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Introduction

The aim of this article is to generalize (e.9. to several complex variables) and

in part to strengthen the following three classical results on removable singularities

of meromorphic functions in which either the singularity set or the corresponding
cluster set is polar, i.e., locally of zero outer (ogarithmid capacity.

Let U denote a domain in C (or on a Riemann surface), and F a relatively
closed proper subset of U. A meromorphic function g: U\F-C-(:Cr{-})
extends then uniquely to a meromorphic function on all of U in each of the fol-
lowing 3 situations [of which a) is subsumed in b) here, but not always in our gen-

eralizationsl:
a) Fis polar, and the cluster set C(E,z) is distinct from C- for every z€F.
b) F is polar, and every zCF has a neighbourhood W in U such that

C-\E(I\F) is non-polar.
c) C(E,F) is polar (in C".), and E't} in

that F itself is likewise polar.)
Here C (E, F) denotes the cluster set of E at F,

as z ranges over the boundary of F relative to U.

Our strengthening of the results a) and c) consists essentially in replacing the

cluster sets by the corresponding (a priori smaller) fine cluster sets. This means

that the standard topology on C for the independent variable is replaced by the

Cartan fine topology (the weakest topology making all subharmonic functions con-

tinuous). - For a survey of the fine topology and some of its applications see [34].
The above result in the situation a) amounts to (closed) polar sets being remov-

able singularity sets for bounded holomorphic functions. And this, in turn, derives

from the removability of polar singularity sets for bounded harmonic functions,
a result going back to Bouligandll (1926) and Myrberg [58] (1933). They also

showed that (compact) polar sets are tlre only removable singularity sets for bounded

harmonic functions. This contrasts the situation for bounded holomorphic func-
tions where the compact sets of zero analytic capacity form the precise class of
(compact) removable singularity sets, see e.g. Garnett [37]. In particular, the com-

U\F. (It follows non-trivially

that is the union of all C (E, ,)
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pact sets of l-dimensional Hausdorff measure 0 form a class (containing amply
the class of compact polar sets) of removable singularity sets for bounded holo-
morphic functions, as shown by Painlevd, see also Zorettil8l] (1905) and Besi-
covich [4].

In the case where F reduces to a single point, a) is the classical Casorati-
Weierstrass theorem (see [l3, note on p. 4] for historical comments). It was
strengthened by Doob [23] in 1965 who replaced the cluster set by the fine cluster
set (in the case where F is a singleton). Doob suggests (in the same paper) that
one should see what, if any, contribution the fine topology has to offer to the extensive
theory of cluster values of meromorphic functions.

The result in the situation b) is due to Nevanlinna [6], Kap. V, § 4, Satz 3]
(1936) for U:C-, and to Kametani 148) (1941) for any U (both for compact F
only). See also the monographs U9l,1621,ll3l.

The result in the situation c) is Rad6's theorem, essentially as established in
t7210924) in the case where C(E,F):{0}. In that case the result asserts that a
continuous function E : U *C is holomorphic in U if it is holomorphic in \g -1(0).
This was extended by Cartan [10] (1952) to holomorphic functions of several var-
iables. And this n-dimensional version was further extended by Lelong t54J O95i)
who replaced 9-1(0) by E-r(E) for any closed polar set EcC. The still more
general cluster set version (now again in one complex variable, essentially as statecl
in c) above) is due to Stout [77] (1968). Further extensions were given by Goldstein
and Chow [39], Järvi [47],Boboc [5], Cole and Glicksberg[12], Cegrell [11], Oja [65],
Riihentaus 1731, and oksendal 1661. - The interesting question raised by stout [77]
whether the polarity of .E above (respectively of C(E, F)) can be replaced by some
weaker hypothesis seems to remain open.

The Rad6 type results obtained in the present paper (notably Theorems 2, 4,
6,7 and.S) can be regarded as generalizations of almost all the results of this type
quoted above. The starting point is Cartan's simple proof [10] of the original Radd
theorem, based on the subharmonicity of log lEl in all of U when g is non-con-
stant and continuous in U and holomorphic in \g-1(0). This allowed Cartan
to reduce Rad6's theorem to the removability of closed polar sets as singularity
sets for bounded holomorphic functions, that is, the result a) stated above. As
noted by Aupetit [1], the same method carries over to give a simple proof of Stout's
cluster set version of Radö's theorem stated in c) above.

Briefly speaking, the idea in Cartan's proof of Radö's theorem rests on the
following potential theoretic property of a holomorphic function g defined in a
domainin C': g iscontinuous, and uoE isharmonic in E-l(V) for any harmonic
function u in a domain V in C. This type of mapping, generalizing holomorphic
functions, can be traced back to Jacobi [a6] in 1848 (who considered mappings
from RB into c). continuous mappings with the stated property of preservation
of harmonicity are now called harmonic morphisms (or harmonic maps). In more
recent time harmonic morphisms have been studied by Gehring and Haahti [38]
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(1960), by Constantinescu and Cornea U7l (1965), and by Sibony 176l (1968). Further
contributions were made by Hansen [41], MegheaflT), Ikegami 1431, 1441, Laine
[50], [52], Schirmeier U41,175), Boboc [5], Fuglede [29], [30], [311,l32l,Ishihara [45],
Bernard, Campbell, and Davie [3], Oja 1631, 1641, [65], Baird and Eells [2], Pirinen

[70], Oksendal and Csink [9], and Popa [71]. (This list is not complete.)

The quoted paper of Boboc [5] (1978) seems to be the first in which the Rad6-
Stout theorem is extended to harmonic morphisms. In the same spirit we shall in
the present paper extend the above results a), b), c) to harmonic morphisms between
suitable harmonic spaces X and X'. At the expense of slightly reducing the gen-

erality of tlese spaces (notably by imposing on X the axiom of domination, rather
than just ellipticity as in [5]) we choose to perform these extensions first in the more
general frame of finely harmonic morphisms (Section 2), that is, the generalization
of harmonic morphisms to mappings from a finely open subset of X into X'. This is
a natural general frame for our use of fine cluster sets. By specialization afterwards
to usual harmonic morphisms (Section 4) and to complex analysis in one dimen-
sion (Section 3) or in several dimensions (Section 5) we arrive at the desired extended
and in part stronger forms of the classical results a), b), and c) above. We also obtain
analogues (not extensions) of the Riesz-Frostman-Nevanlinna-Tsuji theorem
on boundary cluster sets of a meromorphic function on the disc.

Finely harmonic morphisms were studied by Laine [51], [53], Fuglede [28],[32],
Oksendal 1671, and Popa [71].

An account of the results of the present paper (without proofs) was given in [35].
I wish to thank T. Ikegami, J. KräI, I. Laine, B. Oksendal, M. Shiba, and

H. Tornehave for valuable information.

1. Notations and preliminaries

In Sections 7, 2, and 4, X and X' denote two harmonic spaces in the sense of
[8] with a countable base for their topology. Except when otherwise stated it is
further supposed that X satisfies the axiom oJ- domination (Axiom D), and that X'
is weakly S-harmonic (cf. Definition I below). These basic hypotheses will not be
repeated. They are satisfied e.g. if Xand X' are Riemannian manifolds (each endowed
with the sheaf of solutions to the Laplace-Beltrami equation). Applications to
complex analysis are given in Sections 3 and 5.

There would be no actual loss of generality in assuming X to be connected.
Similarly as to X', except perhaps in results of the type of Rad6's theorem.

Recall that a harmonic space (with countable base) is a $-harmonic space if and
only if it admits a potential =0, cf. [8, Proposition7.2.l]. An open subset of a
harmonic space is called a p-set if it is S-harmonic as a harmonic subspace. Every
union of pairwise disjoint S-sets of a harmonic space is a S-set. Every harmonic

I13
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space admits a covering by S-sets [18, Theorem 2.3.31. A Riemannian manifold is

a p-harmonic space if and only if it has a Green function.
A subset E of a harmonic space is called polar if locally (hence actually on

each $-set) there exists a superharmonic function >0 equal to * - in E, cf.

[8, Prop. 6.2.1 andExerc.6.2.l].

Definition l. A harmonic space X' will be called weakly $-harmonic if any

open subset W' of a component Y' of X' is a p-set provided that Y'\W' is non-
polar (thus in particular when Y' is non-compact and W' is relatively compact
in Y').

By a theorem which goes back to Szegö [78] and Myrberg [58], every elliptic
G-harmonic space is weakly $-harmonic, cf. Constantinescu and Cornea [15], [8,
Exerc. 6.2.51. ln particular, every Riemannian manifold is a weakly S-harmonic
space, being a Brelot space (hence elliptic) admitting a superharmonic function

=0 (e.g. the constant 1 which is harmonic).
On the first harmorric space X we shall primarily use the fine topology, brot

sometimes also the usual (:ipitial) topology. Qualifications pertaining to the fine

topology are indicated by "fine(y)". The fine boundary of a set FcX is denoted

by 01F. Recall that every polar set F is finely closed and finely isolated and has

no finely interior points, cf. p8, Proposition 6.2.31, whence |tF:F.
On the second harmonic space X' we shall always employ the usual topology.

The closure Ä' of. a subset A' of X' is always taken in the one-point compactifica-
tion X'*(:y'r{-} or X') of the locally compact (possibly compact) space X'.
(Any other compactiflcation of X' could be used instead with exactly the same

results.)
Since the fine topology is generally not even lst countable, filters must be used

in the definition of fine cluster sets.

Definition 2. For any mapping E of a finely open set VcX into X' and
for any xQ01V the fine cluster set C1kp,x) of E at x is defined as the set of all
points x'(X'* for which there exists a filter $ on V converging finely to x such

tll€;t E(F)*x' in X'-. Equivalently,

C1kl,x):nE(Wav)
as lf/ ranges over a fundamental system of fine neighbourhoods of x in X.

Since X! is compact, C /rO, x) is a non-empty compact subset of X'*' More-
over, for any open set W'cX'* such that Cy(q,x)cW' there is a fine neigh-

bourhood W of x in X such that E(WaY)cW'. In particular, C1(e,x) reduces

to a single point x' if and only if
fir,r"*Lr* e(y): x'.

lf q: Y*X' is finely continuous (i.e., continuous with respect to the fine
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topology on X and the usual topology on X') and if X\Z is thin at x (that is,
if x is apolar and finely isolated point of [Z), then C1kl,x) is connected. (This
follows from the local connectedness of the fine topology on X together with the
fact that if W is a fine domain in Xand E apolar subset of W then IZ\E is finely
connected, see [25], [26, Theorem 12.21.) - There is a similar observation in which
the usual topology is employed throughout in place of the fine topology.

Recall that, for a usual open set UcX, the fine components of U are the
same as the usual components of U, see [25], [26, § 9.8].

Definition 3. For any mapping q of a finely open set VcX into X'and for
any set FcX not meeting V thefrne cluster set of g at F (more precisely at Fa|rY)
is defined as

Cr(E, F) : C1(Q, FnltV) : Ux€Fnorv Cyko, x).

For a mappng E of a usual open set VcX into X' and for any point x(|V,
respectively any set FcX\2, the usual cluster sets C(g,x) and C(g,F) are
defined in analogy with the above definitions, replacing throughout the fine topology
on X by the usual topology.

2. Finely harmonic norphisms

Definition 4. A finely continuous mapping E of a finely open set UcX
into X'is called a finely harmonic morphism if s'oE is finely hyperharmonic
in rp-t(Y') for every (usual) hyperharmonic function s' in an open set Y'cX'.

If X' has a base (for the usual topology) formed by regular sets then this defini-
tion is qquivalent to the original one in [28] in which §' was required to be harmonic
in V' and s'oE finely harmonic in rp-L(V'), cf .132, § 2.31. (In [28], X' was supposed
to satisfyAxiomD and hence to have a base of regular sets, cf. [18, p.233].)

In the very particular case where X':R (endowed with the affine sheaf) the
finely harmonic morphisms U*R are nothing but the finely harmonic functions
on U.

In the following proposition the general hypothesis that X' be weakly g-har-
monic is not needed (and not used in the proof).

Proposition l. Let U denote a finely open subset of X, and F a polar set
contained in U. Let E: UtX' be finely continuous and suppose that the restriction
of E to U\f' r.r a finely harmonic morphism of this set into X'. Then cp is a finely
harmonic morphism of U into X'.

Proof. With s' and V' as in Definition4 above, s'oe is finely continuous
in the finely open set E-a(V') and finely hyperharmonic in g-i(Z')\fl hence

finely hyperharmonic in all of E-'(V') according to 126, Theorem 9.141. n
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We proceed to extend Proposition I to the situation where g is defined on
U\F only, without assuming a priori that E should have a fine limit at the points
of F. Since F is polar, the fine cluster set C y(g, x) at each point x€F is a compact
connected subset of X! (Section 1).

Theorem 7. Let U denote afinely open subset of X, and F a polar set contained
in U. Afinely harmonic morphism g: \F*X' extends to a unique finely har-
monic morphism of U into X' if (and only if) the following two conditions are ful-
filled:

i) C r(E, F)c X'.
ii) For euery x€ F such that

compact and not a fi-set, there
I'\q(lY\^F) is non-polar.

Proof. The uniqueness is obvious since the polar set .F has no finely interior
points. The "only if" part is likewise evident. In proving the "if" part it suffices to
show that, for each xQF, the fine cluster set K'::C!(E,x) (contained in X'
by i)) reduces to a single point, for then g extends to a finely continuous mapping

E*: UtX' to which Proposition I applies.
l-et Y' denote the component of X' containing K', and consider first the case

where I' is a !p-set. Choose a finely open set l4t cU containing x and such that
E(ly\,E)cf'. Proceeding as in the proof in [5] we choose a',b'(K' and filters
$, 6 on fz\f converging finely to x such that q($)*a', E(6)*b'. For any
continuous hyperharmonic function s'=0 on Y', s'o{p is finely hyperharmonic
and i0 on ,y\f because g is a finely harmonic morphism on Ln\,F. Since
F is polar, s'og extends by fine continuity to a finely hyperharmonic function s
on W ac*ording to [26, Theorem 9.14], and hence (s'oE)(B)*s(x). On the other
hand, (s'oE)(8)*s'(a') by the continuity of s'. It follows that s'(a'):s(x), and
similarly s'(b'):s(2i1. Since the functions s' as above separute the points of I'
(even linearly), cf. [8, Proposition 2.3.21, we conclude that a':b', showing that
K'is indeed a singleton.

In the case where I' is non-compact we choose a relatively compact, open
set W' so that K'cW'cY'. Proceeding as above, now with the $-set W' in place
of Y', we see that K' is a singleton in this case too.

Finally suppose that Y' is compact and not a $-set. By hypothesis, there is
a finely open set W such that x(WcU and that Y'\g(ry\f) is non-polar.
We may suppose, moreover, that g(ty\F)cY'. Finally we may arrange, by
diminishing W' soitably, that E(Z\F) is a Borel set. In fact, every y(Z\F
has a fine neighbourhood K(y)cW\fl compact in the usual topology on X,
and such that the restriction of E to l((y) is continuous (with respect to the usual
topologies on K(y) and Y), cf. [28, Lemma 1]. By Doob's quasi Lindelöf principle,
cf . [24], [ 8, Exerc. 7 .2.6], there is a sequence (y,) c Z\F such that the sets KQr,)

the component Y' o.f X' containing C1(cl, x) is
,.r a fine neighbourhood W o.f x in (J such that
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cover II'\F up to a polar set E The set lIz\E (to replace lZ) is then finely open
and contains x, and

E0Y\E\4 : E(U"x(y)): U, E(x(y))

is a K"-set in I'. We may thus indeed assume that g([I 1F) is a Borel set con-
tained inY' and that I'\g(ry\f) is non-polar.

If K'\E(IZ\fl contains non-polar points we fix one such point c'. Let
a',b'6-K', and suppose that a'*c', b'+c' if c'exists. We propose to choose a

$-set W''cY' containing E(W\F)v{a',b'}. If c' above exists, it suffi.ces to
take W':Y'\{c'). Suppose therefore that c' does not exist. Then a' must be

polar in case a'§cp(W\F), and similarly as to b'.It follows that the Borel set

f'\(Efir:.F)v{a',b'}) ir non-polar, hence contains a compact non-polar set H'
according to an instance of Choquet's capacitability theorem, cf. [18, Proposition
6.2.21. Now W'::Y'\H' is a $-set inY'containing qPI 1F)v{a',b'}.

Proceeding as in the case where Y' is a $-set we find (replacing Y' by W')
that a':b', and so K'reduces to two points or one point, viz. K':{a',c'}, {c'l
or {a'} depending on whether or not c' exists. Being connected, K' is indeed a sin-
gleton. tr

We next bring a Radd-Lelong-Stout type result corresponding essentially
to Theorem 1, except that now C'r(E, F) --. rather than F itself - is supposed to
be polar.

Theorem 2. Let U denote afine domain in X, and F a relatiuelyfinely closed
proper subset of U. Let q be afinely harmonic morphism, not finely locally constant,

o/ \f into X'. I.f Ct(E, F) is a polar subset of X', then F is polar (in X), and E
extends to a unique finely harmonic morphism of (I into X'.

Remark. The proof below shows that the hypotheses ol E may be replaced
by the following a priori weaker assumptions: E is a finely harmonic morphism
of \F into X' for which there exists a fine component V of U\F such that
E(Y) is not a polar singleton (in X') and further that Cy(Ery, F) is a polar sub-
set of X'. (A similar remark applies to Theorems 4, 6 and 8 below.)

Proof. Let V denote a fine component of U\,F with the properties stated

in the above remark, and write V':E(V) and F':Cf(Oy, F). Note that

E:: Un|yV c. Un\r(U\f) C F,

and that E*g (if F#0, as

Consider first the case

on X' so that p' : f oo on
then have

we rnay assume) because U is finely connected.
where X' is p-harmonic, and choose a potential p'
F', cf. t8] or [8, Exerc. 6.2.11. For every x(.8 we

f*: ji+ (p'od?)_ r oo.
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In fact, for any zi€R, the open set {x'(X'lp'(x')=.[] contains F'which in turn
contains C1(gy,x) and so t}rere exists a finely open setW containing x such that
q (W nV) c. {x' Q X' lp' (x') = 1}. - Now define

Y
u\r,.

The above limit relation implies that s is finely continuous, and hence finely hyper-
harmonic in U according to 126, Lemma 10.11 (cf. also [27, Note 5, p. 82]). Since
Z is non-polar in X, cf. [8, Proposition 6.2.3], E(V) is non-polar in X' acrordiag
to [28, Theorem6] applied to EV, (cf. also [32, §2.4]), and hence «p(V) contatns
some point at whichp'is finite. This shows that {y(Uls(y):1-} is a proper
subset of U and hence polar according to [26, Theorem 12.9], U being a fine domain.
In particular, F(c\Z) is polar, and hence AF is finely connected according
to l2Å, Theorem 12.2). lt follows that U\F: V and hence that C /cp, F) : f ' (c X'),
and Theorem I applies (every component of X' being a S-set).

In the general case, consider again a point x€8, and choose a p-set W' in X'
containing K'::CJ(EV,x) e.E.as follows: Let Xj be any component of X'.lf
X', isa $-set put W|:X;. ff Xj is neither compact nor a p-set take for ll', any
relatively compact open set in Xj containing the compact set K'nXj. Finally, if
Xrl is compact, but not a S-set, choose W', as Xj less some compact non-polar
subset of the open set Xri\K' (which is non-empty because K' is polar). The
desired set W' is now defined as the union of all the mutually disjoint $-sets W'r.

Now let W be a fine domain in U containing x and such that q1Wt,V1cW'.
Then Fr::lZ1V is a relatively finely closed proper subset of W because WnV
#A, x being on 01V. The restriction { of E to WaV:W\Fv maps no fine
component of WnV onto a polar point of X', again according to [28, Theorem 6]
applied to eV. The fine cluster set C7(t, Fr,) of r! at Frn|1(I,VaV) is contained
in the $-set W' (because E(Wr.facW) and also in the polar set F' (because
Fyn0y(WnV)cWa0tVcEcF). Applying what was proved above to the finely
harmonic morphism r!: W\F.*W' (a $-set), we conclude that Fr:lt[/\Z is
polar, and thatl/t, and hence gy,lnas a fine limit at x, and therefore at any point
of E.

Being polar, W\V is thin at x, and so is therefore lV (because W is a fine
neighbourhood of x). Since .Ec [2, it follows that E is thin at x, and this applies
to each x(8, whence E is polar, by Axiom D, cf. [18, Corollary 9.2.3]. This implies
that \E is finely connected, by 1251, [26, Theorem 12.2], and since Zc\,E
and (å12)n(\E):@, we must have Z:\E But I/c\FcU\g, so

that F:E, a polar set, and Z:\F. Altogether, O(:Vy) has a fine limit at
each point of F(:E), and so g admits a finely continuous extension to U. Thus
Proposition I applies, showing that this extension is indeed a finely harmonic
morphism. tr

IP' o rp in
t+.. in
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The beginning of the above proof in the simple case where x' is lp-harmonic
carries over mutatis mutandis to establish the following fine topology version of
the Riesz-Frostman-Nevanlinna-Tsuji theorem , cf . 179, Theorem yrll.44, p. 339).

Proposition 2. suppose that x' is $-harmonic. Let v denote a fine domain
in x, and E a subset of the fine boundary 07v. Let E be a non-constant finely har-
monic morphism ofv into x'. I.f c/E, E) is a polar subset of x', then E has zero
harmonic measure vith respect to Y in the sense that there exists a finely superhar-
monic function s>0 on V such that

nXlflms(y) : ** for ersery x€8.

Proof. Wite F'::Cr(E,E), and proceed as in the very beginning of the
proof of rheorem 2. The function s::p'oE is seen to have the desired prop-
ertles. u

Remarks. 1) lt x is S-harmonic, the existence of s as stated is equivalent
to E being a null set with respect to the (fine) harmonic measure elr at some (hence
any) x€V. This is easily shown by application of results on the (fine) Dirichlet
problem for v, cf. the end of the proof of proposition 7, Section 4. Recall that
e!/ is carried by 01rt and does not charge the polar sets, cf. [42, propositions 2g.2
et 28.51 or [18, Corollary 7.1.3, Theorem 9.1.1 k), Exerc. 9.2.2d)].

2) By localizing the notion of sets of zero harmonic measure on 01v one can
replace the hypothesis that x' be p-harmonic by our standard assumption that
X' be weakly $-harmonic. In that case functions like s above will be defined only
on wav for a suitable fine neighbourhood w of each point x(E, constructed
as in the latter part of the proof of Theorem 2.

3) Reversing the order of presentation we see that Riesz type results (like
Proposition 2) can be used as the first phase in establishing Rad6 type results (like
Theorem 2). This connection has been noticed quite recently by oksendalf66),1671.

4) In the important case X:x':c-, aksendal[67] has obtained by use of
Brownian motion a result stronger than proposition 2 above. In place of the fine
cluster set C 1(e, E) he uses the asymptotic set

A(E, E) r: [J,<r A(E, x) (cC-),
where A(E,x) for x(\yv denotes the set of asymptotic values of E at x in the
usual sense. (We write A(E, x):fr if x is inaccessible from Z.) Note that A(E, E)c
cr(E,E) because every fine neighbourhood of a point x(c contains circular
circumferences of arbitrarily small radii, centered at x, a well-known property in
the plane, not extendable to higher dimensions. Using the Riesz type result thus
obtained oksendal deduces a corresponding Radö type result for E a bounded
finely harmonic morphism \F*C (with U a fine domain e.g. in C_).

In the next result (to be applied in subsequent sections) we need not assume
x' to be weakly p-harmonic. on the other hand we impose on x' the axiom of
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polarity, cf. [8, § 9.1]. It is a consequence of Axiom D and hence fulfilled, in partic-

ular, by any Riemannian manifold.

Proposition3. Suppose that X' satisfies the axiom of polarity and that the

points of X' are polar. Let U and V denote finely open subsets of X such that YcU,
and let E be a finely harmonic morphism of U into X'. I.f U\Y is polar (in X) then

E(U)\E01 is polar (in X').

Proof. We first show that <p(U), and similarly cp(V), is quasi Borel, i.e.,

differs only by a polar set from some Borel set. In fact, U has only countably many
fine components ([25], 126, § 12.11), and the image of each of these is either a single

point of X' or else a finely open subset of X' awording to [28, Theorem '7], [32,
§2.41; whence the assertion because every finely closed set A'cX' is the union
of its base b(A')and the polar set l'\å(l'). (Recall thatb(A') is a G5 because it
intersects each S-set of X' in a G5, by [18, Corollary 7.2.1), and X' is the union of
a sequence of !P-sets.)

In proving that the quasi Borel set q(U)\qfl) is polar we may assume that
X' is S-harmonic and thal U is finely connected. It suffi.ces to prove that any com-
pact subset K' of E(U)\EQI) is polar. Proceeding by contradiction suppose

that K' is non-polar. Choose a finite continuous strict potential p' on X', cf. ll8,
§ 7.2], and write u'::p'-Ry. Thenu'is u.s.c. and >0 ofl X', and superharmonic

and >0 in X'\K'. Moreover, u':O orr the base b(K'), a non-empty subset of
the non-polar set K'; hence u'is continuous at each point of b(K'). lt follows that
u'otp>0 in U, u'otp is finely hyperharmonic and >0 in VcE-L(X'\K'), and

finely continuous and :0 at each point of E-L(b(K')), a non-empty subset of
the polar set \2. Consequently, ths finely hyperharmonic extension of u'oE
fromY to (I,cf. [26, Theorem9.14], equals 0 on E-l(b(K)) in contradiction with
126, Theorem 12.61.

3. Äpplications to finely holomorphic and finely meromorphic functions

First an easy extension to Riemann surfaces of the notion of finely holomorphic
function defined on a finely open subset of C and taking values in C, cf. [28], 1201,[21],

[55], [56], [33], and the survey [3a]. We only consider connected Riemann surfaces

(with a countable base).

A Riemann surface X becomes a Brelot harmonic space with a countable base

when the sheaf of harmonic functions is taken as the functions which are locally
real parts of holomorphic functions from (open subsets of) X into C. Equivalently,
the harmonic functions on an open subset of X are the solutions on that set to the

Laplace-Beltrami equation with respect to a Riemannian metric on X chosen

- as it may be done - so that every holomorphic function (on any open subset

of X) becomes complex harmonic.
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since the constant functions are harmonic, a Riemann surface x is thus a
connected 6-Brelot space. It is known that Axiom D holds for every Riemann sur-
face, and that its points are polar. Also recall that x is lp-harmonic if and only if
X has a Green function.

Now consider two Riemann surfaces X, X', A mapping g of a finely open
subset u of x into x' is termed finely holomorphic if E is finely continuous (i.e.,
continuous from u with the fine topology to x'with the usual topology) and if
moreover z'ogo2-r is fine§ holomorphic (on the finely open subset z(vnq-L(V))
of c into c) for every choice of complex coordinates z, z' on coordinate neigh-
bourhoods v,Y'in x, x', respectively. (Note at this point that the holomorphic
bijection z: v*z(v) (cc) is, in particular, a harmonic isomorphism, hence a
homeomorphism in the fine topologies on v (cx) and z(v) (cc) according
to [17, Theorem 3.5].)

Every finely holomorphic mapping rp: (I*X, as above is, in particular, a
finely harmonic morphism (because z'o{poz-t above is one, cf. [33, §4], [34]).
If U is a fine domain and g is non-constant then the pre-image q-r(d) of any
point a'(x' is not only polar (equivalently: finely discrete and finely closed),
but even countable, cf. [33, § 15] for the typical case X:X,:e. - Corresponding
to Proposition I we have

Proposition 4. Let tp denote a finely continuous mapping of a finety open
subset u of a Riemann surface x into a Riemann surface x'. If E is finety holomorphic
,n t \,F for some polar set F in X thm g is finely holomorphic in alt of U.

Proof. via local coordinates z, z' fot x, X' this reduces immediatery to the
corresponding result for the case x:X':C which in turn is contained in [33,
Cor. 31. fI

It follovis from this proposition that, in the case of Riemann surfaces x, x,,
the results from section 2 remain valid if the term "finely harmonic morphism,,
is replaced throughout by "finely holomorphic mapping,'.

While retaining X as an arbitrary Riemann surface we shall henceforth spe-
cralize to x':c*, the Riemann sphere. Finely holomorphic mappings of a finely
open set uc.x into c or c- will be called fuely holomorphic functions or finely
meromorphic functions, respectively.

Consider a finely meromorphic function 9: U*C*. For any point a€U
and any coordinate z: Y*C on X near a such that z(a):O there is a unique
integer z such that tpz-n extends by fine continuity to a finely holomorphic func-
tion U\Y*C taking a non-zero value at the given point a. (This assertion reduces
immediately to the case x:c.) If 9 itself is finite valued at a (hene,e in a fine neigh-
bourhood of a) the existence of this order n (now >0) follows from [33, Thdoröme
1l b), Corollaire 3J. lf E@):* then Uq: UaY*C_ is finely holomorphic off
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the zeros of g; and it follows again thatn exists as stated (now z<0), whence a

should be called a pole of order Inl for E in this case.

A globally finely meromorphic fwction is, by definition, a function cp: u*c*
representable as the quotient between two finely holomorphic functions U*C.
Such a function is, in particular, finely meromorphic. A sufficient condition for a
finely meromorphic function E: (J*C* to be globally finely meromorphic is

that g omits at least one value, i.e., E(U)*C*. [This condition is far from being

necessary, as shown e.g. by the (globally) meromorphic function z*z*Uz on C

whose range is C-.] Another sufficient (but not necessary) condition is that X be

non-compact and that E have at most finitely many poles, for then there is a holo-

morphic function r! on x such that gry' becomes finely holomorphic in u, cf. e.g.

Kral49,p.35al.
On a usual open subset U of a Riemann surface X the holomorphic and the

finely holomorphic functions (J-c ate the same, cf. [33, p. 63] for the typical

case X:C. It follows that the globally meromorphic and thegloballyfinelymero-

morphic functions on X ate the same. (On a non-compact Riemann surface every

meromorphic function is globally meromorphic, see Kra 149, p. 3551.) - From

the above we have the following criterion concerning functions defined on all of X:

Proposition 5. afinely meromorphicfunction cp: x*c* is meromorphic if
E(x)+c*, or more generally if euery point of x has a (usual) neighbourhood w
such that E(W)*C-.

Example. ln X:C wite zo:)-', and choose a sequence of constants 4n

tending to 0 sufficiently rapidl! &s lz*e so that ) la,l=.* and the series

) a,l(z-2,\ converges uniformly in some fine neighbourhood of 0. The series

ä*rg"r locally uniformly off 0 and the points zn, hetrcr- determines altogether a

finely meromorphic function E in alt of C, cf. [33, p. 74]. (Earlier this example was

or.d by Doob [23, p. 125 f.], and similar examples were studied e.g. by Borel, cf.

[6].) Clearly q is not meromorphic in the whole of C, in particular not globally

finely meromorphic.
From Theorem I combined with Propositions 4 and 3 we immediately obtain

the following result of Nevanlinna-Kametani type for finely meromorphic func-

tions:

Theorem 3. Let IJ denote a finety open subset of a Riemattn surface X, and F

a polar subset of U. A finely meromorphic function E on U\F extends to a unique

finly *rro*orphicfunction q* on u if (and only if ) euery point of F has a fine neigh-

bourhood. W in U such that C-\EQ\F) is non-polar. If euen C-\E(U\F)
is non-polar then so rs c-\E*(u), and hence E* is globally finely meromorphic.

Remarks. l) This result (for the case X:C) was announced in [34]. The

typical case where F reduces to a single point a€ U was obtained in conversation

*itn f. J. Lyons and A. G. O'Farrell. - In the case of a usual holomorphic func-
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tion E: X\{a}*C (with X non-compact) such that C\q(llry{o}) ir non-polar
for some fine neighbourhood w of a we conclude from Theorem 3 that E extends
to a usual meromorphic function in all of x (with a as its only possible pole), viz.
to a finely meromorphic function in x with at most one pole. - This result was
pointed out by Lyons (in a letter to the author). It is stronger than the otherwise
similar result of casorati-Weierstrass type obtained by Doob [23, Theorem 7.3]
(prior to the appearance of finely harmonic or finely holomorphic functions).

2) In view of Propositions 3 and 5 we infer immediately from the first part of
Theorem 3 the analogous result in which the word "fine(ly)" is deleted throughout
(while F is now a relatively closed polar subset of U), and we thus recover the result
b) stated in the introduction and due essentially to Nevanlinna [61] and Kametani
[48]. Alternatively see Theorem 5c in Section 4 below (covering in particular the case
of "meromorphic" functions of several complex variables, cf. Section 5). - Note,
however, that the example onp. 122 shows that w cannot be allowed to be just afine
neighbourhood in the Nevanlinna-Kametani theorem.

Corollary. Let F denote a polar relatiuely closed subset of an open set U in X.
A holomorphic function g: \F*c extends to a unique holomorphic function on
U if (and only if) Cr(E, F)cC.

Proof. For each z€F choose a bounded open set W' in C containing the
compact set Cy(e,z). There is then a fine neighbourhood I{ of z in U such that
E(lf\$c-W'. Since C-\ry' is non-polar, it follows from Theorem 3 that E
extends to a unique finely meromorphic function E* on U. Since q*(z)*- also
for z€F (because then E*Q)qCr(E,z)c.C), q* ir finely holomorphic in U and
hence holomorphic there. tr

A further consequence ofTheorem 3 involves the irregular part of the boundary
of an irregular open set.

Corollary. Let E be meromorphic in a usual open set VcX and let F denote
the set of irregular pointsfor the Dirichlet problem in V. If C_\Efl) is non-polar
then E extends by fine continuity to a unique finely meromorphic finction q* on the

finely open set YvFcX.

Like in Theorem 3 it sufrces to suppose that every point of F has a fine neigh-
bourhood W in X such that E(W^Z) is not co-polar. - Note that, in the affir-
mative case, very precise information is available as to the behaviour of g* in a
suitable fine neighbourhood of each point of F, cf. f33, Thdoröme 1ll (for a typical
case). - To derive this corollary from Theorem 3, observe that rp is, in particular,
finely meromorphic in Z:\F tvtth U::VuF finely open, theirregularpoints
for Z being precisely the finely isolated points of [Z

Next we derive from Theorem 2 a Radd-Stout type theorem for finely mero-
morphic functions:
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Theorem 4. Let U denote a fine domain in a Riemann surface X, and F a
relatiuely finely closed proper subset of U. Let E be fmely meromorphic in U\F with

E'#0, and suppose that C /q, F) is polar (in C-). Then F is polar (in X), and E

extends to a unique finely meromorphic function «p* on U.

ProoJ'. The hypothesis E'70 means that E is not finely locally constant.

According to Theorem 2, F is polar, and g extends to a finely harmonic morphism

E* of U into C-. By Proposition 4, E* is finely meromorphic. tr

For bomded finely holomorphic functions a stronger result has quite recently

been obtained by 0ksendal[67).
For usual holomorphic functions we obtain the following

Corollary. Let F denote a relatiuely closed proper subset of a domain U in X.

If q is holomorphic in t/1F with q'#0 and if C!(8, F) is polar and contained

in C, then F is polar and q extends to a unique holomorphic function in U.

In fact, the finely meromorphic extension of g to U omits the value - and is

therefore holomorphic, by Proposition 5. tr

Remark. The example on p.122 shows that one cannot in general, in the mero-

morphic case, omit the word "fine(ly)" (4 times) in Theorem 4 and still keep the

fine cfuster set C.(e,F). But if one also replaces the fine cluster set by the usual

cluster set then one recovers the Lelong-Stout extension of Rad6's theorem men-

tioned in c) in the introduction. In fact, when C(E, F) is polar, in particular #C-,
then so is the compact set c(E,r) for each point z of F (polar by Theorem4).

Hence C(E,z) has a compact neighbourhood Llt'*C*, and Proposition 5 applies

to a neighbourhood W of z in U such that gQf\F)cW', whence tp*(W)cl4/'.

- See also Theorem 6 b) below which covers moreover the case of holomorphic
(or "meromorphic") functions of several complex variables, cf. Section 5.

4. Harmonic morphisms

In this section we shall derive from the results of Section 2 similar results for
usual harmonic morphisms, whereby certain subsidiary hypotheses (e.g. $-har-
monicity of the target space X') are often indispensable. On the other hand, when

adapting Theorem 2 and Proposition 2, the hypothesis that the fine cluster set be

polar will be weakened (see Theorem 7 and Proposition 7 below).

A harmonic morphism q: X*X' is, by definition (cf. e.g. l32l), a continuous

mapping (with respect to the usual topologies on both spaces) such that s'oq
is hyperharmonic in E-r(V') for every hyperharmonic function s' in an open set

V'cX'.
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If X'has a base of regular sets (e.g., if X'is a Brelot space, as in [17]), then
this definition is equivalent to the original one in tl7, § 3] in which the word ..hyper-

harmonic" above was replaced by "harmoniC'(twice), as noted e.g. in 1741,[5],t321.
Every harmonic morphism is likewise a finely harmonic morphism on account

of 126, Theorem 8.71. The key to the application of the resultsof Section 2tohar-
monic morphisms is the following result in the opposite direction.

Proposition 6 (Laine [51]). sappose that x' is a g-harmonic space and that
the points of x' are polar. Eueryfinely harmonic morphism cp: x*X' is continuous
(in the usual topologies on X and X') and istherefore ausualharmonicmorphism.

Remarks. 1) Let x' be a $-harmonic space satisfying Axiom D and admitting
a bounded harmonic function h'>o on x'. The hypothesis (in proposition 6)
that the points of X' be polar can then be weakened to x'\ft/) being connected
for every (non-polar) point x'€x'. And this condition is always fulfilled if ](,
is a Green space in the sense of Brelot and Choquet [9]. Still more generally it would
suffice to assume that R[]']<å' in X'\{x'} for every non-polar point lcx,.
This latter observation is obtained by an easy adaptation of the proof in [51]. It
covers, e.g., the case where x' is a bounded open interval on R (also covered by
[26, Theorem 9.8]).

2) Every finely harmonic morphism E: X*X' is a harmonic morphism in
case x is a 2-dimensional Riemannian manifold, while x':R or c or any 2-dimen-
sional Riemannian manifold without compact components. For x':R or c this
follows at once from the fact that every finely harmonic function on X is harmonic,
in particular continuous, so that g must be continuous, see [27]. rn the last case
we further invoke a result by Greene and wu [40] according to which every con-
nected non-compact n-dimensional Riemannian manifold admits a (proper) embed-
ding in R2tr+1 in terms of harmonic functions on x. - The exampre on p. I22 shcws
that all this would break down if x' were allowed to have compact components,
e.g. X':C-. On the other hand, the conclusion of proposition 6 does not hold
if X:R' with n=2 and X':R, see the example in [27].

In view of the above proposition we obtain from Theorem 1 the following
analogous result for usual harmonic morphisms, keeping in part the fine cluster set.

Theorem 5. suppose that the points of X' are polar. Let F denote a closed
polar subset of x. A harmonic ntorphism g: x\F*x' extends to a unique har-
monic morphism of X into X' in each of the following 3 situations;

a) X' isg-harmonic anC C/e,F)cX'.
b) X' is connected and non-compact, and C(rp, F)cX'.
c) X' is connected, compact and satisfies the axiom of polarity, and euery point

of X has a neighbourhood W in X such that X\E(IZ\fl is non-polar.

Proof. Ad a): Follows from Theorem I in view of proposition 6.
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Adb): For any x(F choose a relatively compact open set [il''cX' so that

C(E,x)c.W', andnext an open set WcX so that x(W arrd 8-1Wr"4cW',
whence c(glr\r, F)cW'. Sine,e w' is a $-set, it follows from Theorem I that

91ryn ""t"nd. 
iiom Z fl7 to a finely harmonic morphism af W into W', arld

främ-froposition 6 that this extension is a usual harmonic morphism, whence the

assertion of the theorem.

Ad c): we may assume that x'is not lp-harmonic. By Theorem 1, E extends

to a finely harmonic morphism E*: X*X'. Taking W open, the open set ,7\F is

a Ko, and so is qfiz\F) because g is continuous. It follows that X'\E('Y\j7)
is not even inner polar, and the same applies therefore to X'\E+QIr) because

E-of\EQf \F) is polar on account of Proposition 3. Since X' is weakly $-har-
monic there exists thereforee a $-set W' of X' containing E*Qry), and hence the

restriction of g* to W is a usual harmonic morphism according to Proposition 6'

whence the assertion of the theorem.

Remarks. 1) In the situations described in Remark 2 to Proposition 6, Case b)

of Theorem 5 remains in force (in view of Theorem 1) when C(E,F) is replaced

by CÅE,fl. (As an example recall the first corollary to Theorem 3') In the case

X':R and F: asingleton this is due to Doob [23, Theorem 7.1].

2) For each x(F the existence of a (usual) neighbourhoodW ol x such that

g0r^\r) is not co-polar is equivalent to the rattge set 8(q, x) of E at rc not being

co-polar. Here

fi(E, x):: O EQZ\F)

where W ranges over a fundamental system (e.g., a countable one) of neighbour-

hoods of x in X. (This is because a countable union of polar sets is polar.)

3) If we combine Theorem 5 above with Theorem 2 in Section 2 we obtain

a fine cluster set version of Rad6's theorem which may be described as follows: In

Theorem 5 we add the hypothesis that X be connected, and replace the assumption

that the closed set F be polar (in X) by the hypothesis that C/Q, F) be a polar

subset of X' (and that F+X). Assumingmoreoverthat I isnotlocallyconstant,we

conclude (by Theorem 2) that F is polar, and hence (by Theorem 5) that I extends

uniquely to a harmonic morphism of X into X'. - In the case where X' is $-har-
monic this leads to Part a) of the following theorem:

Theorem 6. Suppose that X is connected and that the points of X' are polar.

Let F denote a closed proper subset of X, attd E a harmonic morphism,not locally

constant, o/ X\F into X'. In each of the following situations:

a) X' is $-harmonic and C1(Q, F) is a polar subset of X', or

b) C(E, F) is a polar subset of X',
itfollows that F is polar (in X), and that q extends to aunique harmonic morphism

of X into X'.
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Proof ofb). Since Cr(E,F)c.C(q,F) it follows from Theorem2 that F is
polar, and that E extends to a unique finely harmonic morphism g*: X*X'. For
any x(F let Y' denote the component of X' cantaining the compact connected
polar set C(E,x). Choose a relatively compact open set LY'cY' containing
C(E,x) and so that I'\IZ' is non-polar (if Y'is compact); W' is then a p-set.

Finally choose W open in X so that x€W and [1ftz\ScW' and hence
(E*W)cW'. It follows now from Proposition 6 that E*, restricted to W, is a
harmonic morphism of W into ll'',hence also into X', from which the assertion
follows. tr

Remarks. l) Part a) with C(E, F) in place of Cy(e, F) is due to Boboc [5]
(for slightly more general harmonic spaces X and X' than here). See also Oja [65]
for further generalizations. - Note that the hypothesis that X' be lS-harmonic
cannot be removed in a), cf. the example on p. 122.

2) It would be only apparently more general to allow C(E, F) in Theorem 6 b)
to be just inner polar (rather than polar). This is because F is a Ko in X, and so

C(E,F) is a Kotn X'.lt is easily shown, in fact, for compact KcX tl:o;t

C(E, K): O* o*nd(W\

We proceed to partially strengthen Theorem 6 a) in the spirit of Oksendal

1661,167). For this we assume that X and X' are Brelot spaces and that all points
of X' are strongly polar it the sense of [31], that is, we should have s'(-rl): a -
for every superharmonic function s' in some open neighbourhood U' of x' such

that s' is harmonic in U'\{x'}, but not at x'. lJnder these hypotheses every non-
constant harmonic morphism of a domain VcX into X' is an open mapping (with
respect to the usual topologies on both spaces), see [31]. - Every Riemannian
manifold X' is a Brelot space, and its points are strongly polar (if dimX'>l).

Definition 5. Let V' be a domain in a lp-harmonic Brelot space X'. A set

F' cX' is said to be polar with respect to Y' tf F'nY' is polar and if F' has har-
monic measure 0 with respect to Y' (at some, and hence at any point of Y').

Remark. Z' is resolutive and has therefore a harmonic measure Ul,,' at each
pointy' of V', cf. [18, § 1.2 and Theorem 2.4.2]. - It is not difficult to show that
F' is polar with respect to Y' if and only if there exists a superharmonic function

^y'>O on V'sach that s':*- on F'aV' and

,r,tg, 
s' (Y') : f oo at every point x'€ F' a\Y' .

In particular, a polar set in X' is polar with respect to every
(The converse is false when the domain is given.)

Theorem 7. Suppose that X and X' ore Brelot spaces, that
that X' is $-hormonic, and that the points of X' are strongly polar.

domain in X'.

X is connected.,

Let F denote a
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closed proper subset of X. Let E be a harmonic morphism o/ \f into X', and sup'

pose that there exists a component V of X\F on which <p is non'constant and such

that C/vy, F)cX' and further that Cr(Etr, F) is polar with respect to the

domain E(V). Then F is polar, and E extends to a unique harmonic morphism of
X into X'.

Proof.Write V':E(Y) and F':Ct(ey,F), and choose s' on V' as in
the remark to Definition 5. Note that 0tYc.0r(X\,FXc,F) because Z is also a

fine component of X\4 cf . 126, p. 88]. As in the beginning of the proof of Theo-

rem 2 we then have

fineli14(s'oq)@) : +- for every x(rytV'

In fact, for any ),(R, F'is contained in the interior of W' :: {x'(V'l{(x')=)'\vf,Y'.
(Consider separate§ points of F'inV', orr0V', or in the interior of lV'.) In par-

ticular, C1(ey,x)c(14/')o, and so there is a fine neighbourhood W of x in X
such that

E(WnV) cW'nY' : {x'(Y' ls'(x') >,1}.

The above limit relation implies that the function s>0 defined by s:s'oE in
Y and J: * - in [Z is finely continuous. Being moreover finely hyperharmonic

in V, s is finely hyperharmonic on all of X according to 126, Lemma 10.11, and s

is therefore also a usual hyperharmonic function on X, cf. [26, Theorem 9.8]. Being

open and non-empty, E(Y) conrains points where s'is finite, and so sl f -, show-

ing that s is superharmonic on the connected Brelot space X. Since s: * - on

F (clV), F is polar (and Z:X\F), and Theorem 5 a) applies. n

The above proof carries over mutatis mutandis to establish the following fine

cluster set result of Riesz-Frostman-Nevanlinna--:Tsuji type as strengthened by

Constantinescu-Cornea U4l, U6l and independently by Doob 1221, cf . also Oksen-

dal166l,1671:

Proposition 7. Suppose that X and X' are $-harntonic Brelot spaces atd
that the points of X' are strongly polar. Let V denote a domain in X, and E a subset

of thefine boundary |yV. Let E be anon-constant harmonic morphism of Y into X'
such that C1kl,E)cX'. If C1(E,E) is polar with respect to the domain E(V)
then E has zero harmonic measure v,ith respect to each point of V.

Proof. Write F'::C1(E,E), and proceed as in the proof of Theorem 7,

now with F replaced by E and ey by E. This leads to a finely superharmonic func-
tion s::s'og>O on V tending finely to * - ttt each point of .8. Thus s is a "fine
superfunction" for the function f equal to *- on .E and to 0 on the rest of |tV,
cf.126, §141. We therefore have E!=s, showing thatlis integrable with respect

to elr when xQY and. s(x)= * -. Consequently, E has elv-measure O for such x,
hence actually for any x€V, cf.126, Corollary 12.61. tr
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Remark. Results similar to Proposition 7 are well known for harmonic mor-
phisms in situations where .E is a subset of an ideal boundary of a harmonic space
X (:V), cf. Constantinescu and Cornea [17], Sibony [76], Ikegamif{3l, Oja[63],
1641. - These two types of fine cluster set versions of the Riesz-Frostman-Nevan-
linna-Tsuji theorem do not seem to imply one another, but unlike the version
involving the Martin boundary, say, Proposition 7 does not seem to contain the
classical theorem of F. and M. Riesz.

5. Applications to holomorphic functions of several variables

Let us specialize the results of Section 4 to holomorphic mappings X*X,,
where X is a domain in Cn, n=1, or more generally a Kähler manifold of com-
plex dimension n, and where X'is C or C-, or just any Riemann surface. Then X
and x' are connected G-Brelot spaces (hence weakly $-harmoniQ with countable
base satisfying Axiom D (in particular the axiom of polarity), and all points of X
or X' are strongly polar.

Every holomorphic mapping E : X * X' is a harmonic morphism, cf . [29,p. I la].
It is well known that a continuous mapping E: X*X' which is holomorphic off
some closed polar subset of X is holomorphic in all of X, cf. Lelong t541. This
follows also from Theorem 5 in Section 4 acc,ording to which E is a harmonic
morphism, in particular smooth, and E moreover satisfies locally in x the Cauchy-
Riemann equations 6re:...:8nE:O (in terms of local coordinates on X and
X') off d hence actually throughout, by continuity.

With the above circumstances in mind it is clear that the results of Section 4
remain valid for X and X' as above if the term "harmonic morphism" is replaced
throughout by "holomorphic mapping".

When thus applying Theorems 5b and 6b in the holomorphic case with X,:C,
the hypothesis that C(E, F) be a subset of C (i.e., -tC(E, F)) may be replaced
by the a priori weaker hypothesis tl.p;t E be of Hardy class Hp (see Definition 6
below) near each point of F for some p, 0<p<.*-. In the case n:l (where
x is a Riemann surface) this goes back to Parreau [69], respectively Goldstein and
chow [39] (cf. also osada [68]). we bring here the n-dimensional versions, of which
only the Rad6 type result (Theorem 8) involves the fine topology. For simplicity
we only state these results in the case where E is globally of class He (in X\f).

Definition 6. A holomorphic function E: U*C (U open in X) is said to
be of class H- tf E is bounded; and of class He (0<p<.4-) if the subharmonic
function lEle has a superharmonic majorant (hence also a least harmonic major-
ant) in U.

See Naim [60] for equivalent conditions showing, in particular, that for n:l
and X:C this definition agrees with the classical definition of the Hardy classes
HP, a.g. on the unit disk.

129
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PropositionS. Let X be a domain in C' (or a Kähler manifold), md let F
denote a relatiuely closed polar subset of X. Let g: \F*C be holomorphic of
class Hefor some p, 0-p4**. Then E extends to aunique holomorphicfimction

on X, likewise of class He.

Remark. In the bounded easa p:*- this is due to Lelong [54], as already

mentioned. For p>l the proposition is due to Parreau [69] in the case n:7 of
a Riemann surface X. An alternative proof given by Yamashita [80], consisting

in a reduction to the case p: * - by application of Gårding and Hörmander's
proof [36] of the F. and M. Riesz theorem, carries over to the n-dimensional case,

as we shall see, using the Fatou-Doob-Naim theorem [59] and the generaliza'

tion by Naim [60] of the results from [36] on strongly subharmonic functions to

the setting of a Brelot harmonic space with its Martin compactification.

Proof. The function t: l--, a-[*[0, *-[ defined by rlr(t):eo' (inter-
preted as 0 for t: - *) is positive, increasing, and strictly convex with

ri- *!/) :*-.
,++@ t

The (pluri)subharmonic function log lE[ on the domain U::X\F is non-con-

stant because E is an open mapping (if non'constant). It follows that

y 1: rlr olog lEl : lEl,

is strongly subharmonic (cf. [60, p. a56l in U, but not harmonic. By hypothesis,

u has a least harmonic majorant A in U, and fr-u is therefore a potential >0
on U.

Thus U is a $-Brelot space. kt / denote the corresponding Martin boundary

and l1its minimal part. We have then an order preserving bijection p-Klt carrying

the positive Radon measures p on Å such that p(/Wr):Q onto the harmonic

functions >0 on U, cf. Hervö[421. l-et m denole the measure on ./t such that
Km:|. By the Fatou-Doob-Naim theorem I59l (in the typical case XcC")
uhas a "fine" limit il(x\ atn-almost every point x of /r, and it(Lt(m). Further-
more we have by [60, Theorem 15]

u: K(ilm)-p

where p is a potential on U, and ilm denotes the measure on .1, of density il with
respect to m. For any natural number n the function

h,:: K(inf (n,i).m)

is bounded (=-n), harmonic and >0 on y:X\4 hence extends to a bounded

harmonic function hX=O ol X (by Bouligand's theorem [7]). The pointwise limit
å*:: sup, h!, coirr,rcides in U with the harmonic function K(ilm) and is therefore
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harmonic in all of X. Thus lEl=(h*)'tn in x\r' with (/,*)ue locally bounded

in X, whence the result according to Lelong's theorem [54]. tr
We proceed to state our n-dimensional fine cluster set version of Goldstein

and Chow's extension [39] of the Rad6-Stout theorem:

Theorem 8. With X as in Proposition 8 let F denote a closed proper subset

of X, and let g: I\F*C be holomorphic of class Hp for some p(10, + *f and

not locally constant. tf C/A, F) is polar (in C*) then F is pluripolar, and E extends

to a unique holomorphic function on X, likewise of class He.

Remark and proof. In the bounded case p- * - this was proved by Cegrell

[1], except for our use of the fine cluster set. - To prove Theorem 8 we apply
Theorem 2 (taking X':C-) to show that F is polar. Next Proposition 8 above

shows that g has a holomorphic extension g* to X of class IfP. Since q*(F)
(:C.(E,F)) is polar, it is well known that F must be pluripolar because so9*
is plurisubharmonic for every subharmonic function s in a domain of C-.

Remarks. t) Clearly the above results remain valid with the same proofs

if the function s*rP:exp(p logs) occuring in Definition6 is replaced by any

function of the form s-/ (log s) with r/ as stated in the beginning of the proof
of Proposition 8.

2) In the localized version of Proposition 8 and of Theorem 8, g: X\F*C
is just supposed to be of class .F/p in I{rlF for some open neighbourhood lZ of
each point of 4 and the holomorphic extension of rp to X is therefore only locally
ofclass HP in general.

3) Since closed sets of Qn-2)-dimensional Hausdorff measure 0 are remov-

able as singularities for (unrestricted) holomorphic functions of n complex vari-
ables, the localized version of Theorem 8 can be slightly improved, as noted by

Riihentaus[73] in the case p:**, by allowing for some set ,EcF of Qn-z)-
dimensional Hausdorff measure 0 such that every point just of F\,E' (rather than
of F) is assumed to have a neighbourhood W as stated in the above remark. (Of
course one may here just as well assume that E is closed and that WaE:0. lt
sufrces then to apply Theorem 8, now with X replaced by W and F by FnW thas
showing that cp extends holomorphically to each such W,hence altogether to \E,
and finally automatically to X.)

4) Proposition 8 and Theorem 8 can be mixed in the spirit of Cole and Glicks-
bergll2l (who considered the case n:1, p:a-) so as to yield a simultaneous

extension of both. (See also Cegrell [11] and Riihentaus [73] for n>1, p:l*.)
- In our fine cluster set situation this mixture arises from Theorem 8 when the

hypothesis that C1(E,F) be polar (in C-) is replaced by C.(E,F\E) being

polar for some polar set EcF (or some pluripolar set EcF if we wish to main-

tain the conclusion that F is pluripolar). Our approach - in which the finely har-
monic morphisms are studied first - makes such mixed versions obvious. For

131
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example, to prove the modified version of Theorem 8 (as just indicated), simply
note that Theorem 2 (with X':C*) applies to U::\.8 (afine domain) when

\E is used in place of F. This shows that F\E is polar, and so is therefore F,
whence g extends (by Proposition 8) and F\E is even pluripolar (by Theorem 8,

or directly).
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