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REMARKS ON THE STABILITY
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AND QUASICONFORMAL MAPPINGS

B. BOJARSKI

In this note we indicate that a refined version of the local Fefferman-Stein
inequality for a sharp maximal operator improves the information on the local
integrabilily of functions satisfying the reverse Hölder inequality. In particular, this
implies better estimates than previously achieved by similar methods ([4, [8]) for
the order of integrability of derivatives of a K-quasiconformal mapping as the dila-
tation K*1. These considerations suggest some intriguing and urgent problems on

the border of real analysis and quasiconformal theory.
Let Q be a domain in ftn. A non-negative measurable function f(x), x(Q,

is said to satisfy the reverse Hölder inequalily if for some constants p, q, p>q, lhe
inequality

(1)

holds for all cubes QccQ and some constant K (dependinC on f). Hereafter we
consider only cubes with edges parallel to coordinate axes of P. The barred inte$al

fafd* denotes the average

fof o* : 
fiy lof a* = fo.

If(1)holdswithp, qandKfixed,thenwewritefeB!6\.Forppositive,thecondition
(1) specifies a subclass Beq6) of Il""(Q). BeqG) is not a (linear) subspace of IL"(A).
The inequality (1) expresses some balance between small and big values of/measured
by the averages (fof'dx)Ltn. 1, excludes "big" local oscillalions of I Thus itis a

form of the averaged Harnack property. In the extreme case p: *-, 4: -- (l)
reduces to the uniform local Harnack inequality:

^g*f = Kinf f for each Q cc Q.

In the non-trivial case K>1, since otherwise, by the Hölder inequality, 1f=const a.e.

lf f is a weight, i.e., a positive, locally integrable measurable function, then the

union fJ*=, Blls-oy(D,p>1, is the famous Muckenhoupt class Ae,l9l. F. Gehring
in [4] considers the class Bl:gr=rBi(K) for some ö>1. Muckenhoupt and

(f"f'd*)LtP = o(frfn a*)un
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Gehring show that if fQAe, then actually fCAo-" for some e=0, depending on

/ in general. Let us recall the precise formulalion of Gehring's important lemma:

Lemma l. Let Q be a domain in P, q>1, f€L\".(Q). Suppose that for
each cube QcQ the inequality

(f 
"lfl' 

n*)Ltq = o fnlf I dx

holds with a constant K>l independent of Q. Thm there exist a P:P(n, q, K)=tl
and C:C(n, q, K)=l such that

In particular, f<L\".(A) for some p>q.

More generally, f(Bfl+feBf,+i, e=0, if Beo:l)yBl(K). This is the "self-
improving" property of reverse Hölder inequalities. Very little is known about the

possible (optimal) choice of p(n, q, K).
The stability problem for reverse Hölder inequalities is the problem of studying

how the (maximal) exponent of summabihty of f in BI(K) increases with K*1.
In the extremal case K:1,Jf is constant, thus in ti"(O).

It was recognized in [] that the stability problem for reverse Hölder inequalilies
is intimately related to the study of subclasses of functions in 2fl."(O), q>1, sat-

isfying the condition

(1')

(2)

f,f"lflo n-)L!P = , (f"lfln n*)''n

(f"lf -Jbln d*)''q < e fs (r": fnlf I d*)

for each atbe QcQ. The inequalily (2) for the local averaged oscillations ft,r:
([ olf-fo\ a*11/p expresses the fact that the functions in these subclasses can be

locally approximated by constants in sorne uniform way.
We are naturally led to consider the Fefferman-Stein sharp maximal opera-

tor (for 4: l)
f+(x): täpfolf-fo4*

with the supremum taken over all cubes Q contained in O and containing x. The ine-
quality (2) has its "pointwise" version (q:l)
(2',) f"(x) = eMf(x),

wherc Mf is the Hardy-Littlewood nonsymmetric maximal function of f. (2) and
(2') arc always true if e:2 and q:1. The point is that, for e small, (2) and (2')

contain very deep information expressed in Theorem 1 and Lemma 2.

The situation here exhibits some analogies to the stability properties of
K-quasiconformal mappings as the dilatation K*1. By Liouville's theorem,

l-quasiconformal mappings reduce to Möbius transformations (in the space Ro,
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n=3). By the Lawent'ev-Reshetnyak theorem [10], [1U, as K*1, a K-quasicon-
formal mapping, say of aball D in Rn, can be uniformly approximated in the closed

ball D by a Möbius transformation. Moreover,lhe derivalives of the mapping are

locally integrable with the exponent P*- as K*l (p-c(ny(K-l)) and approx-
imate the derivatives of the Möbius transformation in some integral sense.

Stability for reverse Hölder inequalities was first discussed in [1] (see also [7]).
We sketch here a proof which uses the important

Theorem I (Reshetnyak and Gurov [5], [6], llll). Let the (aector-oalued) function
f: Q*R* satisfy lhe inequality

= slfls

for each cube QcQ and afixed q>l (with the usual understanding of norm f in
R^). Then for some constant Co, depending on (l and n only, f<I-{".(A) for
euery p<Cole, p=1. Moreouer,for pr<p<.Qole the estimate

(f"
holds. The constants C, and a depend on q and n only prouided e is sfficiently
small, Q=e=eo(n, Q).

To
B?(K),
(3)

Then we have

lf\ dx-lfl'o = (K' - 1) lflb;
hence

(4)

This implies

Proposition l. For K*I the function p(n,2,K) from Lemma I d*nits
an estimate

p(n,2, K) > CllF
for some positiue C depending on n only.

An analogous statement holds for the classes B|n(|d) for K*1. The class B?(K)
can be considered a model case for the classes Bi{':K) since the inequality (1), by a
series of elementary substitutions, is essential$ reäucible to (3).

Proposition I is complanentary to Lemma I for K*1. Compared with Prop-

osition 3 in [fl, it gives slronger estimates for the integrability exponent p. The point
isthatin [fl Proposition3 was presented as a corollary of the important Lemma2

(f"lf-fsln d*)'tn

l"f-fuln d*)'to(f"lf-fav a*)'to = c,(lfld'-qttp(u roe +)'-'''

(f"lfr o*)'z = u fnlfl dx.

fn(l.fl-lfld'o* : .fa

f"llfl-tflal dx = (frvl- lfld' d*)"' =

recall the idea from [1] we consider, for simplicity, only the case of
i.e.,

/Hl.fla.
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in [fl valid in a much more general situation than described in the theorem of Gurov
and Reshetnyak.

Lemma 2. Let f(LL"(A), 0=o<1, L<p<.-. Suppose that for eqch cube

QcQ the inequality

f ,olf--f"nl 
dt' = crfolfl dv, c, : ll-6nn

hotds. Then f€L\."(O) andfor each cube Qc cQ we haue

(f,,,;rP at)''o = "'fnlf I dY' ": #'
where oQ is the cube wilh the same center as Q, expanded by the factor o.

The precise numerical values of the constants c, and crare not essential, since these

values are far from optimal. The choice in [4 exposes the fact lhat p>cnlog(llcr),
with co depending on n only.

Lemma 2 and lhe Gurov - Reshetnyak theorem are continuations of the line of
research originating from the John-Nirenberg lemma on BMO spaces.

Lemma 2 is related to the so-called weak reverse Hölder inequalities, which
appear in quasiconformal theory and various problems in elliptic PDE's at a more
elementary stage than reverse Hölder inequalities and thus their range of appli-
cability is much broader. Various properties and applications of these inequalities,
especially to quasiconformal theory, have been discussed in [], [2], [1, [8]. Imporlant
applications of Lemma 2 to quasiconformal theory and PDE's have been described

in [4 and [8].
The proof of Lemma 2, presented in [fl, relies essentially on a local form of

the Fefferman-Stein inequality [3]. In [fl it is presented as follows:

Lemma 3. If f+<Le(Q) (Q, a fixed cube), p>1, then M.f(L'(Qo) and

(fo"lrtP o4''o = to*o (fo"lfo7 ax)'to +to"*'faolfl dx.

Here again the numerical coefficient 105n' is much too big for large p. As a
matter of fact the following is true:

Lemma 4. For f as in Lemma 3, p=1,

with c, depmdtng on n only.

Lemma 4 is a direct consequence of an essential refinement of a local Feffer
man-Stein inequality obtained by I. Wik [13J.

t .fn,lMfY o*)''o € ctp (fn,lf "l' d*)up +',fn,lf I d*
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Theorem 2 (I. Wik). For an arbitrary cube QcR", p>Q, and a function

"f<Lt(Q) the inequality

ll Mf -fell u s1 = c lt. f+ ll P P1

holds with a constant c-copbup, co and b independent o.f p and Q.

Wik's method, in particular, gives a Fefferman-Stein inequality with the

constant of order p for large p, whereas the original Fefferman-Slein method

produces a constant of exponential order 2p. We remark that Wik does not use the

Calderln-Zygmund decomposition lemma. Instead, he relies on the direct study

of distribution functions and related coverings.

Combining Wik's melhod with the discussion in [fl we obtain lhe genetahza'

tion of the Gurov-Reshelnyak theorem.

Theorern 3. Let f€L\".(A), 0<o=1, l<p-*. Suppose that

f lf-.f"al'ty =' f lll dy
Joe are

.fo, each cube Q,cQ. Then there exists a

f€Lf""(O) fo, el)ery p< cl\ prouided t
depending on o) n, and p only, v,*e haue

constqnt c depending on n only such that

is small. Moreouer, for a constant b,

= u fnlfldy.(fn,, trp or)''o

(Instead of factor ll2 in Theorem 3 any fixed oo-1 could be used.) Naturally,

a detailed proof gives some explicit eslimates for c and å, which are omilted here.

The order of the optimal integrabilily exponent p, eslimated in Theorem 3, is exact.

We note also tbat Lemma 2 and Theorem 3 have some connections with the results

of J. O. Slrömberg [12J.

All this suggests that many important questions around the Fefferman-Stein
inequality, John-Nirenberg BMO lemma and Gurov-Reshetnyak results deserve

further study.
Theorem 3 is a refinement of Lemma 2. It implies in particular corresponding

improvements of some applicalions of Lemma 2 discussed in [Z and [8].
The details of the topics discussed above will be presented in an expository

paper under preparation and also, hopefully, in the monograph announced in [2].
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