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ASYMPTOTIC CONVERGENCE OF TRAJECTORIES
OF QUADRATIC DIFFERENTIALS

ALBERT MARDEN?” and KURT STREBEL

1. Introduction. In this article we continue our investigations of the geometric
properties of holomorphic quadratic differentials. We will consider only the case of
a compact Riemann surface R, leaving for another time the extension to the more
general situation that R is allowed a finite numter of punctures.

The first part is an investigation of the convergence of trajectory rays, or more
generally, geodesic rays, induced by the covergence of the differentials. The pheno-
menon can be studied on the surface itself or — and this is our objective — in terms
of the lifts to the universal covering surface H represented by the unit disk.

Let {¢,} be a sequence of holomorphic quadratic differentials on R which con-
verges locally uniformly to a differential ¢. In view of the compactness of R, the locally
uniform convergence is equivalent to the ccnvergence in norm ||@,—¢|—0. Since
the case @=0 is of no interest and the trajectory structure of a quadratic differen-
tial is independent of a positive constant factor we may normalize all differentials

so that
loul = lloll = [ loldudo = 1.

We will denote the space of normalized differentials by Q(R).

A (horizontal) trajectory ray « of ¢ is a maximal arc, starting at some point
pER along which, in terms of any local parameter w, ¢ (w)dw?=0. It is called crit-
ical if it ends at a zero of ¢; otherwise it is called regular. A critical ray can be con-
tinued across the zero { as a geodesic ray. It must then satisfy Teichmiiller’s angle

condition at {
3 = 2n/(k+2);

but otherwise, the direction of continuation is free: it is not necessarily horizontal.
We always think of a geodesic ray as continued indefinitely. It can have self crossings
on the surface, whereas a regular ray cannot meet itself, unless it closes up forming
on R a simple loop.

A geodesic is the union of a finite or countably infinite number of ¢@-straight
segments or rays (along each of which arg (¢ (w)dw?) is constant) whose endpoints
are zeros of ¢. A geodesic is called horizontal if ¢ dz?=0 along each regular part.
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The critical graph of ¢ is the union of all zeros of ¢ and the (horizontal) trajec-
tory rays emanating from them.

A quadratic differential is said to have closed trajectories if all of its (non-criti-
cal) trajectories are closed. This is the case, on a compact surface, if and only if the
critical graph is compact. The closed trajectories sweep out disjoint annuli. A qua-
dratic differential with closed trajectories is called simple if all of its closed
trajectories are parallel (sweep out a single annulus).

An approximation theorem due to Masur [4] says that any quadratic differen-
tial can be approximated by simple ones. In the sense of Thurston (see e.g. [2]) the
closed trajectories of the approximating ¢, converge. It is the motivation for our work
to study the asymptotic convergence of these trajectories.

The quadratic differentials are lifted to the universal covering surface H by means
of the holomorphic projection map n: H—R,

¢*(2)dz® = @(n(2))n'(2)?dz2

If o is a trajectory of ¢ in R then each component of {rn~*(x)} in H is a trajectory of ¢*
which, as shown in [3], has distinct end points on the circle gH. Conversely each tra-
jectory of ¢* projects to one of ¢. More generally if o is a geodesic of ¢ and w€a
is a regular point, through each point w* over w passes a lift o* of «. This lift o* is
a geodesic for ¢* and it is a simple arc in H which [3] has distinct end points on 0H.
And conversely, the projection to R of a geodesic for ¢* is a geodesic for ¢ (but not
necessarily simple).

If f: R—S is a homeomorphism between two Riemann surfaces, f induces
both a) a homeomorphism f,: Q(R)—~Q(S) between the (6g—7)-dimensional
spheres of normalized differentials and b) a homeomorphism f*: dH—~0H of the
unit circle. Both f, and f* depend only on the homotopy class of f. The mapping f,
was constructed in [2], and the existence of f* is a classical result of Nielsen. In the
context of analysis the existence of f*: 0H—~d¢H results from taking f to be quasi-
conformal, lifting f to a necessarily quasiconformal map f*: H—H, and extending
that. As a map of the circle, f/* is uniquely determined by the homotopy class of f
up to a composition T,of*oT; where T; is a cover transformation over R and T,
is one over S.

The second part of our work, which depends heavily on the first, shows how the
maps f, and f* are tied together. For a generic differential ¢€Q(R) we show in
particular that points p, gcdH are the end points of a trajectory of its lift ¢* in
H if and only if f*(p), f*(q) are the end points of a trajectory of the lift of £, (¢).
This is our main result.

2. We refer to the result, established in Marden and Strebel [3], that a lift y*
of any geodesic ray y of ¢ (i.e. any geodesic ray of the lift ¢* of ¢) has a well deter-
mined end point on dH. In order to show the convergence of the rays, we need how-
ever more information about the associated metric. The main difficulty lies in the
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fact that the lifts * have infinite norm and the convergence, in H, is only locally
uniform.

Lemma 1 (Annulus lemma). Let A be a circular annulus and o a simple loop
separating its boundary contours. Suppose ¥ is an arbitrary holomorphic differential
in A and y is a simple geodesic segment of ¥ whose end points lie on ¢ but which has
no other points in common with o. Then, for the ¥-lengths,

Pl = oy
Proof: Assume, first, that the arc y has two different end points. Then, it bounds
a simply connected region D together with one of the subarcs g, of ¢ determined by
the end points of y. Because  is the unique ¥-geodesic in its homotopy class,

Pl = lowly < oy

If the end points of y coincide, it is a Jordan curve which must contain the interior
boundary of 4. Otherwise it would contradict the uniqueness of geodesic connections
in a simply connected domain. We can therefore apply the earlier argument, using
o instead of o,. This proves the lemma.

The arc y is automatically simple, if it is a subarc of a trajectory, or any straight
arc. This is the case in our application of the Annulus lemma.

The lemma allows for a sharper bound of the length of certain horizontal arcs in
the following case.

Let T be a hyperbolic or parabolic element of the group G of cover transforma-
tions of H. Let o* be a circle in H along which the points move under 7 (circle through
the fixed point(s) of T). We form the corresponding annular covering surface 4 by
identifying the points of H equivalent under {T"}. Suppose ¢* is the lift to H of a
holomorphic quadratic differential ¢ on R, and ¥ is the projection of ¢* to A. The
closed curve ¢ is the projection of a fundamental subinterval oy of o™ under T. Let
«* be a horizontal arc of ¢* having its two end points on ¢*, but not meeting o™

otherwise. Then,
lo*| % = |0 p»-

A crude estimate would only compare the length of o* with that of the subarc of ¢*
between its two end points. The lemma is actually of a topological nature.

3. In this section we show that H is uniformly complete in the ¢*-metrics,
»€Q(R) and in Section 4 we draw a number of conclusions from this fact.

Lemma 2 (Completeness). (i) For fixed z,¢H, given any L=>0, there exists
r<1 such that for any z€H with |z|>r, and any path © in H from z, to z, the Q*-
length of © exceeds L for all ¢€Q(R).

(i) For fixed {'#(€OH, given any L=0, there exists >0 such that for any
z,2’CH which satisfy |{—z|<$9,|t'—2'|<d and any path t in H from z to z’, the ¢*-
length of © exceeds L for all @€Q(R).
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Proof: Cover R with a finite system {U;} of simply connected neighborhoods
such that for each i, the closure U;™ is contained in a simply connected neighborhood
Vi bounded by a simple loop d¥;. Let t be any arc in H from a point z, and which
has limit points on JH. We claim that there are infinitely many disjoint open intervals
{z;} of 7 such that for each j there is some i for which the closed arc n(z;) runs in
V.\U; from 9U; to oV..

To prove this assertion we first dispose of the case that the projection 7 (z) is
a closed curve in R. The base point 7(z) lies in Uj, say. Since () cannot entirely
lie in ¥; it contains an arc P from a point of U, to a point of 9¥,. The required
arcs {r;} can be chosen from among the components of {z=*(p)}.

If 7(7) is not closed we can find a sequence of points z,£t with lim z,€0H
such that {r(z,)} are distinct points in R with lim n(z,)=p. Assume say p€Uj.
Let g, denote the interval of 7 from z, to z,,,. Its projection 7(p,) cannot lie in ¥
for all n exceeding some number N. For if that happened then the entire part of ©
beyond zy,, would lie in a component of {zx~(}))}. Thus for an infinite number of
indices #n, m(g,) contains a segment running in V\U; from oU; to oV].

In the above construction, we may keep adding the disjoint intervals to our
collection {r;} until it is true that each complementary interval of t is contained in
V= for some i.

The argument may then be turned around to reach the following conclusion.
Given N<-<o there exists a compact set KcH such that each path 7 from z,
which contains at most N disjoint intervals, where each projects to a path in some
V."\U: between 9U; and 9V;, lies in K. For such a 7 is covered by at most 2N+ 1
components of {n~1(V;7)}.

The next step in the proof of Lemma 2 is to make the assertion that there exists
a number dy>0 such that for any @€Q(R), the p-distance between dU, and ov;
exceeds d,, for all i. This is an immediate consequence of the compactness of O(R).

We now have enough information to prove the statements of Lemma 2. Argue
by contradiction. If (i) is false there is a sequence of arcs 7, from z, to z, with
lim z,€0H such that for some ¢,€Q(R) the ¢,-length of 7, does not exceed L for
some L<-oo. In particular 7, cannot contain more than L/d, disjoint intervals each
of which is over some ¥\ U; as described above. But then there is some compact
subset KCH containing all t,, a contradiction.

Suppose (ii) is false. There is then a sequence of arcs 1, from z, to z, where
lim z,={, lim z,={" yet the ¢,-length of 7, does not exceed some L< <, for some
¢,€Q(R). Again 1, cannot contain more than L/d, disjoint intervals each over some
Vi"\U; as described above. Therefore for each n, 7, can be covered by 2L/d,+1
components of {n(F;7)}. There exists a compact set K such that for each » there is
a cover transformation 7, such that T, (z,)CK. On the other hand each convergent
subsequence of the Mobius transformations {7} converges uniformly on X to
a point on H. This is a contradiction to the behavior of z,.
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4. Corollary 1. (i) Let KcH be compact. The closure of the set of points
which are at ¢*-distance =L<< from K for some @€Q(R) is compact.

(ii) For any pdir of points z,, z€H and any @€Q(R), there is a unique p*-
geodesic in H between z, and z.

Proof: The set in (i) is closed by definition and by (i) of Lemma 2 it is bounded
away from @H. Part (ii) is a consequence of the completeness of the ¢-metric; for
details see [5].

Corollary 2 (Rigidity). Let t(z, z') denote the p*-geodesic between z and z’.
Then for any compact set KcH, the number

L = sup [t(z, 2')|,»

is finite, where the supremum of the ¢*-length |- |, is taken over all pairs of points
z,2’€K and all @€Q(R). The number L depends only on K.

Proof: Choose sequences z,, z,, ¢, such that [1,(z,, z,)|, ~L. By passing to
subsequences we may assume that z,—z€K, z,—~z'€¢K, and ¢,~@€Q(R). Let
7(z, z’) denote the ¢*-geodesic joining z and z’. Because of the uniform convergence
¢, (2)~9*(2), zE€t, we have [t],*—~[t],«~. Moreover for any &¢=>0 and all suffi-
ciently large n, |t,|,*=|7|,*+¢& because 7, is the ¢ -geodesic and the pairs (z, z,),
(z’, z}) have uniformly short connections. The two relations lead to the inequality

L§ |TI¢*< oo,
5. Also very useful for our work in H is the following result.

Lemma 3. Let {z,}, {z} be two sequences of points in H such that lim z,={,
lim z,={" where {#{'€0H. For given ¢€Q(R), let 1, be the p*-geodesic between
z, and z,,. Then there exists r<1 such that for all n and all ¢€Q(R), t,n {z: |z|=r}
#=0.

Proof: Assume this is not the case for some ¢. Then there is a subsequence
{r,,} tending uniformly to an interval I on dH bounded by {, {’. There exists a cover
transformation T over R whose fixed points lie in the interior I°. To find such a T
first recall that the fixed points of the elements of the universal covering group G
are dense on 9H. Choose T;€G so that its attractive fixed point lies in 7°. Then
choose T,€G with different fixed points than 7;. For sufficiently large k=0,
T=TiT,T;* fills the requirement.

Let 6* denote the hyperbolic line in H between the fixed points of T (i.e. the axis
of T). Its projection o=mn(c*) to Ris a closed, but not necessarily simple, curve. Let
y be the p-geodesic on R in the free homotopy class of ¢. It has a lift y* with the same
end points as ¢*. But the geodesic arcs {r,,} are converging to the entire interval /
and therefore have geodesic subarcs %,, connecting points of y* for all large m. This
contradicts the uniqueness of @*-geodesic connections.
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Because of the compactness of Q(R), the argument remains valid if ¢ varies

in Q(R).

6. The hyperbolic metric in H has the property that any two points of the closure
H can be joined by a uniquely determined geodesic. We are now going to prove the
existence part of the analogous theorem for the @-metric. The uniqueness part,
which holds except for a special case mentioned below, has been shown in [3].

Theorem 1. Let ¢* be the lift to H of a holomorphic quadratic diﬂerenzial
@20 on a compact Riemann surface R. Then

(i) Every pair z,cH, (€OH can be joined by a uniquely determined ¢*-geodesic
ray y.

(ii) Every pair of boundary points {,{’'#( of H can be joined by a ¢*-geodesic y.
It is uniquely determined except for the case of a lift of a closed 9-trajectory of ¢.
In this case all the closed 9-trajectories of the associated annulus, including the two bound-
ary curves, have lifts connecting the same boundary points of H.

Proof: (i) Let zy€¢H, {(€0H be given. Let z,~(. We may of course assume
that ||@|=1 and the p*-geodesic y, connecting z, to z, has ¢*-length L,=n-d for
some fixed positive number d (e.g. d=1). We parametrize it by means of the natural
parameter u with respect to the ¢*-metric. The representation of y, is then given by
a function y,(x), 0=u=L,. By the completeness lemma, the points z,=7y,(k-d),
n=k, which are at a p*-distance k - d from z,, are bounded away from dH. We can
therefore pick a subsequence of {z,} such that the sequence of points z,=1,(d)
converges to a point zy,€ H. From this we take a second subsequence such that the
corresponding sequence of points z,,=7,(2d) converges to a point zy,€H, and so
forth. Finally passing to the diagonal sequence, which we denote by {z,} again, we
have arrived at a sequence of geodesics y, of ¢, connecting z, to z,, of length |y,|,«=
L,—, such that the sequence of points {z,}={y,(kd)} converges for every
k: zy—zZo, k=1,2,.... Let y be the curve composed of the geodesic connections
Ve Zok—1---Zoxs k=1,2, .... Then, clearly, the ¢*-length of every arc y, is equal to d.
Therefore, every subarc of y connecting z, to zy,, k=1,2, ..., is a geodesic. Thus,
y is a geodesic ray, with initial point z,, of infinite length. Because of Lemma 3 it
tends to the boundary 0H, and from [3] we conclude that it has a well defined end
point {’€dH. We claim {’={. If not, the geodesic connections 7, of z, and z, have
subarcs tending uniformly to one of the subintervals, I, say, between { and {’. But
this is a contradiction to Lemma 3.

(i) Let (¢ and choose sequences of points z,—~(, z,~(". Lety, be the ¢*-
geodesic joining z, to z,. We know by Lemma 3 that there exists <1 such that every
7, intersects the disk |z|=r. We can therefore fix a point 2y,€7,, |zo,/=r, for each
n. Using the above procedure for both half rays, with initial point z,,—z,, we find
the desired ¢*-geodesic y which connects { and {’.
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7. We are now ready to prove the following result about convergence of se-
quences of geodesic rays on the universal covering surface.

Theorem 2. Suppose R is a compact Riemann surface and H is its universal
covering surface realized as the unit disk. Suppose {,} is a sequence of normalized
holomorphic quadratic differentials converging locally uniformly to a differential ¢
on R and {¢*}, ¢* denote the lifted differentials to H. Let o* be a regular trajectory
ray of ©* with initial point zy¢ H and assume z,—~z,. Then any sequence of geodesic
rays o of @ with initial points z, and leaving z, with the limiting direction of o* tends
uniformly (with respect to the Euclidean metric in H) to o*.

Proof: We first consider the case where the rays «) are regular. We choose
O<r<1 such that z,6 K={z:|z|=r} for all n. Given L(K) according to Corollary
2, let y* be the subarc of «* with initial point z, and ¢*-length 2L(K). For all large
enough values of n the arc o has an initial arc y¥ which is contained in an arbitrarily
small rectangular neighbourhood (with respect to ¢*) of y* and which has ¢}-length
=>L(K). Therefore the arc a\y» stays outside of K.

Assume now that the theorem is wrong. Then, because of the above remark,
there is a closed, non-degenerate interval 7 on dH, and a subsequence of the differ-
entials {p*} and subintervals of the corresponding «, which tend uniformly to 1.
But this is a contradiction to Lemma 3.

Let now {o*} be any geodesic rays. Choose a short ¢}-arc f; orthogonal to o
through z, and on B, choose two points z,, z, on either side of z, with regular ¢;-
trajectory rays o and a”, respectively. Choose these to have the same initial direc-
tion as o*. Because of the divergence principle (see [5]) the rays o;;” and «; cannot
meet, nor can «!” and of. The ray o therefore stays between the rays o;” and o}”

*
Since both sequences {o}"} and {o}”} converge uniformly to o*, {«}} must as well.

8. A right extreme horizontal ray o* of p* — or equivalently « of ¢ on R — from
a point z,€ H is a geodesic ray composed of horizontal segments such that when
travelling along «*, going from one segment to the next at a zero of ¢*, one takes the
sharpest possible right turn. Similarly, left extreme horizontal rays are defined. And
also one can speak of left and right extreme horizontal geodesics.

A right extreme horizontal geodesic a* can be approximated from the right by
regular @*-trajectories. Namely take any sequence {z,} which converges to z€o*
from the right of «* where a regular trajectory of passes through z,. Then «) con-
verges to o* uniformly in H. Since of certainly converges to «* uniformly on compact
subsets of H, the proof is a repetition of that of Theorem 2. Similarly a left extreme
o* can be approximated from the left by regular trajectories.

Combining this approximation property of extreme geodesics with Theorem 2
yields the following extension.
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Theorem 2*. Hypotheses as in Theorem 2. Let o* be a left or right extreme
horizontal geodesic of ¢*. There exists a sequence of regular trajectories o) of ¢*
such that o converges uniformly to «* in H.

9. For later work we will need the following lemma concerning differentials
YeQ(R). Its proof is an adaptation of the methods of [3].

Lemma 4. Let a4, ..., «, be horizontal geodesics for ¥* in H with the following
property. The end points of the collection {a;} are arranged in cyclic order x, x,, ...,
X, 41=X, on OH where x;, x; ., are the end points of «;, 1 =i=n. Assume no projection
n(e;) is a closed curve in R. Then to each complementary component A of Uo; in H
corresponds some j so that 04 is the union of o; and the interval [x;, x; ] that it faces
on OH.

Proof: Assume the statement is false and 4 is a complementary component
whose boundary intersects H at most at the points {x;}. Suppose for example that
04 contains a segment of o, and fix a short vertical segment B to o, lying in 4.
Consider the regular horizontal rays leaving one side f* of f. They cannot cross
any {o;}. Therefore each one is contained in 4 and terminates at one of the points
{x;} on OH. We claim that for sufficiently short f all of them terminate at x, or all
terminate at x,. For as § shrinks to its initial point on o;, the rays converge to a ray
of &;. So we may assume all the regular rays from B+ terminate at x;. Then after
shortening f again if necessary, all the regular rays from f~ terminate at x,. We
conclude that there are lots of regular trajectories with the same end points as o,
which is a contradiction.

10. Trees and stars. Consider the critical graph in H of some ¢*, ¢€Q(R).
A tree is a component of the critical graph. If « is a horizontal ¢*-geodesic, we
denote by a* the tree that contains «.

A tree is the union of zeros of ¢*, horizontal segments connecting zeros, and
horizontal rays from a zero to a point on dH. If the tree a** is finite, that is contains
a finite number of zeros of ¢*, we will refer to it as the star of «.

Here is a list of properties of a tree aX.

a) A tree o is the union of extreme ¢*-horizontal geodesics which are found as
follows. Let {€a* be a zero of order n. There are (n+2) sectors determined at { by
the horizontal rays. With respect to each of these, an extreme ¢*-horizontal geodesic
o can be constructed. Orient ¢ so that it is right extreme. Then a* appears to the left
of ¢. Make all possible such constructions and denote the resulting collection of
extreme geodesics by {o}.

b) Every extreme ¢@*-horizontal geodesic contained in a* coincides with
some o.

c) If 4 is a component of H\a* then 4 is simply connected and bounded by
the union of some «; and the interval of H between its end points that its right side
faces.
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d) If «, is any ¢*-horizontal geodesic then either o, Ca*, or the two trees
ocl* , aX are disjoint. In the latter case ocl* lies in a complementary component
A of «* and the end points of a, do not separate the set of end points of all
geodesics in aX.

e) The tree a* is a star if and only if the decomposition {o} of (a) is finite. In
this case there are a finite number of points arranged in positive cyclic order on
OH, X, X5, ..., X,,.1=X;, such that for suitable indexing, a; has initial point x; and
terminal point x; 1, 1=i=n.

Xa
X3

a star

Xo
X5

X1

11. For the remainder of our work we restrict our attention to a subset of ad-
missible differentials @€ Q(R). The differential ¢ is admissible if its critical horizontal
graph in R contains no simple loops. Equivalently, ¢ is admissible if every tree for
its lift @* in H is finite, that is, a star.

We recall that the simple differential ¢[y]€ Q(R) corresponding to the free ho-
motopy class [y] of the simple loop 7 (not retractible to a point) is characterized by the
property that all its regular trajectories are closed and lie in [y]. If f: R—~S is a
homeomorphism between surfaces, the correspondence f, : @[y]—>¢[f(y)] extends
to a homeomorphism f,: Q(R)—~Q(S) (see [2]). Given ¢€Q(R) and its lift ¢*
to H, f.(¢*) is well defined as the lift of £, (¢).

The homeomorphism f: R—~S also determines a homeomorphism f*: 0H—~
OH (see Section 1). It has the property that p, g¢dH are the fixed points of a cover
transformation over R if and only if f*(p), f*(q) are the fixed points of one over S.

Theorem 3. Suppose f: R—~S is a homeomorphism between compact surfaces
and @€Q(R) is admissible. Then f,(9)€Q(S) is also admissible. Furthermore
if {1,C,€0H are the end points of a horizontal trajectory (extreme horizontal geodesic)
o of thelift o* of ¢ to H, then f*((y), f*((y) are the end points of a unique horizontal
trajectory (respectively, extreme horizontal geodesic) of f,. (™). If aX is the star of an
extreme horizontal geodesic o of ¢* and [x,, ..., x,.1=X;] are its end points on 0H,
then [f*(xy), «.r [ * (X 41)=F*(x,)] are the points on OH for the star of the correspond-
ing extreme geodesic of f.(¢*).
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12. Proof: Step 1. For some sequence of simple differentials, ¢=1im ¢[y,],
fix a horizontal or (right or left) extreme geodesic « for the lift ¢* of ¢ in H.
Theorem 2* shows the existence of a horizontal trajectory «, of ¢[y,]* such that
lim o, =«, uniformly in H. In particular, the end points p,, g, of o, on dH converge
to those p, q of a. The end points p,, g, are the fixed points of a cover transformation
T, such that T,(«,)=0o,. The projection 7(x,) in R is a closed trajectory of ¢[y,]
necessarily freely homotopic to y,. In fact the trajectories of ¢[y,] sweep out an annu-
lar region A,. The component A} of {n~1(4,)} in H which contains &, converges to o
uniformly in H; the relative boundary of 4% in H is the union of a right extreme and
a left extreme horizontal geodesic of ¢[y,].

Correspondingly over S there is a family of horizontal trajectories of o[ f(y,)]*
all of which share the end points f*(p,), £*(g,). Fix one of these and denote it f,.
Since the end points of f, converge to f*(p), f *(q) we claim that {§,} itself converges
to a horizontal geodesic of f, (¢*)=lim @[f(y,)]*. (At this point, we do not also
claim that f is extreme.)

But this is an easy consequence of Theorem 1. Note that f*(p) and f*(g) are not
fixed points of a cover transformation over S since p, g are not the fixed points of
one over R. Therefore there can be at most one f, (¢*)-geodesic with end points
F*(p), f*(q)- By the Existence Theorem 1 there is such a geodesic . The proof of
this theorem can be repeated for the geodesics f,: from ¢[y,]*—~¢* locally uniformly
and f*(p,)~f*(p),f*(q,)~f*(q) we conclude that §,—pB uniformly on H. Evidently
B must be horizontal.

Step 2. If « is not a trajectory, its star o* is the union of a finite number of
extreme ¢*-horizontal geodesics oy, oy, ..., &, With consecutive end points (xy, X),
(g, X3), ---» (X,, X;) on dH. Over S we have constructed the f, (¢*)-horizontal geo-
desics By, ..., B, which have the corresponding end points (f*(xy), f (X)), oo
(f*(x)./*(xD) on OH.

Moreover, by Lemma 4, each complementary component 4 of Up; in H is
bounded by some f; and the interval [ f*(x;), f*(x;;1)] that it faces on 0H.

Step 3. Conversely, suppose that f, is a trajectory or an extreme (left or right)
£ (p*)-horizontal geodesic. By considering f~* and (f *)~1 there is a corresponding
¢*-horizontal geodesic o,. The argument of Step 1 could be repeated to verify this
except for the fact that we do not yet know that (f*)~*(p), (f*)~*(q), where p,q
are the end points of f,, are not the fixed points of a cover transformation over R and
therefore we do not know there is a unique ¢*-geodesic tetween them. However this
difficulty is easy to overcome by using instead the fact that there is a unique ¢*-
geodesic from a given point z€ H to a prescrited (€dH. Given a sequence of tra-
jectories y, of some ¢*-¢ where the end points {,, {;, of 7, are known to converge
to points (#{’€H we can choose z,€y, so that for a subsequence, lim z,=
z€ H. The ray in y,, from z,, to {,, (or to {,,) converges to the geodesic ray from z to {
(or to {). As in Step 1, we end up with a ¢*-horizontal geodesic «, that corresponds

to -
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We claim that o, is either a trajectory or an extreme horizontal geodesic, depend-
ing on what B, is.

To understand why this is so consider its star ocg" which is formed by extreme
horizontal geodesics oy, ..., a,. If & is not itself extreme then its end points are some
x; and x; with j#it+1 (notation as in Step 2 for «). Back over S there are a finite
number of f, (¢*)-horizontal geodesics f,, ..., B, as descrited in Step 2. The original
B, lies in their union U f; since its end points do (Lemma 4). But its end points £*(x,),
f*(x;) are not consecutive points on 0H with respect to f*(xy), f*(x), .... Therefore
B, cannot be extreme, since it can te viewed as teing formed from maximal non-
critical segments of the collection {f;}. This is a contradiction.

The same argument shows that, for example, f, is actually a trajectory if and
only if o, is also one.

Step 4. Now given o as in Step 1 return to examine more closely the correspond-
ing f.. (¢*)-horizontal geodesic B. Consider its tree f* and the associated decompo-
sition {f,} into right extreme geodesics. By Step 3, to each B, corresponds an extreme
@*-horizontal geodesic o, over R. The orientation of B, induces via its end points
an orientation of o, . Since f* preserves orientation o, will also be right extreme with
respect to ¢@*.

Now we analyze the collection {«,} of extreme ¢*-horizontal geodesics over R.
Lying to the right of each «;, f* is a complementary component of U o, . We claim that
there are no other complementary components of Ua, in H.

Suppose that we are wrong and a complementary component 4 lies to the left
of every a;. Since for each k, the projection n(e) is a dense geodesic in R, there is
a point { in the interior of 4 such that for some cover transformation T over R,
T(€a,. Then T~ 'ay is an extreme geodesic through { which necessarily separates the
collection {o;}. Therefore by property (d) in Section 10 above, the £, (¢*)-geodesic o
corresponding to 7'~ o, liesin B*. Butsince T(T loy)=ay, soalso (f*Tf*Vo=p,
since this is true of the end points on dH. But then ¢ is necessarily extreme and by
property (b) is a member of the collection {B,}. This contradicts our choice of 7o,
in the interior of 4.

We conclude that U, is a closed connected set in H. Since each tree for ¢* is
finite, there can only be a finite numter of the {«,}. Furthermore, U, contains o
since the end points of « on gH lie to the left of all {o,} (the end points of f lie to the
left of all {B,}).

Consequently U o, can only be the star «* of «. We have already noted that there
are only a finite numtber of the extreme geodesics {0} and one of these must be «
itself. Over S, there are only a finite numter (the same numter) of {8} one of which
must be B. In fact U B, is f*. The proof of Theorem 3 is now complete.

13. We will apply Theorem 3 to the simplest case, that on the compact surface
R, ¢€Q(R) satisfies
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(i) Each zero of ¢ is a simple zero.

(ii) There is no ¢-horizontal segment connecting two zeros.

Note that if ¢ dw? satisfies (i) then except for at most a countable number of
values of 8, e®p dw? also satisfies (ii).

For such a differential, Theorem 3 can be refined as follows. As before, f: R—S
is a homeomorphism onto another (or the same) surface S.

Theorem 4. Assume ¢ dw? on R satisfies (i) and (ii). Then f, (¢) also satisfies
() and (ii) and there is a natural one-to-one correspondence between the horizontal tra-
jectories and the (4g —4) zeros of ¢ with respect to R, and those of f.. (@) with respect
to S. The correspondence is continuous in the Teichmiiller metric.

Proof. In this case each zero £ of ¢* in H gives rice to a star consisting of three
critical rays from &. The first statement of Theorem 4 is therefore the specialization
of Theorem 3.

As (S, f)—~(R,id) in the Teichmiiller metric it follows from the heights theorem
[2] that up in H, f, (¢*) converges locally uniformly to ¢*.

Theorem 2 shows that each trajectory of ¢* is the limit, uniformly in H, of the
corresponding trajectory of £, (¢*). Since the horizontal geodesics of ¢* are automat-
ically extreme we can also assert that more generally, each horizontal geodesic of
@* is the limit, uniformly in H, of the corresponding one of f, (¢*). The same reason-
ing applies to any other convergent sequence in Teichmiiller space.
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