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BASES FOR CUSP FORMS
FOR QUASI-FUCHSIAN GROUPS*

IRWIN KRA

Let I' be a finitely generated quasi-Fuchsian group of the first kind. Let A be
the limit set of I, and let 4 and 4* be the two invariant components of the region of
discontinuity Q of I'. Denote by A4,(4, I') the space of cusp forms for I' of weight
(—2g), g=2, that are defined on 4. Let z,€4* be an ordinary point (that is, not
an elliptic fixed point). Let

d = dim 4,(4, I') = dim 4,(4%, T);
and define for j=0,1, 2, ...
0.1) fi(@=(z—z), if zEC,
0.2) [i(@)=z7%%, if zy=co,
Let ¢; be the Poincaré series of f;; that is,
0f;(2) = 0;(2) = Z,er [;(02)Y (2)%,  2€Q,

whenever the series converges uniformly and absolutely on compact subsets of Q.
In this note we shall establish the following

Theorem. The Poincaré series ¢;, j=2q, 2q+1,...,2q94+d—1¢ (restricted
to A) form a basis for A,(4,I) if and only if z, is not a Weierstrass point for
A, (4%, T).

The above theorem is a straightforward application of a construction of Bers
[3] of singular Eichler integrals. (See also [1] and [5, Chapter V].) Bases for 4,(Q, I') =
A,(4, @ A,(4*,T) were investigated in [6], [7], and [4]. It is in general more
difficult to obtain explicit bases for A4,(4, I') alone. See in this context the results
of Wolpert [9] for Fuchsian groups. A nice feature of the constructions in this paper,
is that all the functions considered vary holomorphically with moduli (see Sec-
tion 3).
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the author visited the Hebrew University of Jerusalem under a Binational Science Foundation Grant.
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In this paper we use the notation from [6], where many of the topics currently
under study are treated in greater detail.

Our main result has as an immediate corollary the following result of Petersson
[8]. See also [2].

Theorem. Let T' be a finitely generated Fuchsian group of the first kind acting
on the unit disk A. Assume that z=0 is an ordinary point and not a Weierstrass
point for A,(4,T). Then every element of A,(4,I) can be written as a Poincaré
series of a unique polynomial of degree at most d—1.

Proof. Tt suffices to show that z=0 is a Weierstrass point for 4,(4, I') if and
only if z=oco is a Weierstrass point for 4,(4*, I'). Here, of course,
A* = {z€C; |z| = 1}u{ce}.
Now every element of I' commutes with the anti-conformal involution
J:z—Zz7L
A simple calculation shows that

A,(4,T)5y — y*€4, (4%, 1),
where for z€A*,

— (3T Jp——
V@ =y |55 ) = (=127 (J2),
defines an R-linear isomorphism with the property that
ordyy = ord . i*.

This establishes the claim (see Section 1).

1. Weierstrass points

Let I' be a non-elementary finitely generated function group with invariant
component 4. Let 4 be the union of 4 and the parabolic fixed points of I" that rep-
resent punctures on 4/I". For z,€4, let v=v(z,) be the order of the stabilizer of
zoin I'. If 0#¢p€A4,(4,T), then the order u of ¢ at z, satisfies

u=0, p+q=0(modyv).
We define the reduced order of ¢ at z, by the formula

ord,, ¢
v(zg)
Remark. If z, as above is finite, then @€4,(4, ') has a Taylor series expan-
sion
1.n @(2) =2, a;(z—z0), a,#0,

red ord, ¢ =
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valid in a neighborhood of z,. If €4, then ¢€A,(4,T) satisfies
@(2)=0(z|7*), z e,
and thus the Laurent series of ¢ is of the form
o()=27,a;z7%7, a,#0,
valid in a neighborhood of <o, and
u=ord, o.

As above, all our results and calculations will be invariant under M&bius trans-
formations (compare (0.1) with (0.2)), and by conjugation we may always assume
that we are considering one of the following two standard situations:

(I) 0=zy€4 and the stabilizer of z, in I is generated by (here v€Z, v=1)

A: C"" eZRi/vc.
(II) so=z,€A\4, the stabilizer of z, in I' is generated by

A: {—(+1,
and
U= {{eC; Im{ > 0}

is precisely invariant under (4) in I
Under assumption (II), every ¢@€A,(4,I) has a Fourier series expansion

(1'2) (p(C) = JZ# aj e21:ij§’ {e U:
where a,#0, p=>0. We define the order and reduced order of ¢ at « by
ord., ¢ =red ord,, ¢ = .
Let (p; vy, ..., v,) be the signature of I'. It was shown in [5, pp. 110—115] that
n 1
2zcartedord, o =¢q {2p—2+2j=1 [1 _T]}’
J
for all p€A4,(4,I), ¢#0.

Let d=dim 4,(4,T). It is well known (see, for example, [5, pp. 328—330])
that

d = Qq-DG-1+ 3} [1-2].
J
where, as usual, [x] is the greatest integer less than or equal to x and we use the

convention [q —i] =lim,_ [q _%] =g—1.

By a basis of A (4,T) adapted to zy¢A, we mean a basis {@, ..., ¢;} of
A,(4,T) with the property that

(1.3) W< U <...<<Uy,
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where
(1.4 u; = ord, ¢;;
and if «£zy€4, then

0; Q) = C—zo)"i+ s, ac({—2z0)*, for |{—z,| small,
and if zy=oo€A\4, then
0;(0) = ¥+ S e, (€U

(assuming normalization (II)).

The point z, is a Weierstrass point for A,(4, ') provided the sequence in (1.3)
is not as low as it could possibly be. Thus if z,€4 is an ordinary point (not an ellip-
tic fixed point), then z, is a Weierstrass point if and only if

p;>j—1 for some j=1,...,d.

If zy€4 is an elliptic fixed point of order v, then z, is a Weierstrass point if and
only if
u; > po+(j—1v for some j=1,...,4d,

where py=po(z,) is the smallest non-negative integer of the form av—q with

a€Z; that is,

Ho(20) = po =—V [—-%]—q-

Finally, zy¢ A\ A is a Weierstrass point if and only if
u;>j for some j=1,...,4d.
We define the weight of z, by
1(zo) = J‘.'=1 pj—j+1, if zy is an ordinary point,

1(29) = 21‘7:1 Wj—Mo—jv+v, if z, is an elliptic fixed point of order v,
and
T(z9) = 2"}‘=1 u;—Jj, if z, is a parabolic fixed point.

It follows that 7(z,)=0 and that t(z,)=>0 if and only if z, is a Weierstrass point.

For any basis {¢;, ..., ¢} of A4,(4,TI), we define the Wronskian W of the
basis by

qo} ...(p‘,,
W=det|? %

P gpft D
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One checks easily that 07 WeAy(4, '), where

Q0 =2d(2q—1+4d).
It follows that

\ 1
S.carredord, W =0 {2p—2+2j=1 (1 —v—]}.
i
One shows next that
ord, W=1(z), for z, an ordinary point,

ord, W = 1(zo)+d [,uo-l—(v — 1)[%]] , for z, an elliptic fixed point of order v,

and
d+1 . . -
ord, W= t(zy)d+ — ) for z, a parabolic fixed point €4.
We conclude that there are finitely many I'-equivalence classes of Weierstrass
points.
If z,c4, then for j=0
. L ;
A4,(4, N3¢ 1—— a;C,

with ¢ given by (1.1), is a linear functional. There are two reasons why this linear
functional might be the zero linear functional. First, it might be zero because

j+g #Z 0 (mod v);
or because the j-th coefficient of the Taylor series of every @€A4,(4, ') vanishes,
even though

j+g =0 (modv).
If ¢y, ..., ¢, is a basis for 4,(4, ') adapted to z, and (1.4) holds, then

L, ,(p0) =06 L1=j k=d;

thus the linear functionals

Ly L

form a basis for the dual space A,(4, I')* of A4,(4,I).

A similar analysis can be carried over to cusps using (1.2). It is important to
note that the linear functionals L, ; extend to the space of meromorphic
automorphic forms on 4 that are regular at z,.

205 Ba

Remark. Let I' be a non-elementary finitely generated Kleinian group with
region of discontinuity Q. Let 4,, ..., 4, be a maximal set of inequivalent compo-
nents of Q. Let I'; be the stabilizer of 4;. Then

4,@.1)= ® 4,4, ).
Jj=

Thus the above analysis may be extended to the space of all cusp forms for I'.
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2. Singular Eichler integrals

Let I’ be a non-elementary finitely generated Kleinian group with region of
discontinuity Q and limit set A. Let g€Z, g=2. Choose once and for all 2g—1
distinct points a;, ..., @y,—; in A. Define a meromorphic function f(z,{) on QX Q
by the formula

1 1 2q—1 Z2—a;

f(Z, Oz_ﬂ{—z ]L=1 —C_aj.

The definitions of various terms and the conventions regarding z,{ or a;=< are
those of [6]. We also define

2D 0(z,0) = 2yer f(z, 907" (O

The series in (2.1) converges uniformly and absolutely on compact subsets of
{(z, )cQXQ; z#y(, all yel}.
For fixed b€Q, (b, -) is the Poincaré series of f(b, +):

@(b, -) = 0f(b, -).

Thus, (b, +) is a meromorphic automorphic form of weight (—2¢g) that satisfies
the cusp condition (at each cusp in Q). The function ¢ (b, -) has a simple pole at
b (and its images under I') whenever

g = 1 (mod v(b)),

and is regular at b (thus a cusp form; that is, an element of 4,(Q, I')) otherwise.
For fixed b€Q, ¢(-,b) is a meromorphic Eichler integral. This integral is parabolic
and is regular at the cusps. The integral has a simple pole at b whenever

g = 0(mod v(b)),

and is regular at b (thus in E}_ (2, I) otherwise. In the latter case, ¢(-,b) is
identically zero. Furthermore, for mcZ, m=1, we define

oz 0)

Oz, ) = T

One checks easily that ¢,,(+, b) is a meromorphic Eichler integral with a singularity
at b of the form

)

o= m—-D!v®)(z—b)™™

whenever

2.2) m = 1— g (mod v(b)),
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and ¢,,(-, b) is identically zero otherwise. Using a partial fraction decomposition

one sees that
110, (z,0) T 20(z, ()

l””m(z’ C): §z2a-1 - aZZq—laCm—l
defines a function on QX Q that is given by the formula
_ @2q-1! o 7' ()"
l//m(zs C) - o acm.—]_ y€r (,yc_z)gq
_ (2g—1! om! e
2n " E (p{—yoyTiz)H
__egnt e Y Q)
T 2m AT AT =y My (O (2
__ (@2g—1! o G Y@ Q¢! ot Y (2)?
B e s N O
n 2 +m 2)! ’(2)1
( 1) (q ) Z)‘ET (C_zz)2q+m—1 ’

It follows that for fixed b€Q, (-, b) is a meromorphic automorphic form that
satisfies the cusp condition at each cusp. Its singularity at b is of the form
(2q—|—m 2)!

(=" v(b)(b—2)*+m Y,

whenever m satisfies (2.2), and is the zero form otherwise.
We let ET (2, I') denote the linear span of the Eichler integrals

(pm("b)9 bEQ, m:l’ 2, 3, e

Thus every @€ET, (2, T) is regular on a fundamental set  for I' on € except for
finitely many singularities. Such a ¢ induces a linear functional ¢* on 4,(2, I') by
the formula

0W) = Do 2L peEPy @), Yed, (@D

A basic theorem of Bers [3] (see also Ahlfors [1] and Kra [5, Chapter V]) asserts
that ¢ is the restriction to Q of a polynomial of degree =2g—1 if and only if ¢*
is the zero linear functional.

Theorem. Let I' be a finitely generated quasi-Fuchsian group of the first kind.
Let A and A* be the two invariant components of I'. Let d=dim 4,(4,T), q=2.
(a) Let by,...,b; be d distinct points of A* with the property that every
@€A, (4%, T) that vanishes at b;, j=1, ..., d, must be identically zero. Then the restric-
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tions of the functions

l/’l(’s bl), [RES) l//1(‘a bd)

to A form a basis for A,(4,T).
(b) Let bed*. Let uy<ps<...<p, be the orders of vanishing at b for cusp
forms in A, (4%, ). Then the restrictions of the functions

'#u,-+1(" b): J = 1’ ceesy d:
to A form a basis for A,(4,T).

Proof. The hypotheses imply that the Eichler integrals

(pl(' s bl)’ sy <P1(', bd), (case (a))
(pu1+1('9 b)’ siep (pud+1(°, b)’ (Case (b))

are linearly independent modulo polynomials of degree 2¢—2 even when restricted
to 4. It follows that their (2q — 1)-derivatives restricted to 4 are linearly independent.

Remarks. (1) The above theorem generalizes the theorem in the introduction.

(2) For g=2, part (a) of the above theorem was obtained independently by
Clifford Earle using different methods (private communication). ,

(3) Bers [3] has also constructed FEichler integrals with prescribed singularities
at cusps. These constructions are not as explicit as the ones involving singularities
only at points of Q.

(4) The linear functionals on A4,(2,T)

om(+, b), bEQ,

are, of course, constant multiples of the maps L, ,, discussed in Section 1.

3. Spaces of cusp forms over Teichmiiller spaces

Let I' be a finitely generated Fuchsian group of the first kind acting on the upper
half plane U. Let M (I') be the space of Beltrami coefficients for I supported on U.
For € M(I'), let w® be the unique normalized (fixing 0,1, =) homeomorphism
of Cu {c} that is o-conformal in U and conformal in the lower half plane U*. Two
Beltrami coefficients o, and o, are equivalent if w°|U*=w":|U*. The set of equiv-
alence classes [o] of Beltrami coefficients ¢ forms the Teichmiiller space T(I'). The
Bers fiber space F(I') is defined as

F(I) = {(o], 2); [6]€T(), zew* (U)}.
For fixed bcU*, the function
T(I>3[o] — we(b)eC\{0, 1}
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is holomorphic. Furthermore, since w’|U* induces a conformal map between
U*/I' and w?(U*)/wT (w°)~%, it follows that b is a Weierstrass point for 4,(U*, I')
if and only if w’(b) is a Weierstrass point for A4,(w’(U*), w’I'(w*)~%). The results
of the previous section imply the following

Theorem. Let by, ..., b, be k distinct points in U*. For each j, j=1, ..., k,
let
0 < pj < Wjo <o < Hjm,
be m;j=1 positive integers. Then
fii(ol, 2) = (z—wo(b)) ™2 4, 1=i=m;, 1=j=k,
are holomorphic functions on F(I'), and we set

¥;ilo], 2) = 2, er f5:(l01, v D) () (2)",
where i and j are as above, and
y* =w’oyo (W)t for y€Ir.
Let R be the linear span of the f;; and A the linear span at the ;. Then Z is

a trivial vector bundle over T(I') of rank Z’le ; and A is a trivial vector bundle
over T(I') of rank r, where r is the rank of the matrix

(fk* (sz))1=1, ..., dim 4, (U*, T)»

k ranges over (j,i) as above,

the {¢;;1=1, ...,dim A,(U*, I')} form a basis for A,(U*,T), and f;,- is the Eichler
integral constructed in Section 2 whose only singularity is a pole of order u; at b;
(and equivalent points) with principal part
(z—bj)—H
provided
w = 1—g (mod v(b))),

and fj,-=0, otherwise.

Furthermore, the Poincaré series operator 0 is a vector bundle map 0: Z—~A

and the kernel of 0 is a trivial vector bundle over T(I') of rank 27", m;—r.

Proof. The proof of the above theorem is quite similar to the proof of Theorem
11.2 of [6].
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