcosh M)€n, t sinh M), t > 0.

For x, y€R"+ the following formula holds [2, (3.3.4) p. 35]:

(2.3) cosh Q(x,y): t*W

Sometimes we shall regard B" as a hyperbolic space as well and use the same symbols

as in the case of R!. The hyperbolic metric g is then defined by dp:)ldxll[-lxl').
The counterpart of Q2) for B' is

"(1 -tanh'(Mlz))
1 - l"l2 tanh' (M 12)

(1 - l"l') tanh (Mlz)(2.4) D(x, M): Bn(y,r) {':
['-

2.5. Monotone functions. Let GcRn be an open set. A continuous function
u: G*R is said to be monotone (in the sense of Lebesque) if

msx u(x) - TB* u(x), ngn u(x) - min u(x),

whenever D is a domain with compact closure D cG.
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2.6. Remark. It follows from the above definition that if t€R, then each com-
ponent A*g of the set {z(G: u(z)>t} is not relatively compact, i.e., Än(\Gv
{*\)+9. Asimilarstatementholds if > is replaced by =, <,or 5. Hence mono-
tone functions obey a sort of maximum principle.

2.J . The modulus of a curDe family.
of f is defined by

MQ)

Let f be a family of curves in Rn. The modulus

Q" dm,

where F(f) is the family of all non-negative Borel functions q: Rn*Rlu{-} with

[, O ds=l for all locally rectifiable y€]-. For the properties of the modulus the
reader is referred to Väisälä's book [8]. lf E,F,GcRn, then / (E,F;G) is the
family of all curves 7cG joining E to F in the following sense: 7-n.E*$*!nF.

2.8. Condenser and its capacity. A pair (A,C) is said to be a condenser if AcR"
is open and CcA is compact. The capacity of E:(A,C) is defined by

cap E: cap(A, C) : inf I ̂
.lYul" 

dm,

a runs through the set of all ACL'functions with compact support in A and
u(x)>l for x(C. An alternative definition is

cap(A, C) - pr(a(c, aA; R')) - m(Å(c, aA; A)).

Ziemer [26] proved that Q9) and (2.10) agree for bounded A, from which the same

conclusion for unbounded I follows easily. A compact set,E in Ä'is said to be of
capacity zero rf cap (n'91,E):O for some />0 such that EcB'(t).

The following lower bound for the Dirichlet integral of an ACL' function will be

applied several times in what follows. In factn it is the easy part in the proof of (2.10).

The proof is standard (cf. [1, p. 651,19, p. 577], [26, Lemma 3.1]).

2.11. Lemma. Let u: G-R be an ACL" function, -*<.s<.5<.-, and let
A, BcG be such that u(x)=-a for x(A and u(x)>b for x(8. Then

M(/(A, n; Q) = @-$-" t olYul'dm.

2.12. Remark. In classical complex analysis one often uses a differentcapacity.
The connection between the classical capacity and the above one has been studied in

[1, p. 70] and in [13].

We next give a proof of the fact that a monotone ACL' function with a locally
bounded Dirichlet integral is uniformly continuous with respect to the hyperbolic
metric. For the sake of technical reasons we shall consider functions defined in Bn,

but with small modifications one can prove a similar result for functions defined in R!.

inf f
a€F(r) J R"

(2.e)

where
with

(2.10)
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2.13. Lemma. Let u: B"*R be a monotone ACL" function satisfying (1.2).

Then

lu(x) - u (y)l =c (r"s |)-' f t -,)'-',
where r:tanh (g(x, flla) and C is a positi'"-e constant dependtng only on n, M, and
B in (1.2). In particular, ui (Bn, q)*(.R,ll) is unifurmly continuous.

Proof. Clearly we may assume u(x)-u(y). Since the right side depends only
on x and y through the Möbius invariant quantity Q(x, y), we may assume x:t€t:
-y, r:tznh (s@,Dla) (cf. Q.4)). Let

B : {z(Bn: u(z) = u(x)},

F - {zQB": u(z) > u(y)},

f ,: /(8, F; B"({l).

Then by Remark 2.6 and [18, 10.12]

MQ) =,Joefr.
Lemma 2'11 vields 

Me,) = lu(x)-u(t)r-, I or6rryur, dm.

In view of (L.2) tle integral can be estimated from above in terms of .B and the follow-
ing number

k -irrf {f , n" (tti)c (,o(xi, WI .
j:1

An upper bound for k can be found by a method involving estimation of the hyper-

bolicvolumeof u{A(x, Ut): lxl=lV}. (Fordetailssee[25,Section9]).Thismethod
yields the estimate

f u,<yilYul" dm = d(1 - F)'-",

where d is a positive number depending only on n,M, and B. The desired estimate
with C:2dlc; follows from this and the preceding estimates.

The uniform continuity in2.l3 can also be proved with the help of an oscillation
inequality of Gehring [3, p. 355]. (See also Lelong-Ferrandl7, p. 7l). For n-dimen-
sional version of the oscillation inequality see Mostow [12]. The oscillation inequality
is applied in the proof of [18, L0.12], which was exploited above.

2.14. Remark. For large values of q(x,y) the above upper bound is not
sharp. Indeed, one can replace tåe factor (log(1/r))-1(l-r)t-" in 2.13 by
(t+tog(1+r)/(1-r))).const., which yields a better estimate for large values of
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e@,y). Such an estimate can be deducedfrom the above version of Lemma 2.13,n
particular, from the fact that tr is uniformly continuous.

A continuous function o: R|*R*u{O}, R*:{x€R: x=0}, is said to satisfy
a Harnack inequality if there exist numbers ,1€(0, 1) and Cr>l such that (cf. [23])

(2.ts) 
fr1;ru(z) = C^ 

rryi+,ru(z)

whenever .B'(x, r)cRi. The next result should be compared with [5, p. 200].

2.16. Corollary. If u: R"**R is a monotone function satisfying (1.2), then
e" satisfes Q.l5) for eaery ),€(0,1) with

togcT: cun(r"r*)-"" (l*)'-''*' ,

where C is the number in 2.13.

Proof. Fix ,t€(0, 1). Choose B'(x,r)cR"*. Then r=xn, where x:(xr,...
...,xn), and p(-8"(x,).r))=log(1+,ty(l-D) bv Q.2) or (2.3). For z,y€8,(x,tr)
we get by 2.13 and by some elementary inequalities that

lu(z)-u(y)l € cLt'(t"r*)-"" (#)'-un*' ,

from which (2.15) for eu follows.

We shall now give examples of functions satisfying (1.2) in 8".

2.17. The function up. Let F be a relatively closed subset of .Bn. For x€Bn set
(cf. 123, 3.61)

ur(x): exp(-q(x, p1).

As shown inl23l, the function urhas some extremal properties for appropriate choices
of F. For x,y(B" and g(x, F)=eO, F) we get

lup(x)-up(y)l = le-n<''') -e*eo'F)l - e-e$'F)ll-e-'l
< e_e$,F) a = s_a@,F) p(x, y) € Q(x, y),

where a: Q(y, F)- e@, F). Similarly lur(r)- uug,t)l=p(x, y) for Q(x, F)=
aO, F) as well. Next we apply 122,2.111 to get

e (x, v)= ros (r . #+q) = fr]--,
for y(B"(x,d(x)) where d(x)-d(x, AB\. Therefore

t'y*okfi#4 < rim-sup #W : h.

181
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It follows that u, is locally Lipschitz continuous and hence ACL". Fix M>0' Then

we get by Q.4) that

f ro,*rlYup(x)1" 
dm(i = f 

^,,*rd(x)-" 
dm(x) = ct(n, M)'

In conclusion, ap satisfies (1.2). Note, however, that ap is usually not monotone.

2.18. Remark. It follows from f5, p. 23, formula Q.32)l and Q.4) tlat all
bounded harmonic functions satisfy (1.2).

3. Behaviour at an individual boundary point

For E€(0, nl2) let c(E):{le ni: Qle")>lvlcos s}, whete (zlu) is the inner

product Z "rur. 
A function ui Rt**p is said to have an angular limit q' at 0 if, for

each g€(0, nf2), lim,-s,x€c(q)u(x):q. A function a is said to have an asymptotic

aalueaat0if thereexistsacontinuouscurve y: [0, 1)*4[ with u(y(D)*a and
y(/)*0 as l*1.

3.1. Lemm a. Let u: Rn**p be a monotone ACL' function satisfying (1.2) and

Iet EcR"* be a measurable set such that

]r3; 
m((n!\r)n.B'(r))r-" : 0.

If u(x)-q q.s x*O and x(E, then u has an angular limit u at 0.

Proof. 'Ihe proof follows from 2.13 and [23, 6.13].

3.2. Remarks. (1) It is not difficultto show thatthe assumption in 3.1 is equi
valent to the conditionthatu has an approximate limit a at0123,6.31. For the defi-

nition of an approximate limit see 123,6.11. For a related result see J. Lelong-Ferrand

17, p. 161 and l2l, 5.91.

(2) The monotone ACLz function u: R2**R, u(x,!):arctan(ylx), satisfies

(1.2) (but not (1.1)) and has infinitely many distinct asymptotic values at 0 but no

angular limit at 0. Hence an approximate limit in the hypotheses of 3.1 cannot be

replaced by an asymptotic value.

For Ec.R", x€R", and t>r>0 set

M,(E, r, x) - pI(Å(,S"-t(x, t), EoB"(x, r); R')),

M (8, r, x) : M2,(E, r, x)'

The lower and upper capacity densities of E at x are defined by

cap dens (E, x) : lim inf M (8, r, x),

cap dens (8, x): lim s-up M(8, r, x).
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3.3. Lemma. Let u: (R"*,q)*(R,ll) be uniformly continuous, let bp(.R"a,

br,*Q, and tet u(b)*B**. For eaery e>O there exists M€(0, -) and p>l
such that

lu(x)-Bl = e, x(Eu : UnD(bo, ttt).

Moreouer, if there exists E((0, nl2) such that bo€C (E) for all k, then there exists a

positiue number c depending only on n, E, and M such that

capäeni1rr,o)>c>0.

proof. The first part follows from the definition of uniform continuity. For the

proof of the second part we assume bx(C(E), k:1,2, '... It follows ftom (2.2)

that F1acEya,

,* : U 
nBn 

(bo, bo,(l - e-M)),

where bon> lå11 cos g is the n-th coordinate of b1,, Hence the proof follows from [18;

10.121. For more details see [21, 2'5 Q)]'

3.4. Theore m. Let u: (R"*, q)*(R, ll) be a mformly continuous and Dirichlet

finite function cmd let EcR"* be a set with cap dens (.8, 0)=0. If u(x)*q as x*0,
xQE, thm u has an angular limit q' at O.

Proof. Fix E€(0, n/2). suppose, on the contrary, that there exists a sequence

(år) in C(g) with br,-0 and u(b)*B*u' We shall assume that - 6<a,< B< @;

in otåer cases the proof is similar. Let Be be the å1-component of the set

B:{z(R"a: u(z)=(u*2fi13} and let A:{z€R"+: u(z)'Qa+fi13\. Since u is

uniformly continuous, there exist by Lemma 3.3 numbers M=0 and p(N such

that D(fu,IuDcBo for k>-p and

capäeos(f,0)>c>0.

Since cap dens (,8', 0)>0, it follows from [21, 4.3] and [20, 3'8] that

M(A(A,,B; ni)) = M(/(A, B; N))lz:*.

A contradiction follows from (1.1) and 2.1L

3.5. Remark. The condition cap dens(8,0)>0 is satisfied for instance if .E
is a curve terminating at 0. This fact follows from [18, 10.12); for details and other

sufficient conditions for capdens(.E,0)=0 see [21]' on the other hand, there are

compact sets .E of zero Hausdorff dimension with cap dens (.8, 0)=0 (cf. 121,2.5
(3)).

We shall now construct an example showing that the condition cap &il 1f, O; =O
would not suffice in 3.4.
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3.6. Example. There exists a monotone ACL' function u, Ri*R with a
finite Dirichlet integral such that for a sequence rkt} with 0<ro*r=r*

(a) ,l i 
"i-,1" 

,*-,): r,
I e:1

(b) ,lö sl-'f,,*):0.
l&:1

Let rt:1. Select roal((0,412), k:1,2,..., such that

(3.7) ["r*)'- =2-k.

Define u: R'**ft by u(x):| for x€R!\.g" and

rz1xl = 
lo8lxl-logr'o '=ftffii tz*-r = Itl = r21,, xQRn*,

u(x) : log rgt-log lnl ' '^-= iffiffii rz* > l*l = 'ro*r, ;€Äl,

for k:I,2, .... It follows from (3.7) that (1.1) holds (cf. U8, 7.51). Clearly a is mono-
tone and satisfies (a) and (b). In addition, capiiens (.8,0)>0, ,B:![r,Sf1(rro)
and u(z)*Q, as z+0) z€8, andu fails to have an asymptotic value and hence an
angular limit at 0. Therefore the condition cap dens (,E, 0)=0 in Theorem 3.4 cannot
be replaced by capiFnsl,A,O;=0.

3.8. Theorem, Let u: Rn*-p be a monotone and. Dirichlet finite function, Iet
(åo)cR! be asequencewith p(bp,bo)=4M for k*h, andlet a1,CD(bo,M). For
each e=0 let P":{kcN: lu(a)-u(b)l>e}. Then

card P"= Ae-" t u, lyuln dm,

where A is a positiae number depending only on n and M.

Proof. Fix e>0. Let

Ao: {z(R*: lu(z)-u(ao)l -. el3\,

Be: {z(\: lu(z)-u(b)l -. el3},

lo: /(Ao, Bu; D(b1,,2M)), k€.P".

From 2.6 it follows that the ak-component of Ao meets 0D(b1,,2M), and that so

does the bo-component of 87, when ft€P". It follows from the conformal invariance
of the modulus [18, 8.1], from g(ao, b*)=M, and from (2.4) that

It4 tanh M
'(i-*) = c"losnffiy> c,(log2)e-M
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holds for /c(P,. Let A:l)*ep"Ax, B:l)r,ep"B* and f :/(A,B;R"*). Since

p(b1,,b)>4M for k#h, itfollows that {l-1: keP,} are separate subfamilies of .f.

Hence we get by [18, 6.7]

Z*<".M(ro) = Mg)= (*)"Å, lYul'dm.

The desired upper bound for card P" follows from this and the preceding inequality

*ig, a : (3" eM ) I @, lo g 2).

3.9. Remark. A similar result holds for a uniformly continuous Dirichlet

finite function u: (R\, q)*(R, I l) as well, but with a more complicated dependence

on the Dirichlet integral and the modulus of continuity of the function.

(3.11)

3.10. Theor em. Let u: (R"*, Q)*(R, ll) be a unifurmly continuous and Dirich'
let finitefunction,let (å)cR!, b1,*0, u(by)*p and let M€(0,*). Then u(x)*B
as x-0, x(UD(b*,M).

Proof.In the case of monotone functions the proof follows from 3.8. The general

case follows from 3.9.

The next tbeorem has its roots in [24], where a similar result was proved for quasi-

conformal mappings. We shall omit the proof since it parallels the proofs of Theorems

3.8 and that of 124, 4.91. For the statement of the theorem the following condition

is needed. Let(ay) and (b1) be sequences in Ri tending to 0 and let fo:Jl6o,6o1
be the closed geodesic segment in the hyperbolic geometry joining aowith bp. Thus"Ie

is the arc between ao and bp on a circle through ap and be, which is orthogonal to

åR|. Suppose tåat there exists a positive number M sachthat

a]r,,Jn)>M>0 for k#h.

As in [24,4.9], condition (3.11) is needed to guarantee that some curve families are

separate.

3.12. Theo r em. Let (ae\ and (b*) be sequences in Rn* tending to 0 and satisfying

(3.11), Iet u: (R!,q)*(R,lD b" unifurmly continuous and Dirichlet finite, and let

u(ar)*u, u(b)tB. If ZS@o,bo)t-":*, then a:8.

Proof. The proof is similar to the proof of 3.8 and 124, 4.91. The details are left

to the reader.

3.13. Remarks. (1) Theorem 3.4 was proved by V. M. Mikljukov [10] in the

case when the set "E is a curve and the mapping is vector-valued and of class BL.

One variant of Theorem 3.10 for these mappings was given by G. D. Suvorov [17,
p.rnl.

(2) It should be observed that Theorem 3.12 follows from Theorem 3.10 in the

case lim inf q(ae,be)<.*.
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(3) We shall next show that condition (3.11) cannot be removed from the hypo-
theses of Theorem3.l2 even in the case of continuous mappings (and, a fortiori, in
the case of uniformly continuous Dirichlet finite functions). Let u: Rn** p be a con-
tinuous function such that u(fi,)*0, u(601-1, where ä*, år*0. We shall construct
two new sequences (a) and. (br) with {oi}:{ar\ and {år}:{åo} for which (3.11)

fails to hold and for which 2 Q(ao,bo)'-n:-. To this end, let pr:|, pi+t=pi
be an increasing sequence of integers such that

(P**r- P) P (d*, 5*)r-' = | I k
for all k:l;2;.... Set

qj : di and bi : E, if Pil j = Pi+t.

Then ay,br*0 and Z q(ao,bo)'-": - hold whrTe u(ao)-}, u(b)*1.

We show that Theorem 3.12 is sharp in a sense.

3.14. Theorem. Let (b1,) be a sequence in R"* with låo*tl=lb1,l, b1,-0, Iet
a1,:lb1,len, and suppose that (3.11) holds. If 2p(ao,bo)t-n=*, then there exists a
monotone Dirichlet finite function u: R"** R hauing an angular limit 0 at 0 and satis-

fying u(b)*1.

Proof. Since ao:lble,, we obtain by (3.11), Q.2), and Q.3) that

Q(J*, J**r): tori* > M =0.

It follows that the annuli R(lbkll,lblll)") are disjoint when ).:eMt'. Let wp(lR"*
be a unit vector such that by- b1,nen: cwk , where bon is the n-th coordin ate of ba and c

is a positive number such that lbol:c'+b\n. The balls Bo:fi"(lbolwo,rn), t*:
lå*l(1-lll) are then disjoint. Let to:lbo-lbolwol. It follows from (2.3) that

t* < 2lb1,lexp (- e @*, b))

(for more details seel23,(2.4)l). Since )g(a1 ,bo)t-n=-, itfollows that g(a7,b1,)**
as ft*-. By relabelling and passing to a subsequence if necessary we may hence

assume, in view of the above estimate for tp, that t*,<r* for all k. Choose now a

monotone ACL' function ao such that (cf. 3.6)

z1lÄ!\Bo : o, uklR+^B'(lbplwv, tv) :1,
z r 1-z

d* : f n\lyu1,l" dm : 9;t[t"t?,|

There exist numbers fr6 and c(n,M) such that for k>ko

do = c (n, M) Q (a,,, bo\'-n.

Set u:)1,=*o a1 . Then u is monotone, ACL", u(bp)tl, u(te,):O, t>0 and uhas a

finite Dirichlet integral, as desired.
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We shall next give some applications of the preceding results to the theory of
quasiregular mappings. A continuous ACL" mapping f: R"**p is called quasiregu'

lar (qr) if there exists a constant K€[1, -) such that

pn l/(x) hl" = KJt(x)

a.e. in R!, where.I, is the Jacobian determinant of f. A sense-preserving homeo-

morphism is quasiregular if and only if it is quasiconformal (qc). For the basic parts

of the theory of qc and qr mappings the reader is referred to [15], [18]; u9l. For the

following result see Re5etnjak's book [15, p. 118].

3.15. Lemm a. The coordinate functions ft, ...,h of a qr mapping fi R"*tp",

f:(fr, ...,fn), are monotone.

3.16. Theorem' r-et f: N**N be a qr mapping with

t*^,lv1f d* =*, i : !, ...,n-

If fi(x)*ui as x*0, x(8, and capdens(8r,0)=0, thenfihasanangularlintit
a7 at O, i:1,2,...,n.

Proof. The proof follows from 3.15, 2.13, and 3.4.

3.1?. Remarks. For bounded analytic functions a result similar to 3.16 holds

without a condition about finite Dirichlet integral (Gehring-Lohwater [4]). In the

case of bounded qr mappings f: R"**pn such a condition is, however' necessary if
z>3. This fact follows from an example due to Rickman [16].

4. On the behaviour at a typical boundary point

In this section we shall study the behaviour of a Dirichlet finite function at a
..typical" boundary point. We shall employ the following result of Re5etnjak [14].

4.1. Lemma. Let u: Rn**p be an ACL' function with afinite Dirichlet in-

tegral. Then there exists a set Ec|R\ such that eDery compact set F in E is of zero

n-capacity and such that u has an essential ualue at euery point of |R"*\E, i.e.,

for eaery x€åRi\E there exists a number u with

lim r
r-*0

dm

4.2. Theorem. Let u: Rn**P be a monotone ACL" function with a finite
Dirichlet integral. Then u kas an angular limit at eaery point o/ åRi\E where E is

as in 4.1.

-' I or(x,r)lf'@-nl
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Proof. Since n has an essential value at the points of åR!\8, it has an approxi-
mate limit as well by 123, 6.7 (l)1. By 3.1 and 3.2 (1) it has an angular limit, too.

We next show that 4.2 fails to hold for monotone functions satisfying (1.2) bat
not (1.1).

4.3. Example. There exists a bounded monotone ACL2 function ui Rl-R
satisfying condition (1.2), having an asymptotic value at each point of a dense subset
of åR!, but having no angular limits.

Divide the square Q:1A,1]X(0, llcR'* into four equal squares by joining the
midpoints of opposite sides with (euclidean) segments. Repeat the division in those
resulting squares which have one side on the x-axis. By continuing this process we get
a division of Qinto closed squares Qtr: t:1,2,..., j:1,...,2t of constanthyper-
bolic size, where Qr, has euclidean side-length 2-i. Jotn the center of Q!by (euclidean)
segments to the centres of those two adjacent squares n {Q!+i j:1,2,,..,2t*t}
each of which has a side lying on a side of Qf, for each i and j. As a result we get two
distinct "treelike" infinite polygonal curves approaching the x-axis. The union of
these curves will be denoted by Z.

Define u(x):g if x is located on a side A of a square Q! and AnT:0 and
u(y):l if y(7. In (int O)\f define rz in such a way that u: Q-Rvl\,ll will be
monotone, have all partial derivatives, continuous in U (int Qfl17 and

(4.4) lVu(t)l = 2k+3 for z€(int0il\Z,

j:1,2,...; 2&. Extend the domain of definition of u to R'z* as follows. If Im z>1,
set u(z):O. lf p€Z and z(Q* {(p,0)}, then z-(p,O)<Q; set u(z):u(z-(p,0)).
Then u is defined in Ä'z*, has an asymptotic value I at the points of ?nåR,*\{-}
tlrough the set Z and is monotone, and it follows from (4.4) that (1.2) holds. More-
over, it is clear that u has no angular lirnits.

5. On isolated singularities and Phragmdn-Lindelöf-type behaviour

A function with a finite Dirichlet integral need not have a limit at an isolated
singularity. To see this fact we may consider the function in Example 3.5 and extend
it by reflection in åRi to a map a: R'\{0}*R with a finite Dirichlet integral and
with no limit at 0. This function is not, however, monotone although ulÄi indeed is
monotone.

5.1. Theorem. Let u: R\{0}* R be a monotone ACL" function. If u has no
Iimit at 0, then

lim inf f ̂
rr,,,,lY'1'dmlbgl

>0,
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Proof. Suppose that there are sequences {ae}, {åo} in B\{0} with ay,bo-O
and u(ao)*a,u(by)*B#4. We may assume -@<.a<.P<.-. Let Aebe the ao-

component of the set

,4 : {z€R"\ {O}: u(z) = (2a+ fr)13},

and 81, the be-component of the set

3: {z€R'\ {O}: u(z) = (zF+d;F}.

By 2.6, Äyn{O, -l+$*Ben{O, -} for all large k. There is a sequence fuo) such that
either 0€1r.* for allio or *(Ä1n for all7o. Consider the first case, the proof being

similar in the second case. For r€(0, 1) set

lr: a(8, Ar,; R(1, t)).

Suppose that 0€& for some /c such that lbol=la;,1. Then we get by [18, 10.12]

(s.2) M[) = "Sns$: cnlos lbol+c,rcr|, t <lbrl.

Otåerwise -68* for all k such that lbol=lai,l and thus S'-l(r)nB*O for all
r€(0, la;,1), because br*0 (cf. 2.6).Hence (5.2) holdsinthis case for atl t€(0,lat,l)
by [8, 10.12]. Lemma 2.11 yields

Mq) =[-]-\' 1"lyul, dm,
\ l|-a ) 't c'

where C:R(l, t). This estimate together with (5.2) givesthe desired lower bound.

5.3. Corollary. Let z: R\{O}*R be a bounded monotorrc ACL" function
and let a:liminf,-e u(x), p:yssup",srz(x). Then

A counterpart of condition (1.2) for the ACL' function z: R\{O}*R is the
following one. There are constants p€(0,1) and l>0 such that

(5.4) I 
"_lruf 

dm < A, B" : B"(x, plxl)

for all n€R\{0}. From a standard covering argument (cf. t25l) and from (5.4) it
follows that

(5.5) f ̂
r,,,,rrlYul" 

dm = d(n, A, p)

for /€(0, 1), where d(n,A,p) depends only on nt,A andp. Furthermore, it follows

lim inf (Åo, ,)lv l" d*)llos + = c,(p-d)',

where cn is the positiae constant in the prooJ af 5.1.



190 Marrr VuonrNsN

from (5.5) that for t((0,112)

(5.6) I ̂
rr,,rlvul 

d.m = c(n, A, p)bg j.

A direct calculation shows that the monotone ACLa function u(x,y):yzl(x'+y'),
(x, y)€R'z\{0} satisfies (5.4) and (5.6), but o fails to have a limit at 0. This example
should be compared with 5.1.

According to Theorem 5.1 a monotone function with a finite Dirichlet integral
has a limit at an isolated singularity. A natural question is whether a similar result
holds for a countable sequence of isolated singularities.

5.7. Example. There is a monotone ACL' function z: rR"\{2-k€1i k:
1,2, ...N{O}*R with

,]try*",u(x):1, ,ljf,l ,f-fet) : g

k:1,2,... with a finite Dirichlet integral. The existence of such a function u canbe
seen by a direct construction. Clearly z has no limit at 0.

The next result is a Phragm6n-Lindelöf type theorem.

5.8. Theorem. Let GcRo be a domain such that M(R"\G, r,0)>6=0 for
all r>ro, and let u: G*R be a monotone ACL" function. If

lim srup u(x) = 1

for all y€åG\{-}, then either u(x)=l for all x(G or

tiniof./on".r,rlYul, dmltogt > o.

Proof. Suppose that u(xo):c>l for some xnCG. Let E:{xQG: u(x)-.
(2+c)13]'. Then åGc.E by the assumption. LetFbethexs-componentof {z(G:
u(z)>(l*2c)13|. Then -€F by 2.6. Let

It: /(n, r; Gna"61), t 4 ro,

F,: Å(E, F; B"(t)), t =- to.

By the geometry of the situation it follows that M(f ,):M(i,) (cf. [18, 11.3] and
(2.10)). From [20, 3.5] we obtain

M(f)= c(n,ä)logr

for large values of r. The proof follows from Lemma 2.11.
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6. Some properties of boundary values

Next we shall compare the limit values of a monotone Dirichlet finite function on

tLe closure of its domain of definition to the limit values on the boundary.

6.1. Theorem. Let u: Rn*-p be a monotone Dirichlet finite function and let

Ec|N* be a compact set of capacity zero with 0€E. Then

lim sup u(x) : lim-sup ( lim-sup z(y))'
x(åR!\E

Proof. Since cap E:0, itfollows tfratOelån\E) ([15,p.721)and hencethe

right side of the above equality makes sense. Denote the left and right sides by d and

6, respectively. Clearly d=6.Hence it remains to be shown that d=B is impossible.

Choose a andb such that E<.b<a<d. Let r>0 be such that

(6.2) lim s"up u(y) = b

for all x€(åRi\E)nB"(r). Choose a sequence (a1) in,Bi(r) with u(ao)=a

and. laol=rlk. Let A1,be the a&-component of the set {z€,Ri: u(z)=a}. It follows

from2.6 that Ä1,a(0R"*v{*})+A for all k. From (6.2) it follows that Äon(Ev
(åRi\B'(r)))*g for all k. Let 3:{z€Rna: u(z)=b} and fo:l1(Ao,B; Ri). It
follows from 2.11 that

(6.3) MQk) = lY ul" dm < oo(a-b)-" I *-

If Äen(EaB"(r))+0, then M(lo):- because A1,isa connected setand capE:0
(cf. [18, 10.12]). Otherwise Zon(åni1a"Q))+A, and since capE:o and Ay

is connected, we get by [18, L0.12] that

M(f ) > cnlogk.

In either case we obtain a contradiction witl (6.3) when k**'
6.4. R e ma rk. By inspecting the above proof we see that the condition cap,E: 0

can be weakened. In fact, it suffices to assume that E=ARI is a compact set which

has no interior points (in the topology of åRi) and which satisfies M(y, åni1tr;: -
for all !(E in the sense of [9].

6.5. A bound for a Dirichlet finite function. Let u: Ri*n be a monotone

Dirichlet finite function, let ,Ec Ri , and let uhave a continuous extension, denoted

by u, to the points EnlRo* such that u(x)=-6 for xQE. Define

(6.6) o(x, E) : int M(A(C, E; Äi)),

where the infimum is taken over all continua C with x(C and Cn(0R'*w{-})*0.
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It follows then that

(6.7)

for all x(R"*. This estimate follows directly from Lemma 2.ll and Remark 2.6.

In fact, this idea has been applied several times in this paper. The inequality (6.7)

suggests that the quantity o(x, E) is of some interest in the theory of Dirichlet finite
functions.
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