Appendix

INTERPOLATION WITH MULTIPLICITIES

LENNART CARLESON

Let $a_1, a_2, ..., a_n, ...$ be points in the unit disc. Assign to every a_n a multiplicity p_n so that

$$\sum p_n(1-|a_n|)<\infty.$$

We can then form the Blaschke product

$$A(z) = \prod_{1}^{\infty} \left(\frac{a_n - z}{1 - z_n \overline{a}_n} \frac{\overline{a}_n}{|a_n|} \right)^{p_n} = \left(\frac{a_n - z}{1 - z \overline{a}_n} \frac{\overline{a}_n}{|a_n|} \right)^{p_n} A_n(z).$$

We are interested in general interpolation with multiplicity for functions $f(z) \in H^{\infty}$, i.e. if the interpolation

(1)
$$f(a_n) = c_n, \ f^{(v)}(a_n) = 0, \ 0 < v < p_n,$$

is possible with $f \in H^{\infty}$ for arbitrary $(c_n) \in l^{\infty}$.

The problem was considered by Katsnel'son [2], who proved that the condition

$$(2) |A_n(a_n)|^{p_n} \ge \delta > 0$$

is sufficient. Simple examples — equally spaced a_n on a circle |z|=R and high multiplicity at z=0 — show that this condition is not necessary.

A complete solution is given in the following theorem.

Theorem. The problem (1) has a solution in H^{∞} for all $c \in l^{\infty}$ if and only if

(3)
$$\left| \frac{a_n - z}{1 - z\bar{a}_n} \right|^{p_n} + |A_n(z)| \ge \delta > 0, \quad n = 1, 2, \dots.$$

Corollary 1. The condition (2) is sufficient.

We may assume that $a_n=0$. If (2) holds $|a_v| \ge 1-c/p_n=R$, $v \ne n$. Consider $|z| \le 1-2c/p_n$. Then

$$\log |A_n(z)| = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{R^2 - |z|^2}{|Re^{i\theta} - z|^2} \log |A_n(Re^{i\theta})| d\theta$$

$$\geq \text{const.} \ p_n \frac{1}{2\pi} \int_{-\pi}^{\pi} \log |A_n(Re^{i\theta})| d\theta$$

$$\geq -\text{const.}$$

by (2). Hence (3) holds for $|z| \le 1 - 2c/p_n$ and (3) is obvious if $|z| > 1 - 2c/p_n$.

As pointed out to me by Svante Jansson we have the following converse.

Corollary 2. If a_n are real (2) is necessary and sufficient.

We must prove that in this case (3) implies (2). Assume again $a_n=0$, $p_n=p$. Choose c so that

$$x^{p} = \left(1 - \frac{c}{p}\right)^{p} = \frac{1}{2}\delta.$$

$$\log \frac{\delta}{2} \le \log \left| A_{n} \left(1 - \frac{c}{p}\right) \right| \le \sum_{a_{v} > x} p_{v} \log \frac{a_{v} - x}{1 - a_{v} x}$$

$$\le -\operatorname{const.} (1 - x^{2}) \sum_{a_{v} > x} p_{v} \frac{1 - a_{v}^{2}}{(1 - a_{v} x)^{2}}$$

$$\le -\operatorname{const.} \frac{1}{1 - x} \sum_{a_{v} > x} (1 - a_{v}) p_{v}.$$

This proves

$$(\prod_{a>0} a_{\nu}^{p_{\nu}})^p \ge \text{const.}$$

and similarly for $a_v < 0$.

Proof of the Theorem. We consider a finite case. We replace every a_n by p_n points corresponding to the solutions of

$$(z-a_n)^{p_n}=\varepsilon$$
, i.e. $z=a_{nj}, j=1,\ldots,p_n$

where $\varepsilon > 0$ is small. It is easy to see that if the interpolation problem

(4)
$$f(a_{nj}) = c_n, \quad j = 1, ..., p_n,$$

has a uniformly bounded solution as $\varepsilon \to 0$, (1) has a solution.

Assume now that (3) holds. Then Theorem 4 of [1] can be used and proves that (4) does indeed have uniformly bounded solutions, as $\varepsilon \to 0$.

Conversely, assume that (1) has a solution and choose $c_n=1$ and $c_v=0$, $v\neq n$. Call the solution $f_n(z)$. Then

$$|f_n(z)-1| \le (||f_n||+1) \left| \frac{a_n-z}{1-za_n} \right|^{p_n}$$

and

$$|f_n(z)| \leq ||f_n|| |A_n(z)|.$$

This proves (3).

References

- [1] Carleson, L.: Interpolations by bounded analytic functions and the corona theorem. Ann. of Math. (2) 76, 1962, 547—559.
- [2] Katsnel'son, V. È.: Conditions for a system of root vectors of certain classes of operators to be a basis. Funkcional. Anal. i Priložen. 1, 1967, 39—51 (Russian).

Institut Mittag-Leffler Auravägen 17 S-182 62 Djursholm Sweden

Received 6 October 1983