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ARITHMETIC ON OPEN RIEMANN SURFACES

KARL EGIL AUBERT

1. Introduction

An abstract theory of divisibility in ordered groups has evolved out of develop-
ments which initially started in algebraic number theory and later gave rise to a
more general arithmetical theory of integral domains.

The third, and probably final, phase in this development of purifying the notion
of divisibility is above all represented by the work of Paul Lorenzen, especially in
his 1939 thesis [14]. After some forerunners in the works of Arnold [2] and Clifford
[7], Lorenzen created a full-fledged multiplicative theory of divisibility, freed from
any intervention of an extraneous additive operation. Thus, divisibility theory finally
found its natural home in the setting of ordered groups.

In [4] we tried to bring together various aspects of the crucial role which is
played by the divisors of finite character (also called #-ideals) in the arithmetical
study of ordered groups. In view of the interests of the man we are honouring with
the present volume, I would like to give a preliminary report on the possible rele-
vance of ideal systems and #-ideals in the context of open Riemann surfaces.

2, Ideal systems and z-ideals

Given an integral domain R with K as its field of quotients, we form the factor
group G=K*/U, where K*=K—{0} is the multiplicative group of K and U is the
group of units in R. This factor group is nothing but the group of non-zero fractional
principal ideals in K. Considering G as an ordered (directed) group with respect to
divisibility a=b<alb<(b)c(a), G is termed the group of divisibility of R. The fact
is that all the essential divisibility properties of R are reflected in the structure of
G, which prompts our shift of interest from R to an arbitrary (abelian and directed)
ordered group G. In this latter generality it is the monoid D=G*={glg=e} of
integral (positive) elements which corresponds to R. That G is the group of quotients
of D is equivalent to saying that G is directed (i.e., there exists a ¢€G such that
a=c and b=c corresponding to any two elements a, b€G).

The classical problem of adjoining ideals or divisors in order to achieve a nicer
theory of divisibility corresponds in this purely multiplicative setting to the question
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of when and how a directed group G can be isomorphically injected into a GCD-
group or into a factorial group. By a GCD-group we mean a group which is lattice
ordered, i.e., which reflects the property of possessing greatest common divisors.
A factorial group is a GCD-group of the form Z¥ — an ordered direct sum of
copies of Z (a free abelian group with pointwise order).

The solution of the above completion problems depends heavily on the theory
of ideal systems. An ideal system (in the sense of Lorenzen [14]) is defined in the
directed abelian group G if there exists a set A,CG (called the x-ideal generated
by A) such that

(1) 4 c A4,, (2) Bc A, = B, C A,,
(3) {a}, = (a) = Da, 4) ad, = (ad)

corresponding to any subset A of G which is bounded from below.
The most interesting ideal systems are those which are of finite character, i.c.,

satisfy
A, = U N,.

NcA
N finite

An ideal system A-—A, in G is said to be finer than another ideal system 4—4,
in G if A,CA, for all 4, or, equivalently, if every y-ideal in G is an x-ideal in G.
It is easily seen that there exists one ideal system, the so-called s-system defined by
A,=DA, which is finer than all the others, as well as the v-system defined by
4,= U (a),
Ac(a)
which is coarser than all the other systems in G. The v-ideal 4, may equivalently
be given by A4,=D:(D:4) and is sometimes called the divisorial ideal generated
by A. (In [6] A, is simply called a divisor.) The v-system is generally not of finite
character. However, there exists a unique coarsest ideal system of finite character
in G, called the t-system. The t-ideal (divisor of finite character) generated by A is
the set-theoretic union of all the v-ideals generated by finite subsets of A4:
A= U N,.
NCA
N finite
If G is a GCD-group with the GCD-operation (intersection) denoted by A, the
definition of a t-ideal A4, assumes a more appealing form as the conjunction of the

two properties
DA, c A, and a,b€A, = aAbcA,.

In the case of the group of divisibility G=K*/U of an integral domain, G also
carries a fourth distinguished ideal system consisting of all the canonical images in
G (relative to the map K*-K*/U) of all the non-zero fractional ideals in K. This
is the system of d-ideals in G (d for Dedekind).
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Among all ideal systems the t-ideals occupy a distinguished arithmetical role
due to the following facts:

1. G is a GCD-group if and only if G is #-Bezout, i.e., if and only if every
finitely generated #-ideal in G is principal.

2. G is a factorial group if and only if every #-ideal in G is principal.

3. G is a préfactorial group, i.e., it can be embedded as an ordered subgroup
of a factorial group if and only if G is a #-Dedekind group meaning that the frac-
tional r-ideals of G form a group under r-multiplication (and this latter group
then forms the desired (minimal) factorial extension).

The properties 2. and 3. show that the #-ideals restore unique factorization in an
optimal way: If unique factorization can at all be restored by some extension proc-
ess, this can also be done by means of 7-ideals and then in a most economical (mini-
mal) way.

3. Commutative algebra of ideal systems

The point that we want to make in the present paper is that there is something
to be gained by using the general commutative algebra of ideal systems in the group
of divisibility of the ring of entire functions on an open Riemann surface X, instead
of staying within the more restricted realm of the classical commutative algebra
related solely to the d-system. Fach ideal system (of finite character) gives rise to a
bundle of concepts of commutative algebra like noetherianness, integral closure,
valuation, localization, spectrum etc. For the sake of illustration let us pick three
of these notions: integral closure, valuation and localization, and spell them out in
the case of the #-system.

The group G is said to be (integrally) t-closed if A,: A,cD=G* for any
finite set A G. This definition derives its naturalness from the fact that an integral
domain R is integrally closed in its field of quotients if and only if 4,: 4,CcR for
any finite subset A4 of the field of quotients of R (or, rather, A4;: 4,CG* when
considering the d-system in the group of divisibility of R). It is easily seen that a
GCD-group is always integrally #-closed.

A t-valuation of a general directed group G is a homomorphism of ordered
groups of G onto a totally (linearly) ordered group I' such that the inverse image
of a t-ideal in I' is a t-ideal in G. Again, this concept derives its naturalness and
relevance from the fact that the classical notion of a Krull valuation is obtained by
replacing G by the group of divisibility of an integral domain and requiring that
inverse images of t-ideals are d-ideals.

The notion of localization with respect to a prime ideal in a given ideal system
(of finite character) in a directed group G is also quite natural and in the case of the
t-system in a GCD-group assumes a particularly appealing form. (For the basics
of the general theory see [3].) Let P, be a prime t-ideal in the monoid D of integral
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elements of a GCD-group G, put S=D—P, and introduce the ‘localized monoid’
S~ID consisting of all the elements in G which are of the form ds~! with dé D and
s€S. If we take S7'D>D as a new monoid of integral elements in G, this will
induce a new preorder in G (a=b<ba~'€S71D) and finally give rise {0 a corre-
sponding ordered group by factoring out the units of S™!D. This group of units is
U=S"DNSD~*. Since U is closed under the GCD-operation in the original order
of G (and is hence a so-called absolutely or lattice-closed convex subgroup of G),
the factor group G/U is a GCD-group relative to the order which is obtained by
taking the monoid S™'D/U as a monoid of integral elementsin G. This GCD-group
is termed the localization of G at P,. Lorenzen proved in [14] (Satz 10) the simple
but useful theorem that the localizations of a GCD-group at prime t-ideals are not
only GCD-groups but are in fact totally ordered.

As in the classical commutative algebra (which is based on the d-system), there
are various interrelations between the concepts of #-closure, z-valuation and t-local-
ization. In particular, D=G* is t-closed in G if and only if D appears as an inter-
section of r-valuation monoids (a t-valuation monoid being the set of elements in G
which by a t-valuation G-I is mapped onto the positive (integral) part of I').
Furthermore, one can define #-localizations also in the case of directed groups G
which are not GCD-groups and for instance establish that the finitely generated
(fractional) r-ideals of G form a group under f-multiplication (i.e., G is a t-Priifer
group) if and only if all the localizations at prime r-ideals of G+ are totally ordered.

4, The group of divisibility of an open Riemann surface

Much attention has been paid to the study of the algebraic structure of the
ring A(X) of all entire functions on an open Riemann surface X as well as to the
field M(X) of all meromorphic functions on X. Much of this research has been
connected with the problem of recovering the analytic structure of X from the alge-
braic structure of either A(X) of M(X). Among the names associated with these
studies are Heins, Royden, Rudin, Bers, Nakai, Kakutani, Kra, Banachewski [5],
Alling [1] and Hej Iss’sa [12].

We shall refer to the group of divisibility G (X) of the ring 4(X) as the group of
divisibility of the Riemann surface X. G(X) is an ordered group consisting of all the
non zero principal fractional ideals in M (X) putting (f)=(g) whenever fg~! is an
entire function on X. In order to describe the structure of G(X) it is convenient to
introduce the notion of a divisor on X as a mapping of X into the integers Z whose
restriction to any compact set has a finite support. Under poiniwise addition and
ordering the family of all divisors on X form an ordered group which we denote by
Z'X), (We have Z®cZX1cZzX, where Z™ denotes the factorial group of all
divisors on X with finite support.)

The main result on G(X) is of course
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Theorem 1 (Weierstrass—Florack). The group of divisibility of an open
Riemann surface X is isomorphic to the ordered group Z™ of all divisors on X.

Whereas A(X) and M(X) both determine X up to a conformal isomorphism or
anti-isomorphism (see [12]), it was established by Alling [1] that G (X ) and G(Y) are
always isomorphic as GCD-groups for any pair of (connected) open Riemann sur-
faces X and Y, showing that G (X) carries no analytic or topological content. Never-
theless, G(X) and the commutative algebra related to its various ideal systems proves
to be helpful also for the study of 4(X) as a ring and of M(X) as a field. Some of
these applications are quite simple but have an interest in a historical perspective.
Before taking up this topic we ought to mention one other basic result on the struc-
ture of A(X), namely, the Wedderburn—Helmer theorem that A(X ) is a Bezout
ring, i.e., that any finitely generated ideal in 4(X) is principal. When transferred to
G(X) this theorem may be formulated as follows in the language of ideal systems:

Theorem 2 (Wedderburn—Helmer). The d-system in G (X) coincides with
the t-system.

Proof: For any group of divisibility of an integral domain it is clear that all
t-ideals are d-ideals. Conversely, given a d-ideal in G(X) and two elements a, b€ A,,
we can by the original result of Wedderburn—Helmer (for arbitrary X ) conclude
that the greatest common divisor c=aAbis in A, and hence that 4, is a t-ideal.

The fact that G(X) is a GCD-group assures us that any finitely generated t-ideal
in G(X) is principal and hence that the above theorem implies the classical formula-
tion of ‘Helmer’s lemma’, i.e., that A(X) is a Bezout ring.

5. Some historical observations

The notion of a t-ideal is already implicit in the work of Banachewski [5] and
Alling [1] in the form of ‘dual ideals’. However, in their treatment ideals and dual
ideals (d-ideals and #-ideals) are given the place of subobjects of different algebraic
objects. In our treatment both the d-ideals and the t-ideals appear as subobjects of
G(X), a fact which facilitates the comparison between them. Indeed, the more
complicated bijection which Banachewski and Alling set up between ideals and
dual ideals is in our formulation a triviality by our alternative version of the Wedder-
burn — Helmer theorem (Theorem 2), which simply reduces this bijection to the
identity map in G (X).

The theorem that Alling refers to as Banachewski’s Theorem (p. 248 in [1])
to the effect that the bijection between ideals and dual ideals preserves the properties
of being maximal, prime or primary, appears in our presentation as something
which is already contained in Theorem 2. In fact, it is this theorem that is at the
root of the following statement of Banachewski (as translated by Alling): “The
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multiplicative ideal theory of 4(X) is hence identical with the dual ideal theory of
Div+X™.

More important than the formal simplification achieved by identifying ideals
and dual ideals (d-ideals and f-ideals) as one and the same ideal system in G(X) is
to take advantage of the nice calculus of t-ideals. The main bulk of the following
remarks pertains to this subject.

In the introduction to his paper [1] Alling mentions three classical results on
the algebraic structure of A(C): A(C) is a Bezout ring (Wedderburn—Helmer
1915, 1940), every prime ideal of A(C) is contained in a unique maximal ideal
(Henriksen, 1953) and every localization at a maximal ideal of A(C) is a valuation
ring (Alling 1963).

It is interesting that at least two of these results were essentially available in the
literature since the publication of Lorenzen’s thesis [14] in 1939, prior to the publi-
cation of Helmer’s 1940 paper, which by everybody has been considered as the
pioneering work on the arithmetic of 4(X). I am indebted to the referee for calling
my attention to the paper [15] by J. H. M. Wedderburn, published in 1915, and
essentially containing a proof of the fact that A(C) is a Bezout ring (‘Helmer’s
lemma’). Apparently, the referee has learned this in a memorandum circulated by
Professor Melvin Henriksen in 1979.

We have already mentioned ‘Satz 10’ of Lorenzen’s 1939 paper stating that
any localization of a GCD-group at a prime #-ideal is totally ordered. If we combine
this result with Wedderburn’s result (Theorem 2) of 1915, we immediately obtain
the result contained in Alling’s 1963 paper referred to above (even in the somewhat
strengthened form which he gives in Lemma 3.6 in his more recent paper [1]). In
fact, the Wedderburn —Helmer theorem tells us that the localization at a prime
d-ideal is the same as the localization at a prime t-ideal, the latter being totally
ordered in view of Lorenzen’s theorem.

In 1953 Henriksen [11] showed that the prime ideals contained in a maximal
ideal of A(X) are totally ordered by set inclusion. After it has been established that
all the localizations at prime ideals of A=A(X) are valuation rings, this follows
most easily by the fact that there is a one-to-one inclusion-preserving correspondence
between the prime ideals of A,, and those prime ideals of A4 which are contained
in M. In accordance with the philosophy of the present paper I should also like to
present a simple proof of Henriksen’s result within the context of ordered groups.

So, using the group of divisibility G (X) instead of dealing directly with 4(X),
we assume that M, is a maximal (integral) d-ideal in G(X) and that P® and P®
are two prime d-ideals contained in M,. By using the subscript ¢ we have already
indicated that these d-ideals are actually r-ideals (Theorem 2). Using the same nota-
tion as in Paragraph 3 we put D=G(X)*, S=D—M,, S;=D—P®, §,=D—P®,
U=S"'DnSD™Y, U;=S7'DnS;D ' and U,=S,'DnS,D7L. Clearly UcU,nU,
and the factor groups U,/U and U,/U are absolutely convex subgroups in the factor
group G(X)/U. Since this latter group is isomorphic to the localization of G(X) at
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M, and hence is totally ordered by Lorenzen’s theorem, it follows that U,/Uc U,/U
or U,JUcCU,/U (since the convex subgroups of a totally ordered group are totally
ordered by set inclusion). Furthermore, this entails that U,CU, or U,c U,, which
in turn implies PYcP® or PPcP® as desired.

Those papers on A4(X) which were written before 1963 could not easily make
use of the nice characterizations of Priifer rings which appeared in Jensen’s paper
[13]. Since any Bezout ring is a Priifer ring, these characterizations apply immedi-
ately to A(X). It follows not only that all the localizations at prime ideals of 4(X)
are valuation rings but also that 4(X) has a distributive ideal lattice and that the
Chinese remainder theorem holds in A(X) — as well as many other properties
(see for instance [6], pp. 558—559, for a much longer list of properties shared by
any Priifer ring).

Taking [4] into account we could easily add a few more algebraic properties
of A(X) or G(X) to the already existing list. By Corollary 1 of Theorem 7 of that
paper it follows that G(X) may be represented as the GCD-group of all sections
in a sheaf of totally ordered groups over the quasi-compact space of prime t-ideals
under the spectral (Zariski) topology. From Theorem 8 of [4] it follows furthermore
that the z-prime spectrum of G (X) is homeomorphic to the t-valuation spectrum of
G(X), a property which is closely related to the fact that A(X) is a r-Priifer ring.

6. Krull valuations of M (X) are z-valuations of G (X)

The above considerations have centered around the applicability of -ideals
to the algebraic study of 4(X). Let us also mention one such result which concerns
the field M(X) rather than the ring 4(X).

In Paragraph 3 we defined the notion of a t-valuation of a directed group G as
a homomorphism of ordered groups of G onto a totally ordered group I' such that
the inverse image of a t-ideal in I is a t-ideal in G (for information on the general
concept of an x-valuation see [4]). It turns out that the notion of a t-valuation may
be used in order to give a characterization of those Krull valuations of M (X) which
are positive on A(X)—{0} solely in terms of multiplicative and order-theoretic
properties (i.e., not involving the additive structure of M(X) or the d-system in
G(X)):

Theorem 3. The Krull valuations of the field M(X) which are positive on
A(X)—{0} correspond one-to-one to the family of all the homomorphisms of GCD-
groups of G(X) onto totally ordered groups T

Proof: First of all, the property v(a+b)=Min (v(a), v(b)) for a Krull valua-
tion v with value group I' (and being positive on 4 (X)—{0}) is easily seen to amount
to the fact that inverse images (relative to v) of t-ideals in I' are d-ideals of M (X) —
or, if you will, d-ideals in G(X), noting that the domain of definition of v may be
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transferred from M(X)—{0} to G(X). By Theorem 2 these d-ideals are t-ideals
and we thus obtain an order preserving homomorphism v* of G(X) onto I such that
inverse images (relative to v*) of #-ideals in I' are r-ideals in G (X). This latter property
may also be expressed by the inclusion v*(4,)c(v*(4)),. Applying this inclusion
to the set A={a, b} we get v*((a, b),)=(v*(a), v*(b)),. Since G(X) and I are
GCD-groups, we have (a,b),=(anb) and (v*(a), v*(b)),=(v*(a) A (v*(b)), and
the above set inclusion reduces to v*(a A b)=v*(a) A v*(b). Since v* is order preserv-
ing, it follows that v*(a A b)=v*(a) A v*(b) and hence also v*(a A b)=v*(a) A v*(b),
showing that v* is a homomorphism of GCD-groups. Conversely, we can associate to
any homomorphism of GCD-groups v*: G(X)—I' a valuation of M (X) which is
positive on A(X)—{0} and which has I' as its value group. This establishes the
one-to-one correspondence alluded to in the theorem (which may also be formulated
for the equivalence classes of valuations instead of the valuations themselves).

Finally, we ought to mention that it could perhaps be interesting to look into
the case of several complex variables from the same view-point as we have advocated
above. The natural generalization of an open Riemann surface is here a Stein mani-
fold. The divisibility theory of the ring of entire functions on a Stein manifold cannot
be described as forcefully and preciscly as in the case of the Weierstrass — Florack
theorem. In spite of the validity of a special form of the Wedderburn— Helmer
theorem (see [9], p. 244), the general existence of greatest common divisors cannot
be proved, i.e., the group of divisibility of a Stein manifold is generally not a GCD-
group. However, this group possesses a sufficient degree of integral closure (s-closure)
in order to be embedded as an ordered subgroup of a GCD-group. Hence it can
also be isomorphically injected into a direct product of totally ordered groups.
One of Hej Iss’sa’s main results in [12] is a further substantial precision of this fact.
He shows that the ring of all holomorphic functions on a (normal) Stein variety
X is equal to the intersection of all the discrete rank 1 valuation rings of the field
of all meromorphic functions on X.
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