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INJECTIVITY, QUASICONFORMAL REFLECTIONS
AND THE LOGARITHMIC DERIVATIVE

REUVEN HARMELIN

1. Introduction

Let C be a K-quasicircle in the complete complex plane C=Cu{=} (.e., C
is the image of the real axis R under a K-quasiconformal automorphism of C, with
K=1), and D,, D, to be the components of C\C, such that «€D,=D,uUC. Let
0;(2)|dz| be the Poincaré metric in D;, i=1, 2, with curvature —4. In [2] Ahlfors
proved the following injectivity criterion in terms of the Schwarzian derivative .| :

S;@) = [(fIFY -3 LI P) (@, z€Dy.

Theorem A. If C is a K-quasicircle, then there exists a positive constant e=¢(K),
depending only on K, such that f is univalent in D, whenever it is meromorphic there,
with a nonvanishing derivative and

(1LY [S¢l2,0, = sup ()28, (2 =e.

Moreover, strict inequality in (1.1) implies the existence of a quasiconformal extension

of fto C.
Writing
Sp=T{—3Tf Tr=f"lf
and applying Lemma 3 of [9], one can easily show that the correspondence n: T;—~S
is continuous with respect to the norms |[.Sll,, D> defined in (1.1), and

(1.2) 1T¢ll1, 0, = ;52111)3 a1(D7T,(2)l.

This observation yields the following analogue for Theorem A.

Theorem B. If C is a K-quasicircle, then there exists a positive constant &=
&, (K), depending only on K, such that every analytic function f in Dy, with f’#0,
is univalent whenever

(1.3) “Tful,m =¢&,

and if there is a strict inequality in (1.3), f has a quasiconformal extension to C.
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Remark. Martio and Sarvas [11] proved the injectivity part of Theorems A
and B, using the uniformity property of quasidiscs. On the other hand, Gehring [8]
and Astala—Gehring [5] proved that these injectivity criteria are valid only on
quasidiscs.

In this paper, a different quantitative proof for Theorem B is provided, based
on Ahlfors’ idea of the proof of Theorem A but utilizing a slight modification of
his quasiconformal extension formula. First we show that two properties of quasi-
conformal reflections, which have been proven in [2] under the assumption «<€C,
remain valid also if o€ D,. Then Theorem B is proved and in the last section it is
applied to the universal Teichmiiller space.

2. Quasiconformal reflections

An automorphism A of C is a K-quasiconformal reflection at C if
@) hlc=id and hoh=id on C.

(i) The mapping z—h(z) is a (sense-preserving) K-quasiconformal map-
ping, i.e.,
oh K—1
] < —_—
0z| — K+1
Properties (i) and (ii) yield a third one:
(i) k(D) =D;, i#j, i,j=12

Lemma 1 (Ahlfors [2]). If C is a K-quasicircle, C admits a K*-quasiconformal
reflection.

oh
0z

oh
0z

P

Lemma 2 (cf [2]). Let h: C~C be a K-quasiconformal reflection at C. If
o€ Dy and zy€C, then

.1) |h(2) =zl = A(K)|z—2zo|, for all z€D,,

<[ (2]

and p(r) is the conformal module of the Grétzsch extremal ring domain separating
the exterior of the unit disc B from the interval (0,r) for 0=r<1 (see [10], pp.
53, 81).

where

Proof. Let f be a conformal mapping of the upper half plane U onto D,, with
f(o)=o0 if €C, or f(e)=2zy€C if «€D,. Define

_ O for (€U,
@@= {h( @) for teL=C\T.
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Then C=w(R) and w: C-~C is K-quasiconformal. Thus, if z€D,, then
z=w@) =) for some (€U

h(2)= h(f()) = o), L.
First, if «€C, take {,=w~1(zy)¢R. Then the cross-ratio

=)
=0

and (2.1) follows by the quasi-invariance of the cross-ratio under quasiconformal
mappings (see [1]), and since @ maps {{,{, o, =} onto {h(2), z, z,, ==}, respec-
tively.

Next, if «€D,, let w=1(e)=a€U. Then

and

=1,

|(Ea C9 C09 oo)l =

o

I(L C, 2, a)l = ‘ Z:a

<1 for (cU,
and (2.1) is obtained again since w: {{,{, =, a}—>{h(2), z, z,, =}, respectively.
Q.e.d.

Lemma 3 (cf. [2]). If C admits a K-quasiconformal reflection, then there exists
a A -quasiconformal reflection H at C satisfying

2.2) 0;(H@)dH(2)| = & - oi(2)|dzl, z€D;, i#j, i,j=1,2
Jor some constants A=A (K) and L=%(K) depending only on K.

The proof of Lemma 3 is given in [2]. The assumption o<€C in it might be
dropped, since it was needed only for deriving the corresponding inequality in the
Euclidean metric. From Ahlfors’ proof in [2] and the estimates in [3] and [7] one
gets the following estimates:

(2.3) H(K) = M2, P(K)=4M2(M+1), where M = A(K).

3. Proof of Theorem B

Assume first that f has the following property:
(%) [ is locally conformal on some domain containing D, = D,uC.

By Lemma 1, C admits a K2-quasiconformal reflection, and hence, by Lemma 3,
there exists another 2 '-quasiconformal reflection H at C, with A =M?=A(K??,
which satisfies Condition (2.2) with #=4M?(M+1).

Now, extend finto D, as follows:

(€R)) FO =f@+C~2f" @, {Dy, z= H)ED;.
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This extension has the complex derivatives

Y t-2Zr0 wmi Lerorc-ogre, :=noo,

and hence it has the complex dilatation

(C Z) a Tf(z)
3.2) a2 = , (€D,y, z= H()eD,.
1+ - z) Tf(Z)

But by Lemma 2 we have for all {,€C

(3.3) IE=HOQI = 1{-Ll+10—HOI = (1+AAD)) = Lol, L€D,.

Choose {,¢C such that |{{—{,|=d({, C) and apply the inequality d({, C)=0,()~ %,
{eD, (by Schwarz’ lemma). Thus

(33) E—HOI = (1+A(H)) ()Y, (EDs.
On the other hand, Property (2.2) of H implies

(34 [0 | < 2. euoresr), cen,
and since { —»I?(-C_) is A -quasiconformal, it follows that

IBH(C)]< IaH(c)I . B a1
(3.5) o |= oz with g=¢q(K)= T~ 1.

From (3.2), (3.3, (3.4) and (3.5) we conclude
AK) o1 (2) T, (2)l
1—g(K)A(K)o:(2) 1T, (2)] °

where A(K)=4M*(M+1)(1+A(M?)), ¢(K)=(M?*—1)/(M?+1), M=A(K?). Thus
Il .=k<1 whenever f satisfies

(3.6) a0l =

C€D2’ z= H(C)EDls

k AE)T

(3.7 1T, p, = A(K)—I’I—W <&a=77 T+q@®

= &(K).
Hence, the mapping

(3.8) F(z) = {f(Z) for zeD, =D,UC,

“f(z2) for zeD,

is a local homeomorphism all over C, and therefore it is an automorphism of C,
thus proving the theorem whenever f satisfies ().
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Now, if ' does not satisfy (x), let {G,} be any decreasing sequence — G, G, —
of simply-connected hyperbolic domains, such that D,=;_, G,. Let g,: G,~D,
be the conformal mapping with g,(z,)=z, and g,(z,)=0 for some fixed z,¢ D,CG,.
Then {g,} converges to the identity mapping locally uniformly on D;. Define

V,=(T08,)8, n=1

Then {,} converges to T, locally uniformly on D,. Note that each ¥, is analytic
on D,cG,, and by
0,(2) = e1(2), 26D, G,

(which is a consequence of Schwarz’ lemma) it follows that
012D W (2] = 06, (D) 720D Ty (84 (2)))
= Ql(gn(z))_lle(gn(Z))[ = |Tl1,p,» 2€D;.

Thus if £, is any solution of the equation

3.9) y'—y,y’=0 in G,

then f, satisfies property (%) in addition to the assumptions of the theorem and

=1,. Furthermore, since the general solution of (3.9) is of the form af,+b,
we can choose the solution £, that fixes two given points on C. Hence, the sequence
{F,} of mappings defined by

A for (teD,,
F,,(C)'—{ﬁ'(z)_l_(c_z)ﬁ"(z) for (eD,, z= H()€ED,

form a normal family of quasiconformal automorphisms of C. We conclude that
{F,)} contains a subsequence converging locally uniformly on C to

_ [/ for (€D,
FO(C)—{fo(C) for (€D,,

where f,=lim,_, f, is conformal and univalent in D,, with 7, =lim, . T, =
T,, and

H© = lm F,Q) =f10+C~2f (), €Dy, z=HOED,

has the complex dilatation () given in (3.2).
Finally, Tf—Tf implies f=af,+b for some constants a, b€C, so that f
is also univalent in D; and has the quasiconformal extension to C, given by (3.1).

Q.e.d.
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4. Universal Teichmiiller space

For n=1,2, let B,(D) be the Bers’ space of analytic functions  in a hyper-
bolic domain D, bounded in the norm

1¥la0 = 1l = sup e (@Y (2l

Let M(D) be the open unit ball in the Banach space L= (D) of all complex-
valued measurable functions u supported in D and bounded in the norm

4o, p = lule = ess sup | (2)]-

Let C, D,, D, be as before. For each p€ M(D,) let Jf, be the unique homeomorphic
solution of the Beltrami equation

v
9z 1oz
fixing the points {0, 1, =}. Since p| p,=0, f, is conformal in Dy, so we may define
the two mappings
’h(cl): M(D,) ~ p~ T, = Tf,,EBl(Dl), Tf = f’If’
and
n®P: M(Dy) ~ p~ S, = T,—5 T2 B,(Dy),

the second of which is known (see [6]) as Bers’ embedding of the universal Teich-
miiller space T(D,) of Dy in By(D,). The image T;(D,) of the first mapping 7 in
B, (D,) may also be considered a representation of 7(D,). Bers proved in [6] the fol-
lowing properties of the embedding #®:

Theorem C. Let C be a quasicircle in C. The mapping n®: M(D,)-B,(D,)

is holomorphic (as a mapping between two complex Banach spaces). Its derivative
at the origin is

6
@y @i u--2ff, Ldean zen, per-on,
and Dn®(0) has the right-inverse

oH (C)

4.2 AP 1//-*—(C HQOP—7=Y(HQ), Dy, YeBy(Dy),

ie., each YeB,(D,) satisfies the reproduction formula
@3 v =—[f, (-HOrEL yHO) - dzan, zep,

(cf. Lemma 6 in [9]), where H is the quaszconformal reflection at C of Lemma 3.
It appears that the embedding #" has similar properties:
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Theorem D. Let C be a quasicircle in C, and D, and D, its interior and exterior
domains, respectively (i.e., «€ Dy). The mapping n®: M(D,)—~B,(Dy) is holomor-
phic. Its derivative at the origin is the linear mapping

(4.4) n® (0): p % I, ( Cl‘_(CZ))3 dédn, zeD,, peL=(Dy),

and Dy®(0) has the right inverse

@.5) 49y~ (~H() 228 (C)

ie.,
(4.6) () =—= f S, (—HO)—57~

z€Dy, YEB(Dy).

W(H(C))a CEDz, l//631(1)1)3

o (0 Y(HO)C—2)-3 dé dn,

Proof. The holomorphicity of ) and Formula (4.4) are proven exactly as the
corresponding part of Theorem C (see [6] and also [9]). The rest of the theorem fol-
lows from Formula (3.2), which means that the mapping

(c—m@) 2. (‘:’

1+(-H(©)

¥ (HO)

‘”’ Oy

AD: Y > pu@) = YEB(Dy), (€D,

is a local cross-section for #®: M(D,)—~B,(D;) near the origin, i.c.,
4.7 Vo AD Y = for Y€B(D,) with [Yf,,p, small
But direct computation easily yields

4.3 DAL (0) = AP,

and (4.6) is derived by applying the chain rule to (4.7). Q.e.d.
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