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ON ESTIMATING THE INVERSE COEFFICIENTS
FOR MEROMORPHIC UNIVALENT FUNCTIONS
OMITTING A DISC

HENRXYKA SIEJKA and OLLI TAMMI

1. Introduction

In [2] and [3] the class
Sy ={HIH@ = 2+ 37 4,z7", |2 > 1, |H(2)| > be (o, 1)}

of meromorphic univalent functions was defined and considered. This class was
found to have a one-to-one relationship with bounded univalent functions

S®) ={f1f(2) = b(z+ 35 a,z), 2l <1, |f(2| <1, b€(0, 1)}
so that

) H(z)= —P————, |z] = 1.
)

z

Especially the inverse coefficients, i.e., those of the inverse function I of H, were
estimated. Denote the inverse function of w=H(z) by

z=1Iw)=w+237 Ew™"

In [2] a FitzGerald—Launonen inequality was written for . This appeared
to be effective especially for the odd indexes. Thus for odd >, -functions all the
inverse coefficients were maximized. However, for general >, -functions the Fitz-
Gerald—Launonen inequality gave results only for some initial odd inverse coeffi-
cients. Moreover, this method needed the maxima of corresponding initial even
inverse coefficients. For estimating the latter the variational method appeared to
be the most useful. However, technical difficulties prevented proceeding beyond
|E4| in [3].

In the present paper the general result for inverse 3, -coefficients is derived by
applying the variational method, which appears to work equally well for both odd
and even indexes.
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2. The variation of 7

The relation (1) allows us to utilize the variational formulae true for S(b)-
functions. For brevity, adopt directly the notations and results of [4]. Thus (1),
p. 137, yields the variational formula of f€S(b) (here the parameters A, are not
to be mixed with the coefficients A, of H). Through (1) the variational formula for f
is transformed into that for H and further for I

@) I*(w) = Iw)+I'(W)K-e+0(e?);
_ N w,w =< va2 W‘.I,(W‘,) ? I(w)2
k=2, {A" w,—w +4, b2—wvw+ "( I(w,) ) I'W(Iw)—1(w,))
< (Wl W)Y I(w)
+4 I(v,) ) I’(w)(I(w)IT—wv)—l)} '

The expansion form of (2) reads

2o (Ef—E)w™" = 82:’{(%3—“2) [4,(wH(Ey+I(w,)w°+...)

+A,(I(w) 2w+ )]+ A, (= wy W)+ A, (- w— D2y T+ L)} O ().

On the right side the coefficient of w appears to be

N va/(Wv))2 T } —
o) > {Av [ ) <4, o,
This is due to the fact that according to (4), p. 138, in [4]

b* = b[1+8 Z’:’{Av [%ﬁ]z—zv}how.

Hence, for preserving the class >, i.e., for keeping b constant in the variation; we
must require that the parameters 4, are chosen in such a way that (3) holds.

By comparing the coefficients of the above series we obtain the varia-
tional formula for the E,-coefficients. In order to express this in a useful form we
introduce a suitable coefficient-notation, i.e., for any series

W) = 3 x,t

we denote the coefficients by the aid of W:

%, = [W ()],
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Using this we can write

Ef—E,=e3"(A4,X,+A4,Y,+4,Z,+A,U)+0@E), n=0,1,2,..;

(wm WY [ 1w
%= ("65) iy |
lL I(W) —-n
[ 1
(W T W)Y 1(w,)
Y”"( 1(w,) ) 1 ’
ol I(w)I(w) J-n
Z, = rM ,
1=
3L w —n
U, = *W”lg”)
4_1—wvw —-n

Applying the notation of [4] we write the variational formula as in (5), p. 138:
Ef = E,+¢ 3 (4,H,+4,K)+0(@;
HV=XV+ZV, KV=YV+UV‘
(8), p. 140, corresponds to (3) in the abbreviated form
N T\ — N- - wvl,(wv))2
21 (Avev Av) - 0’ e, = (W .

For the extremal E,>0 the treatment on pp. 140—142 of [4] yields the necessary
condition (13), p. 142:
H+K,+1e;—4=0
<>
X, +Z,+Y,+U,+1e,— 1 =0.

Denote w;=w. Inthe expressions ,[ ] write w=¢. Thus, the necessary extremal
condition assumes the form

(M)21[1+3[ ]+[MJ 2[]+4[]+I[WI (W)] =0

, i) () o
i.e.,
4 wI'w Y [_10) I I(w)? l
@ ( I(w) ) 1— I(w) + ol 1—T(w)U()1 _n+z
1 I(t) —n
—wl’ (%) —tI’(%)

=_3 1—we1 __,,_4 1-b2w— 11 _,,+)"
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This is the necessary condition for the inverse >, -function I maximizing E,>0.
The comparison of coefficients in (4) yields in this case A€R.
The expansions of the functions in the ,[ ]-expressions can be written by
the aid of
IO =t+ 37 Et™, IO =3 at™ (=1)

as follows (I(w)=1):

I(t
Nk ﬁ%)—(tj = t+(Ep+ DO+ (E+ It +(Ey a2+ 13) 2
F(Es+ ol 242013+ T4t 34 (Eg+ ot 2+ (Qotg +02) I3+ 30 I4+ T5) =4+ ...,
J-1

O R U C Tt L

(g I 72+ 20, I 3T 173+ (g I 724 Qutg +a) [ 3+ 30, I -4+ T-%) 174+ ...,

o1 ___i—-_—wv_it_(_t% =w- 104wt (W —Eyw)t 2+ (W — Ey w2 —2E,w)t~3
+ (WP —E w3 —2E,w2—3E;w)t~4+...,

—tI'(¢ _ __ -
1 it = B PG =B

(D898 — Ey b2p—1 — 2Ep) 12+ (b8t — E; b49—2 — 2E, b2 w1 —3E,) ¢~
+ (B3 — E, b3 — 2E, b w2 — 3E, b2l —4E) =4+ ...

As an example consider the case n=4.

3. The coefficient E,

The necessary condition (4) for E, assumes, according to the above develop-
ments, the form (L€R):

, 2
) (W;(V(v‘)”)] (P43 I+ Qg0 I+ 0y I+ A+ Ey 48]~ By 7o) 13

+ 384+ 17%) = WP — Ey;w3 —2E,w2—3E;w+ A —4E,—3E; b*w 1
—2E,b*w—2—E, bSw—34-bl0yw—4,

In [I] Netanyahu maximizes the E,-coefficient for 3 i.e., in the special case
b=0 by the aid of the variational formula. In agreement with him denote

E,=-8, v=0,1,..)
and maximize the B,-coefficients. Because
z=IWw)=w=237 B,w™"
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and thus
1

- w(1=37B,w™>) ’

we see that a, is a polynomial P,(B,, ..., B,—s) Wwith only positive coefficients.
For example,

1 -
Ty = 21"

OC2 = ﬁ09
3 = ﬁ§+ﬁla
ay = 2P P+ B3+ P

This remark appears to be useful when estimating coefficients of the differential
equation.

Rewrite (5) for the extremal H(z) by using the «,- and f8,-coefficients. Remember
that E,>0 so that f,=—E,;<0.

zH'\?
CAR
X (H?+ By H3+ 2B, H2+ 38, H+ ). +4B,+ 3B, b2H 1+ 2B, b* H~2+ B, P H 3+ b1 H~%)*

= (24 032" + 0432% + 042 + A — By +Das2 2+ Uz 3+ Dgpz ™+ 27 %),

Uge = 3atp = 3Py,
Vg3 = 205405 = 33 +2p,,

Ugq = ty = 2P0 By + B3+ Be.

In [3] all the lower coefficients included are maximized essentially by the radial-
slit mapping I, which satisfies the condition

) L4171 = w—2(1—b)+b2w™1;

b2w142p-2
Lon = ST 2y

X[1+4(b—Dw 14 (6b>—8b)w2+4b2(b—D)w 3+ b'w=*]2 = w+ J°(—B)w™";
B,=2(1—b), B, =1-b
Bv = '}’,,o+)',,1b+‘}’n2b2+...+yn(n_1)b""1;

2 n—v QCn—v-1)!
v n—v+1 [(r—V)IP °

Py = (" 19)¢

The numbers B, are thus the maxima of §,. Assume here that the inequalities
BJ=B, (+=0,1,2,3)

are true and maximize B, by using the necessary condition (6).
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As in [3], use the fact that the extremal image-domain has at least one slit, i.e.,
( );=0 at the starting point be" of the slit and A+4, is determined by ( ),=0,
VY€[0, 2n], that is,

A+4B, = max[—2Re {b*e" + B, b3e'™¥ + 2, b2e™ + 38, be™' }]
= max [2Re {— b%e'™ + E; b%e™™ + 2 E, b%e® 4 3E; be}]
= 2(b°+1Bul b*+21Bal b2+ 3b | Bs])
= 2(b°+b3B,+2b2B,+3bB,)

— 2(15b—20b2-+6b%).

Equality here holds for =0 and I=I,, which has E,=—B,<0, when properly
rotated. Thus
A+4B, = 2(15b—20b2+6D3).

() has at least one zero €', the pre-image of the endpoint of the slit. Thus
Bi—24 = —5|B4| —(30b —40b%+12b3) = —2Re {€°? + v,5€™? + v,43€"% +v44€2¢};
5|84l = —(30b—40b2+ 12b%) + 2 (1 + |vge] + |vas] + |vaal)-

The numbers |v,,| are maximized with |B,|:
[vge] = 6(1—b),
|vgs] = 14—24b 41082,
|vgs] = 14—30b+20b%—4b%;

1Bd = é—[— (30b—40b%+12b%) 470 —120b + 60b* — 8b°]

= 14-30b+20b%—4b%.

Again, the equality belongs essentially to Z,, because this holds for all the lower
coefficients used in the triangle inequality estimations. — This result is the one
proved in the above manner in [3].

4. The general case
From (4) we obtain for E,=—f,>0 the necessary condition for the extremal H:
zH’ )2
® ( )X
X(Hn+1 +2:—1 vﬁv Hn—v_l_l_'_nﬁn_‘_z'l'_l Vﬁvb2n—sz_"+v+b2”+2H—"—1)1

— (Zn+1+2'2' Unv2"+2—v+)v“ﬁn+2,2, z—)”vz—n—2+v+z—n—l)2'

The numbers v,, are polynomials Q,(B,, ..., By_») With only positive coefficients.
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Assume that the lower coefficients By, ..., B,—1 are all maximized by I, defined
by (7). We proceed in maximizing |B,] by imitating the procedure of Section 3.
Thus, (); has at least one zero be’ which determines A+nf, so that ( );=0
for Y€[0, 2n}:

A+nB, = max [ 2Re {b"+1 el D¥ 4 37T yB brv el VY]
= max [2Re {—b"+1el"+ ¥ + STE, b el
= 20"+ 377 VIR BTY)
= 2(b"+ 377 vB,b")
=237 Cb%

(=)t n—v (2n—v-D!

Joi ——%y,,‘, =12 ..,n-1).

YT o (v=D! n—v+1 [(r—WP
Again, equality holds for ¥ =0 and for a rotated I,; hence
A+nB, =231 C,b
(),=0 at some ¢'? and thus
B,—h=—(n+DIp|-2 377 C,b’
= 2Re {ei+ Do 4 3%y, eitnt2-ve}
® (n+D)IB = =2 377 C b +2(1+ 35 lowl)o-

In order to estimate ( ), we return to the general form (4) of the differential
equation. The coefficients v,, are defined by 4[ ], i.e., they are those of

I(9
1=1-1()*

=I(O+I+12- IO+ 13- I() 2+ ...

We are actually interested in the non-constant term of the I-polynomials (cf. the
expansion of 4 ]). Because the constant term E, is due to the first term I(¢),
we may confine ourselves to the expansion

(%) 1

FO=3—r10= 10 =1-110=

Il

T- 00412t (o I2 4+ I3 t 2+ (0 12+ 200, I3+ IH) £ 3
+ (o 12+ Qog+0d) I3+ 30 I+ I 14+ ...
=IO+ 174 3 (3 s Vnnmvany I

Because the numbers v,, are polynomials of B, ..., f,—, With only positive coeffi-
cients, we obtain their maxima V,, by writing B,=B; in those polynomials. Actually,
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we need only the maximal sum w,=1+23"_, V,,, which is thus obtained as the
coefficient u, of F(t) with I=1 and I,(¢) defined by (7) (w=t¢). Thus we have the
expansion

I(f)y = t—By,—B,;t 1—B,t~—...

A0)
L(n-1

=14t upt 2 ugt 3+,
Uy =14+3"_ V.
The multiplication of the u,-expansion by
L(O—1=t—(14+B)—B;t 1 —B,t~2—...
yields the recursion formula:
u, = 1+B,,
uy = (14+By)u,+ B,

Uy = (1 +B0)un-1+2:;;Bv—1un—v (ul = 1; n= 2, 35 )'
This gives

st (= 1) 2n—v—1)! py n—v+1
(10) U, = Z‘v;%(n—v)(—[&_;v)!]z)— b =2v=;£_12}_

According to (9) we now obtain

Yy D"

n-1V v n—1 n—v+1 Y
(n+1)lﬂnl EZZI IT'anb +220 1_2—'—?nvb

=(n+1) 37 b
(11) 1Bal = 307 b’ = B,.

Because the lower coefficients f,, ..., f,—; are all maximized, save the rotation,
by I,, the same holds in (11) and thus for all n. Hence we have generalized the result
of Netanyahu [1].

Theorem. For the inverse 3, -functions
I(W) = W—Z:va_vs le >1,
the coefficient estimation

lﬂol = 2(l_b), Iﬂll = 1_b29 lﬂnl = 2:—1 'ynvbv (n = 2; 3, "');

2 n—v (n—v-—1)
Y = (=17 2 ( )

Tyl [a=np O =%-»nr=D

holds.
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Essentially the only maximizing function is the radial-slit mapping I, defined by
L+I7'=w-2(1-b)+b%w™L
The coefficient B, has a one-parametric family of maximizing functions I from
I+17'=w—c+b*w™?
with c¢€[—2(1—b),2(1—b)] as a parameter (cf. [3]).

This result generalizes the classical theorem of Netanyahu [1] showing that
also in the cases other than b=0 the radial-slit mapping preserves its extremal role
with respect to the inverse coefficients.
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