Annales Academiz Scientiarum Fennica
Series A. I. Mathematica
Volumen 12, 1987, 171—176

CONNECTIVITY PROPERTIES FOR
COMPLEMENTS OF EXCEPTIONAL SETS

KIRSTI OJA

Introduction

We consider a #-harmonic space X with a countable base in the sense of
Constantinescu—Cornea [3]. The following problem is studied here: Let X be con-
nected and E an exceptional set of X. Under what circumstances is X\ E not con-
nected? It is known that this is never the case if E is polar. But this is possible if
E is totally thin, as is shown by examples.

In Section 1 we derive a necessary condition for the complement of a closed
totally thin set E to be nonconnected, in terms of absorbent sets and the boundary
of X\ E [Theorem 1.5]. This condition is never valid in an elliptic space. For the case
where the exceptional set is assumed to consist of irregular (or even unstable)
boundary points of some open set, we obtain a more precise necessary condi-
tion in Section 2 [Corollary 2.9].

1. Connectivity of the complement of a totally thin set

Let X be a Constantinescu—Cornea £-harmonic space with a countable base.
For unexplained symbols in this article we refer to [3].
Let AcX. Then

¢ (A) = {xcX| A is not thin at x}.

Let U be an open set of X. We denote by U,,, (respectively U;,) the set of regular
(respectively irregular) points of U. Then by [3, Theorem 6.3.3]

U,y = OUNEXN\U), Uy, = dUNL(X\D).

It is known that X\ E is connected if X is connected and E is a polar set of X
[3, Proposition 6.2.5]. In what follows we shall investigate the modified situation
if E is totally thin. In this case X\ £ may be nonconnected, as the following examples
show.

This work was supported by the Viisild Foundation, Helsinki.

doi:10.5186/aasfm.1987.1228


koskenoj
Typewritten text
doi:10.5186/aasfm.1987.1228


172 KI1rstI OjA

Example 1.1. Let X=R? have the harmonic structure corresponding to the

heat equation and
E = {(x,HDeX|t = 0}.

Then X\ E is not connected and E is totally thin [3, Exercise 6.3.8].
Example 1.2. Let X be the space defined in [3, Exercise 3.2.13] and
E = {(0, 0, 0)}.
Then E is a polar set of the absorbent set 4 of X:
A= {(x,y, 00€X|0=x*+)*< 1}.

Hence E is totally thin in X [3, Exercise 6.3.13], and X\ E is not connected.
Throughout this paper, we shall use the following result of Berg [1, Théoréme 1];
see also [3, Exercise 7.2.11]: A set which is closed and finely open is absorbent.

Lemma 1.3. Let X be connected and E a closed set of X such that X\E=
U,uU,, with Uy, U, open, nonempty, and disjoint. Let x€(Uy),., and x€(Uy),ey-
Then x€(X\E),,-

Proof. Let U'=X\E=U,0U, and fex (0U’) be arbitrary. Then

N {H}’l on U,
“lHf: on U,

is harmonic on U’ and limy:s,., h(»)=f(x). Thus h=H{', since h€%;’, and
H}'=h, since heoff”’, and therefore limy.s,., Hf (»)=f(x). The conclusion
follows.

Lemma 1.4. With the notations of Lemma 1.3, let xcE and E be thin at x.
Then either x€£(U)N(XN\E(U,) or x€4(U)n(X\E(UY).

Proof. If x€0U;nU,, then x€4(U,). If now x€4(U,), then x is in the fine
closure of U;. Hence x€U; and so U;nU,=0, a contradiction. Therefore we may
assume x€0U;noU,.

Since E is thin at x, x is not a regular point for X\ E. Thus by Lemma 1.3
either x4(Up,ey OF X¢(Uy)yey. Let x¢(Un),e,- Then X\U; is thin at x. We must
have x€£(U,), otherwise X=U,;u(X\\U;) would be thin at x, by [3, Theorem 6.3.1]
a contradiction. Since U,cX\U; and X\ U, is thin at x, we have x€ X\&(U,).

By a local non-trivial absorbent set of X we mean hereafter an absorbent set with
respect to some open subspace of X, which does not reduce to a union of com-
ponents of this subspace.

Theorem 1.5. Let X be connected and E a closed totally thin set. If X\E
is not connected, there exists a local non-trivial absorbent set whose boundary inter-
sects E in a set containing points interior to E in its relative topology.
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Proof. There exist nonempty open sets U;, U, such that U;nU,=0 and
XN\E=U,uU,. We can assume that E=90U,n9U,. If this is not the case, denote
E’'=EndU,, or, equivalently, E’=EndU,. Then X\ E’ is not connected. If the
assertion can be proved for E’, it also holds for E, since E’CE.

Let

A, = é(U)NE, A,=¢U)NE.
Then E=4,04, and 4;nA4,=0 by Lemma 1.4. The sets 4,, 4, are G,-sets in
the relative topology of E [3, Corollary 7.2.1]. Let {G,},.en» {H,}sen be open sets
in E with

Al = mmEN G, AZ = mnGNHn'

We shall prove that either 4; or A4, contains interior points. Assume the con-
trary. Then 4; and 4, both are dense on E. Hence G,, and H, are dense open sets
of E for every m, néN. Since E is a Baire space, by local compactness,

(NmenGm) OV (Nnen Hy) = 410 4,
is dense on E, a contradiction.

So there exists an open non-empty subset D of E, for example, with Dc A,\ 4,.
Then Dcé(U;) and Dné(U,)=0. Thus D is contained in the fine interior of
U,. Using the result of Berg [1, Théoréme 1] we see that U;n((X \E)uD) is an
absorbent set of (X\E)uD. Since E=9U;ndU,, we have DcU,n(X\T,).
Thus D is the boundary of this absorbent set. This is consequently non-trivial.

Corollary 1.6. Let X be connected and elliptic. If E is a closed totally thin
set, then X\ E is connected.

For an open subset U of X, the set U,, is semi-polar [3, Corollary 7.2.2]. There
is a better result that holds for closed subsets of U containing only points of U,,.

Lemma 1.7. Let U be an open subset of X and S a closed subset of oU
with ScU,,. Then S is totally thin.

Proof. Since X\\U is thin at every point of U,,, S is thin at every point of U,,.
Also, S is thin at every point of U and at every point of X\ U. Finally, let x¢ U,ey-
Since S is closed in dU, x has a neighbourhood which does not intersect S. Hence
S is thin at x. Thus S is totally thin.

Corollary 1.8. Let U be an open set of X and B an open set of dU with
BcU,. If there exists no nontrivial local absorbent set whose boundary intersects
B, then B=§.

Proof. Let B0 and Y an open, connected set of X such that ¥noU is an
open set of U and Bo>YndU. Thus YndUcU,,, YndU isclosed in Y,

NIU = M\D)u(UnY),
and by the assumption both sets on the right are nonempty. This implies that Y\ 9T
is not connected. But YU is totally thin by Lemma 1.7. By Theorem 1.5 we
obtain B=#.
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2. On unstable and irregular points

In this section we shall investigate the role of irregular points more closely.

Let U be an open relatively compact set of X. Any point of 9U which lies in the
fine closure of X\ U is a stable point of U [2, p. 102], [4, Theorem 4.3]. The set of
stable points of U is denoted by U,. Then by [2, p. 102]

U, = U &(X\D).

Obviously U,cU,,. Let S(U) denote the set of real continuous functions on the
closure of an open set U which are superharmonic on U and Chgy,U denote
the Choquet boundary of S(U) [2, p. 87]. Then

(2 1) Us C ChS(U)U C Ureg'

The first inequality was established in [2, Corollary 3.5]. The second one follows
from the definitions in [2].

Let S be a subset of JU. We say that the absorbent condition holds for S if
every x€dUN\S has an open neighbourhood ¥ with dUNVCOUNS such that
UAV is a non-trivial absorbent set of V.

In a global form, this is equivalent to the statement “U\S is a non-trivial
absorbent set of X\S”. This follows from the fact that if the condition holds, then,
by the sheaf property of hyperharmonic functions, the function which is 0 on U\S
and e on (X\\S)\\U is hyperharmonic on X. The converse is obvious.

The set S may be empty. In this case the condition signifies that U is a non-trivial
absorbent set of X.

Proposition 2.1. Either the set U, is dense on U, or the absorbent condition
holds for Us.

Proof. Assume that U, is not dense on dU. Let ¥ be an open set with UV
containing only nonstable points of U and x€dUnV. Then x is not in the fine
closure of X\ U. Since x€U, x must be a fine interior point of U. This holds for
every x€0UNV. Thus ¥ U is finely open in ¥ and hence an absorbent set in V.
Since d(¥'nU)=0, it is non-trivial.

Corollary 2.2. Either the set ChgyyU (respectively U,,,) is dense on U,
or the absorbent condition holds for Chg,U (respectively U,,,).

Proof. Obvious by (2.1).

Corollary 2.3. If X is elliptic, the sets U, Chsy U and U,,, are dense
on 0U.

Remark 2.4. Corollary 2.3 generalizes a result for U,,, in [5, Théoréme 8.2];
see also [3, Exercise 3.1.16]. The corresponding result for U; was proved in another
way in [7, Corollary 3].
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Proposition 2.5. Let B be an open subset of dU. Then BcOU\U, if and
only if the absorbent condition holds for OU\B.

Proof. By Proposition 2.1 we only have to prove that if x€ B, with ¥ open such
that xéVNQUcB and VNU an absorbent set of ¥, then x¢U,. Since ¥nU is
finely open, x is not in the fine closure of X\ U. The conclusion follows.

An irregular point x€9U is semi-regular if for any fe%(OU) there is a limit
limy,, .. H{ () [6, p. 357]. The set of semi-regular points of U is denoted by Us,,,.
It was proved in [6, Corollary 5] that U,,,, is open in dU.

Corollary 2.6. The absorbent condition holds for OU\U,,,. Consequently,
if X is elliptic, there exist no semi-regular points on 0U.

Proof. Since U,,,ndU is open and U, U,,,
U0 0U < dUNU;.
Thus the conclusion follows from Proposition 2.5.
The converse of Corollary 2.3 does not hold: There exist nonelliptic spaces
where the set Uy is dense on U for every open relatively compact U, as shown by
the following example.

Example 2.7. Let X’ be the harmonic space defined in [3, Exercise 3.2.11].
Then
X :={(x,peX |y = 0}
is an absorbent set of X” and can be regarded as a harmonic space with the correspond-
ing hyperharmonic sheaf [3, Exercise 6.1.8]. Let

Y:={(x,»)€X|y = 0};

Y is also an absorbent set of X. Let UCX be open and relatively compact. Then
(@UNY),,,=0 if U is seen as a subset of X. The set U, must be dense on U, since
the only nontrivial local and global absorbent sets of X are contained in Y.

Remark 2.8. All the results of this section only apply to those boundary
points of U that are located on dU. For example, if X is elliptic, U,,, is not always
dense on dU, as can be seen by taking U such that dUN(U),, contains isolated
polar points. For every U, we even obtain 0UN(U),,, cOUN\U,.

By Lemma 1.7 every closed subset of U, is totally thin. Those totally thin sets
which are closed and contain only irregular points for some open set can be regarded
as a special class of exceptional sets. The connection between the results of Sections
1 and 2 is made clear by the following corollary.

Corollary 2.9. Let X be connected and E a closed set of X such that X\ E=
U,0U,, with Uy, U, open and nonempty such that UynU,=0. If EndU, is a
totally thin set containing only irregular points of U,, then U, is a non-trivial ab
sorbent set of X.
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Proof. Since all irregular points are unstable, the assertion follows from Prop-
osition 2.1.

Remark 2.10. Corollary 2.9 remains valid if EnoU, contains only unstable
points of U;. In this case EndU, is not necessarily totally thin.

References

[1] Bera, C.: Quelques propriétés de la topologie fine dans la théorie du potentiel et des processus
standard. - Bull. Sci. Math. 95, 1971, 27—31.

[2] BLIEDTNER, J., and W. HaNseN: Simplicial cones in potential theory. - Invent. Math. 29, 1975,
83—110.

[3] CoNsTANTINESCU, C., and A. CorNEA: Potential theory on harmonic spaces. - Die Grundlehren
der mathematischen Wissenschaften 158. Springer-Verlag, Berlin—Heidelberg—New
York, 1972.

[4] Errros, E. G., and J. L. Kazpan: Applications of Choquet simplexes to elliptic and parabolic
boundary value problems. - J. Differential Equations 8, 1970, 95—134.

[5] HervE, R.-M.: Recherches axiomatiques sur la théorie des fonctions surharmoniques et du
potentiel. - Ann. Inst. Fourier (Grenoble) 12, 1962, 415—571.

[6] LUKES, J., and J. MALY: On the boundary behaviour of the Perron generalized solution. - Math.
Ann. 257, 1981, 355—366.

[7] Lukes, J., and L. ZanCek: Connectivity properties of fine topologies. - Rev. Roumaine Math.
Pures Appl. 22, 1977, 679—684.

University of Helsinki
Department of Mathematics
SF-00100 Helsinki

Finland

Received 10 April 1986



