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SYMMETRIC AND SELFADJOINT RELATIONS IN
KREIN SPACES II

A. DIJKSMA and H. S. V. DE SNOO

1. Introduction

In [11] Langer has obtained a spectral function for a class of selfadjoint opera-
tors in Krein spaces, namely the definitizable operators. Selfadjoint operators in
Pontryagin spaces are definitizable, and hence always possess a spectral function.
His arguments were made available in [12]. Other proofs were given in for instance
(31, [4], [8] and [9].

In the present paper we shall show that Langer’s constructions can be adapted,
in order to obtain similar results for selfadjoint relations in Krein spaces which are
definitizable. This paper is a continuation of [6], where we gave some basic facts
concerning relations in inner product spaces.

Some preliminary results are to be found in Section 2. We develop an operational
calculus for subspaces (closed linear relations) in Banach spaces in Section 3, via
contour integration of the resolvent operator. Definitizable subspaces in Krein spaces
are introduced in Section 4. Analytic properties of the resolvent operator of a self-
adjoint definitizable subspace are derived in Section 5. For definitions and nota-
tions we refer to [6].

2. Preliminary results

In this section we will collect a number of results, that will be used later on.
Let K be a linear space over C and let 4 be a linear relation in K2 For any 2X2

matrix
a B
M= (y 5]

with complex entries «, f8, , § we define the relation MA by

MA = {{af+Bg.vf + 08} |{f; g)e4).

The mapping 4—MA is sometimes called a transformer, see [13]. In terms of trans-
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formers we have

and

If for u,l€C we define
Cpi(d) = {{g—nf, g~ U} {1, )€ 4}
F, (4) = {{g—f, rg—Lf}| (. g} 4}

then C, . and F, , are transformers, corresponding to
) e (S)
[__ ¢ 1 and | ¢ u)
respectively. Note that for {=j these give the Cayley transform C, and inverse

Cayley transform F,, respectively. The following property is obvious, but has a
number of interesting consequences.

and

Transformer property. If AcK? is a linear relation, and M and N are
2X 2 matrices with complex entries, then
M(NA) = (MN)A.
For example we have

~2R G- 2= = G v # i C

Note that this equality holds for all {, {sp. In particular we have

v—Uu _v—ﬁ _
- . (C”(A) v——;z) =C,,(4), peC\R, v # pu.

Now using the identity
, Cpot(4) = (Cr ()
we obtain

_y—E_(w-pO-79) A
R A7 I

Another simple consequence of the transformer property is
Cpt(d) =I+(u-DA-p,

Culd) = T+ (u—R)(A— )™

and in particular
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This leads to

A .
(- 22E) " = L2211 Gopa-27) weOR 271

or equivalently

— 1 1—
(A_ Clu— 1”] = u_,g I+EC-DC(D-D7"), ueC\R, { = 1.
Finally the transformer property shows

1 1 1 1
(A=) _ﬂ—).—ocl_(l—a)z ((A—a) B

1
A—o

-1
] , AFEa

Remark. If {h, k}€d4, then ¢{h, pk+ah}cfA+a, {h, 6k+yh}cdA+y, so
that {oh+ Bk, yh+ 0k} (6A+p)(fA+a)~t. This shows

(g g) Ac (dA+y)(fA+a)~
In general this inclusion will be strict. To see this consider A= {0}XK, then
« B
(5 5) 4 = (tpn, omy ey,

04+ (pA+0)" =K, B =0,
=4, B=0.

while

Proposition 2.1. Let M=(;‘ g) be invertible and let ACK? be a linear

relation.

G) If 6%0, then v((MAY)= v(((g g)A]').

G) If y#0, then v((MAY)= v(((g g]A)]

Proof. We consider case (i). Let ho€v((MA)Y), then there exist elements
hys ey By_y, h,=0 in K with {h;, h, ,}¢ MA, i=0, ...,r—1. Hence

{0h;— Bhiv1> —yhi+ah; 41} €4,
which implies that

det M 60 .
@.1) {5hi—ﬂh,.+1, - h,-+1}€(A+—§—]=(y 5),4, i=0,..,r—1

For j=1 it is clear that

2.2) {h_,,0} € (A +%]j.
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Assume this is true for j=1,...,p—1. Then putting i=r—p in (2.1) we obtain

det M
{6hr-—p"" ﬁhr—p+1, "“S"—'hr—p+1}€A+%’" .

We combine this with (2.2) for j=p—1 and find that

p
{0k y— Phy— pi1s 0}€(A+-3;—) :
Again using (2.2) with j=p—1 we have
14
-, Ope(4+2]

which proves (2.2) for j=p. We conclude h,cv [((;? (5)] A)r] , and thus

=6 39

As this inclusion holds for all linear relations 4cK2, we also have

v(d4") < v((NAY),

where
s: s
N = | detM T detM | _ (5 0] M-,
0 1 v 0

and consequently
V(A7) € v((NAY) < v(4),

which shows v(4")=v((NA)’), but then

om={(¢ )

Case (ii) is proved analogously.

Corollary. Let AcCK? be a linear relation and uc C\R. Then

V(A=) = v[[cu(A)—j—j-‘})], A=,
and
A (0) = v((C (A —1)).

Note that corresponding Jordan chains have the same length. For later reference
we observe

A€o,(4) & —}:—Zeap(cﬂ(A)), A,

and
€8 ,(A4) < 1€0,(C,(4)).
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Here &,(4) denotes the extended point-spectrum of 4, ie., 6,(A)=0,(A)u{=}
if 4(0)= {0} and G,(4)=0,(4) if A4(0)={0}.

From now on we will assume that K is a Banach space. Recall that if 4CK?
is a subspace, i.e., a closed linear relation, then its resolvent set is defined by

o(4) = {AcC|(4 - ) '€[K]}.
Note that for any subspace 4CK? with non-empty resolvent set we have
R (AD)(A—2) = Ipgy, A€a(A),
(A=) R42) = I+{{0, o} 0€4(0)}, Aco(A).

Proposition 2.2. Let ACK? be a subspace with (4)=0. For any reN
we have

() 4 = {{RA) 1 (I+ARLDY 2} 2€K},  A€e(4),
(i) RyAy4 c (I+AR D) < AR A,  ice(4),
(i) Ry (A4 = (I+ AR D)) [pearys A€e(4),
(V) Ry AR,y = T+AR MY Raw)s 4 pee(4),

- (RiR)

Proof. Note that it follows from (ii) that R,(4)'4" is a bounded linear operator,
and its domain is D (4"). Hence (iii) is an immediate consequence of the first inclusion
of (ii). It follows from (i) that R,(1)" maps K onto D(4"). Hence the first equality
in (iv) follows from (iii). The second equality in (iv) follows from

Ry —Ry(w) _ AR4(A)—pR4(1)
A—p A—u

(I+AR4W) Ra(w) = Ra(p)+A . 4 peo(d).

It remains to prove (i) and (ii). As to (ii), it suffices to show this for r=1.
If {f,g)€R, (14, then there is an h€K such that {f,h}cA and {(h, g}€R,(4).
Hence g=R,(Wh=(+AR,(}))f and {f, g}cl+iR,(4). Therefore R,(A)Ac
I+ AR, (A). The second inclusion in (i) with r=1 is clear for A=0. If 250 and
{f, g}eI+ AR (%) then {Af, g—f}ER,(2) and {g—f, Ag}€ 4, sothat {if, Jg}€ AR (2).
Thus we have I+ AR, (A)C AR, (1). First we prove (i) in the case r=1. If {f, g}€ 4,
then R,(AN)(g—Af)=f If ¢=g—Af, then f=R,()¢ and (I+2R, () o=
(I+ AR (1) (g—7f)=g. Hence AC{{R,(1)¢,(I+iR,(2) o}lo€eK}, A€o(4). The
reverse inclusion is obvious. Now suppose (i) holds for r=1, ...,p—1. Suppose
{f,g)c4?, then for some h,,....h,_,€K, we have {f h}€A, {hy, h}€ A, ...,
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{hp—2, h,_1}€A, {h,_,, g}¢ A. This implies for ¢,, ..., 9 €K that

f= RA(’qula hl = (I+)“RA()*))(P1’
h = Ry(2) e, hy = (I+ AR (%)) @,
hp—s = Ry(N)@p-1, hpy = (I'I' ARA(;L))(DP—D
hp—l = RA(A)(pp’ g = (I+2'RA()°))¢p
This shows {¢;, ¢;,,}€4 for i=1,...,p—1, and thus {p;, ¢,}€ 47" so that for

some x€K ¢;=R,(M* 'y, @,=(I+IR, (AP 'x. We conclude f=R (1),
g=(I+2AR,(A))"x and thus

A7 < {{Ry(AF 1, (T+ AR AV x} | 26K}, A€o(A).
On the other hand we have for all y¢K

{RA(DP Ry(A) x> (I+ AR4 (DY~ Ry(A) x}e AP,
while
{RADT+AR W)y, (I+ AR (W) x}eA,
so that
{RaA)x, (T+ AR4 (W) x )€ 4P,
which shows
{RAD %, (I+ AR,V 2} | x€K} < 47, 2€0(A).

This completes the proof.
Next we show for any subspace 4cK? and réN we have

23) {f.g}e(d—Ay o= Rs(A)g, Aca(A).

To see this let {f, g}€(A—4)", then for gy, ...,g,_,€K we have {f. &}cd—12,
{gl, g2}€A_ls cres {gr-z’ gr—l}eA"'}', {gr—h g}EA—/l, so that &r—1= RA('Dg,
8-2= Ry(M)&-1, ... » &1=R,(A)gs, f=R,(%)g,, whichimplies f=R,(A)g. The
proof is complete by reversing the above argument.

If K is a linear space, 4 a linear relation in K* and if p is a poly-
nomial, p(A)=23;_, b4, bi€C, b0, we may define the linear relation p(4) in
the obvious way

) = {{f R |{f, g} 4, i=0,..,n, 37 g = g).

With «€C, we can write p in a different way: p(A)=37_, c.(A—a), c,=b,0,
and it has been proven (see [1]), that

pA) = S ycx(4—a).

We now return to the Banach space situation.



Symmetric and selfadjoint relations in Krein spaces IT 203

Proposition 2.3. Let ACK? be a subspace with o(A)=9 and let p bea
polynomial of degree n

p(ﬂ,) = 2;::0 Ck(ﬂ.—d)k, Cp # 0’ iEQ(A)'
Then

{fgtep(d) = 3, _aRa(0) " f= Ry(0)"g, aco(d).

Proof. In order to show this we let {f, g}¢p(4), then for g, ...,g,K we
have {f g}eci(d—o), or {ef g}e(4—)* and 3 g=g. By (2.3) this
implies ¢, f=R,(0)*g;, and ¢, R, ()" * f=R,(0)"g, so that

im0 kR4 Ff= Ry(a)g.

To prove the converse we define ¢, ..., ¢,€K and ¥, ..., ¥,€K by
®o =1,

b= -El,,_(R“'(a)n_jg_2:;;CkRA(“)"_k_1¢j—1), j=1,..,n,
and
Vi= Dok Ra(@)"*0;— Ry()~ g, j=0,..,n
Then we have
(@j-1— Ry @) =1, j=1,...,n

¥;=0, j=0,..,n—1.

We claim

Clearly this is true for j=0. Assume it is true for j=p—1, 1= p=n—1. Then
Qpp = C,,((DP'- RA(“)(pp+1)
= Ry(@)' P8~ S}y e Ra(@)' 20y — Ra(0)' P8+ 31_L o Ry(a) %0,
=~ 34 2o & RA@" " (9p-1— Ry()9,) = 0.
It follows that
RA(a)¢j= (pj._l, j= 1, ooy N
This implies that
RA(“)n—j¢n =95 j=0,..,n

RA(“)j¢j =f, i=0,..,n,

and

and also that
Ry, = 2:,0 G R4(@)"* 10, ~ Ry(a)g

= Zzzo R4 ¥ —Ry(0)g

= ¢n~1= .
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Hence we obtain .
{fioje(Ad-w), j=0,..,n,
and
Do Ok = &+ n

Therefore {f, g+¥,}€p(4) and as ¥,€v(R,(«))=A(0) implies that {0, ,}cp(4)
we obtain {f, gj¢p(4). This completes the proof.

Proposition 2.4. Let ACK? be a subspace with o(A)#9, then
(1) p(A) is a closed linear relation,
(i) Ry(A)'p(AR,(W)"€[K], 4, p€e(A).

Proof. (i) is an immediate consequence of Proposition 2.3. As to (ii) we observe

that
Ry A p(ADRyW)" = o bi Ra(A) A" Ry(p)’

= > _ bk RA(D" "Ry AR, (W*Ra(wy*
= > bRy I+ AR (D)) R4 (1) Ra(u)"~*
= 3 _ bRy *I+AR4(W) R4(w)'

where we have used Theorem 2.2.
If A is a closed operator in K, with ¢(4)0, then a proof of (i) can be found
for instance in [7, p. 602]. Our proof of the general case is modelled on that argument,

and is different from the reasoning in [1].
Let AcK? be a linear relation. We recall the definitions of the continuous

spectrum o,(4) and the residual spectrum o,(A4):
0.(4) = {A€C|R(A-2F =K, R(4—2) =K, v(4—1) = {0},
0,(4) = {A€C|R(A-1° =K, v(4—1) = {0}}.
Sometimes it is useful to include = in the resolvent set or in the spectrum. Therefore
we define, cf. [5],
34 =e(u{=} if 0ce(d™), =e(d if 0¢o(4™),
6(4) =oc(A)ui=} if 0€6(47Y), =o0(4) if 04o(47Y),
6,(A) = o,(AHuf=} if 0€6,(47"), =0,(4) if 0do,(47"),
Ge(d) = o (A=} if 0€0.(47), =04 if Ofo.(47),
6,(4) = g, (A)uf=} if 0€a,(47Y), o,(4) if 0ds,(47Y).

i

In particular note that for a subspace ACK? we have

wc@(d) & AE[K].
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Now let M be an invertible 2X 2 matrix with complex entries. It is easy to see
that for any linear relation AcCK? we have
A is closed <> M A is closed.
Note that for a subspace 4CK? we have
nee(Ad) < C (Ae[K], neC\R,
and for a subspace UcK? we have
pee(F,(U)) < U€E[K], ucC\R.
For p€C we introduce a homeomorphism © from the extended complex
plane into itself with the usual topology by

P
oW == A=K O=)=1 0=
Proposition 2.5. Let AcK? be a linear relation, and let pnc o(ANR. Then
O gives a one-to-one correspondence between
() 8 and §(Cu(4),
(i) 6(4) and O'(C ”(A)),
Gii) &,(4) and 0,(C,(4)),
(iv) 6.(4) and o.(C,(4)),
V) 6.(4) and 0,(Cu(A)).

Proof. This is based on the identity

A
(CM(A)_ A_Z) = Z—ﬁ (I+@A—m(A-1""), peC\R, 4 # p

For the sake of completeness we include a couple of results, due to Arens [i].
Proposition 2.6. Let A, B be subspaces, such that AB=BA. Then
(AB)"¢[K] < A7'€[K] and B7'¢[K]

Proof. If A~™', B7*€[K], then (4B)~'=B7'A7'¢[K]. Conversely (4B)~'¢[K]
and AB=BA imply R(AB)=R(BA)=K and v(4B)=v(BA)={0}. Hence we
find R(4)=K, v(4)={0} or equivalently A~'¢[K], and also B~'¢[K].

Now let p be a complex-valued polynomial of degree n, and let pu€C. Then

pA)—p(p) = c(A—p)...(A— py),
where p(u)=p(u),i=1, ...,n. Hence if ACK? is a subspace, then
p(A)—p) = c(A—pm)...(4— ).

This implies
p(wea(p(4) < pm€o(4) forsome i=1,..,n

Proposition 2.7. If ACK? is a subspace and p a polynomial, then
a(p(4)) = p(o(4).
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3. An operational calculus for subspaces

We present an operational calculus for subspaces along the lines of [14] or
[7, p. 601], by reducing the problem to one for the resolvent operator. If A4¢[K]
we define F(4) to be the set of all complex-valued functions, which are analytic in
some neighbourhood of the compact set o(4). If AcK? is a subspace such that
A¢[K], then F(4) denotes the set of all complex-valued functions, which are analytic
in some neighbourhood of &(A4).

For a given a€C we set up a homeomorphism @ from the extended complex
plane into itself with the usual topology by

45(/1)=7_1—a, A#a, &) =c, @()=0.

Proposition 3.1. Let ACK? be a subspace with ¢(A)#=0. If «€g(A), then
D gives a one-fo-one correspondence between

@ o) and (A-0)7),
(i) &(4) and o((4—a)),
(i) &,(4) and o,((A—x)7Y),
(iv) 6.(4) and o (A—x)7Y),
) G4 and o((A-2)),
(vi) F(4) and F((A—a)~Y), in the sense that
f=@od~', feF(4), @ocF((4—w)™"
Proof. Allitems except (vi) follow from the identity

1 1
A= = —
A4=4 A—a I (A—a)?
which we have given in Section 2. Item (vi) is straightforward.
If A€[K] and f€F(4), then we define f(d4) by

-1
R e R

Sl = — o [ FDRAD) 2,

where I is a suitable contour, surrounding the spectrum o (4), cf. [7, p. 601] and [14].
If ACK? is a subspace with ¢(4)#0 and A4¢[K], then we define for feF(4),

) = T~ [ fRYRAD) d,

where again I is a suitable contour, surrounding the extended spectrum &(A4). This
definition is the same as in [7, p. 601] when A4 is a closed operator. It follows that
f(A)E[K] and we have the usual properties. The mapping f—f(4) is an algebra
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homomorphism from (the algebra of equivalence classes of) F(A4) into [K], which
preserves the unit element. We collect some useful properties in the following pro-
position.

Proposition 3.2. Let AcCK? be a subspace with ¢(A)#0. Then
0 o(f( ) =7(E).
(i) If fcF(A),gcF(f(A)) and F= gof, then
FEF(A) and F(A) = g(f(4)).

Let f, g€F(A), suchthat forsome a€o(4) g(A)=(A—a)'f(1). Then it follows
that R,(x)"g(4)=f(4), which implies that f(4) maps K into D(4").
If 6co(A) is a bounded spectral set of 4, and

Ei(0) =~ [ RaG)

where I' is a closed contour in ¢(A4) such that ¢ is inside I and o(4A)\ ¢ is outside
I, then the above remarks show that E,(a) is a projection, the so-called Riesz-
projector. It follows that E,(¢) maps K into D(4"), n€N.

Remark. Let AcCK? be a subspace with ¢(4)=0, and let M= (;‘ gJ be
such that =0 and such that —a/B€0(A). It is easy to see that

MA = %1—%%1{,1 (——Z—)

Now suppose «€6(A) or equivalently A¢[K], and consider

_ OA+y _x
f(l)-———m_l_a, A # 5

Then it follows that f¢F(A4), and
f(4) = MA.

4. Definitizable subspaces
In this section we let K be a Krein space with inner product [, ], see [2]. We
recall the definition of the adjoint A for a linear relation 4AcK?2:
At = {{f, gyeK?|[g, h] = [f, k] for all {h, k}eA}.

We note that MA*+=(MA)*, for any invertible 2X 2 matrix with complex entries.
Here the matrix M is defined by

WG o - ()
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If ACK? is a subspace and p€C is an isolated point of ¢(4), then we have
a Laurent expansion around u:
A== (n—4, AEK],
and hence around g we have
(AT=)7' = 3 _ (A=A

In particular the Jordan structures around the corresponding rootspaces are the same.
More generally, if ¢ is a bounded spectral set of a subspace ACK?Z then for
the corresponding Riesz projector E4(¢) we find

EA(O')+ = EA+ (O'*).
Then the subspaces E,(6)K and E,+ (6*)K are in duality with respect to the inner

product [ , ], see [12].
For the sake of completeness we state the following result.

Proposition 4.1. Let A be a selfadjoint subspace in K* and let oo (A)
be a bounded spectral set. Then

(i o=o" = E4(0) = E4(0)",
(i) 6no* =0 = E(0)"Eal0)=0.

A selfadjoint subspace AcCK? is definitizable if o(A4)#0 and if there exists
a real polynomial p such that p(4)=0 in the sense that

[g.f1=0 forall {f,g}ep(4).
This definition was given by Langer in [11] for the case of operators.

Proposition 4.2. Let A be a selfadjoint subspace in K* with 0(A4)=0,
and a€g(A). Let p be a real polynomial of degree n. Then

p(4) 2 0 Ry()'P(AHRA()" = 0.

Proof. We assume p(4)=0. Let {f, g}¢ R (2)"'p(A)R,(&)", then for some
h, k€K, we have
{fi B} eR4@)", {h, k}ep(4), {k, gieR4(0)",

lg. f] = [RA(O!)"k,f] = [k, RA(&)nf] = [k, h] = 0,

which shows one half of the proposition. Now we assume R,(2)"p(4A)R,(&)"=0.
Let {h, k}cp(4). Now D(p(4))cD(4") and an application of Proposition 2.2
shows h=R,(®@)"¢ for some ¢@cK. Hence {@, h}cR,(&)", {h, k}cp(4) and we
define Y€K by y=R,(x)"k. Then {¢, y}€R,(2)"p(A)R,(®)" and

[k, Bl = [k, R4(8)"¢] = [R4(2)"k, ¢] = [V, 9] = 0.
This completes the proof.

so that



Symmetric and selfadjoint relations in Krein spaces II 211

Corollary. Let A be a selfadjoint subspace in X* with ¢(4)#0 and «€ o(A).
Let p be a real polynomial of degree n and define

g =pM)A—)"A—0)", L#a,d

Then g is analytic in the extended complex plane with poles in a, &, and in particular
g€F(A). We have A definitizable by means of the polynomial p if and only if
q(A)=0.

Proof. A simple calculation shows that
q(4) = Ry(2)"p(A) R4(2)"

Proposition 4.3. If the selfadjoint subspace A in K* is definitizable, then
A~ is also definitizable.

Proof. If A is selfadjoint, then also A7 is selfadjoint. From ¢(A4)#9 it follows
that (4710, since

1 -1
(1) = —ur-ppeam—n, weoN),
This also shows that
2€(AHN\{0} = B = a~t€Q(4™).
Suppose A is definitizable by means of the polynomial
p()=2"_, b;», bR, b, 0.

Then we define the polynomial

P = 30y ba=,
and we observe that with
g =pWA-)"A-@)™" A# i ace(AD\{0},

we have with f=a"1,
1 on s
o(5) = G- PGB

This shows that 4-! is definitizable by means of the polynomial p if and only if
§(A~1)=0, where §(1)=q(1/4). However this follows from §(A~1)=q(A), using
the relation

1 1 1
Rird) = =15 R (3] 2€0047,

and the operational calculus.

Proposition 4.4. Let K be a Pontryagin space and let A be a selfadjoint
subspace in K2 with (A)#0. Then A is definitizable.
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Proof. Choose a€o(A)\R, then C,(4)is a unitary operator in [K]. Remember
that with
A—a

00) = 5=,

A # a,
we have
Co(4) = 6(4),

see the operational calculus in Section 3. Since K is a Pontryagin space there is a
function g€F(C,(4)) such that

8(C.(4) = 0,
see [11, p. 52], and with the additional property, see [11, p. 57],
(8o0)() = g(6()) = pW(A—-)"(A—&)", A a4,

where p is a real polynomial of degree n. Using the operational calculus it can be
seen that

(800)(4) = g(8(4)) = g(C,(4)) = 0.

The Corollary to Proposition 4.2 now gives the desired result.
We close this section with a result about non-negative relations. A linear
relation ACK? is non-negative, A=0, if

Such a linear relation is necessarily symmetric. If A=A+CK? with 0(A4)=0,
we have

420 o PAOZIRE o epanr

Proposition 4.5. Let A be a selfadjoint subspace in K* and A=0. If A7 ¢[K],
then A is a definitizable and
6(4) c R
Proof. Since A7€[K], we see that 0€o(A4), and therefore the selfadjoint sub-
space 4 is definitizable. It is clear that 4 is non-negative if and only if 4~ is non-
negative. Hence we have 4~'¢[K] and 4~1=0, which implies o(4"Y)CR, see [2,
p. 147], and therefore g(4)cR.

We note that there are examples of selfadjoint subspaces 4 in K2, such that
A=0and o,(4)=C.
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5. The resolvent of a definitizable subspace
In this section we again let K be a Kreinspace. Let 4=A4%CK? with o(4) =0
be definitizable by means of the real polynomial p of degree n: p(4)=0, and define
g(A) =p(DA-—x)"(A—a)", ace(d), A+ a8
We have seen g€F(4) and g(4)=0. Next we define for 4, {#a, & the function O by

AR ((9)
Q(}-’C)- l"C ’ 'l¢c’

=q (%), A=
Then we obtain

00, = G= @ PO, GodpBG- - C-57)

L (O=a)" == OC=D)"
2=t

_ (A—a)-"(p(?j@))@—@‘” —(=a)"p(R) 2 =@ (- &)~

(S I (O DA ) S (S
In the las term of this identity we write p({)= >;_, ¢, ({—a)* and observe that
PO —0) 7t = 3 e -t
= 2o ;'Zf;_l Ck (k —f;_ 1) ¢ —ay(@—ay—Ii-1-h
This shows that for each A in the extended plane, with the exception of the points

a, &, the operator Q(4, A)€[K] is well-defined and that the mapping Z—Q(4, 4)
is holomorphic there. If A€ ¢(4), A#«, &, then we have

O, A) = (q(4)— g(D)R4(A).

Now we proceed as in [12], where densely defined operators A=A are treated.
We have

R4(4) = gD 'q(A R, —g(N Q@A 4), Ace(4), ¢q(A) = 0.
Since g(4)R,(A)=R,(A)q(4), A€ ¢(4), we obtain for each fcK
Im[q(A) Ry(N)f, f1 = Am D[g(DR.A)f, Ri(D)f),  Ace(4),
and hence by Schwarz’ inequality

[Im A|[g(4) R4(D)f, RaDf1 = [a(DR4(A) S, RaD)f1*[g(A S, f17,
IIm AP[g(DR.A) S, Ra(W)Sf] = [9(Af. S

or
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Therefore we obtain for A€C+np(4)

= Im[g(DR4ADf, f1= ——[q(A)f /1 feK,

which shows that A~[q(4) R, (%)f, f] maps C*no(4)into C*. This implies that the
function A—~q(A4)R,(%) has an analytic extension from all of C* into C*, see for
instance [10].

Using a similar observation (given above) for the function A~Q(4, 4), we see
that the mapping A— R, (1) has an analytic continuation into

C\{eCt |p() = 0},
and hence this set belongs to ¢(4), cf. [6]. Next we observe for all y, hcK
linlg(A) R4 (in) x> KI® = 17 [q(A) Ra(in)x, Ra(in)x1lq(A)h, ]
= [q(4) 1, 11lg(4)h. h],

if n€R is large enough. Now we proceed using standard arguments. If we choose on
K a fundamental decomposition J, and define the inner product (. , .)= .,.},
then (K, (,)) is a Hilbert space and it follows that there exists a non-decreasing left-
continuous function F on R, whose values are bounded selfadjoint operators in the
Hilbert space (K, (, )), such that

1
GAR,() = J [ ——dF(1), 2€e(A).
Proposition 5.1. Under the conditions stated above, we have

1
Ry} = —=J dFt
D= o)
where the integral exists in the strong operator topology. In particular, if Aca(A)
then either p(A)=0 or AR is a point of increase of F. Also we have in the sense

of the Hilbert space (K, (,)) that
F(e) = Jg(A).

00, 4), Zco(4),

Note that if f€D(4), then {f, g}€ A for some g€K and
(I+2R4(D)f = Ra(D)g, 7€0(4).
Hence for all h¢K, we obtain
lg(Af, i +inlg(ARa(in)f, Bl = [q(A)(I+inR4(im)f, k]
= [(I+inR4(in)f, g(Ah] = [Ra(in)g, g(A)H],
lg(Af. hl+inlg(A) R4(in)f, h[?
= [g(Dg. gllg(A) R4 (in)h, R4(in)h].

which implies
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Therefore we conclude
lim —inlg(A) R4 f, ] = lg(A)f, hl, feD(4), heK.
By a limiting procedure we obtain
lim —infg () Ry(n) 1] = lg(Af, 1, [EDA),  heK.
It is clear that for all =0
—inlg(A)R4Gn)f, h] = 0, feD(AH,  heK.

Remark. Let A=A* be a definitizable subspace in K2, as above. If D(4)°
is a Krein space and E: K—~D(A)° is the corresponding projection, then F ()=
Jq(A)E.

Some more consequences of the above arguments are formulated in the following
proposition. For 1€C we denote by k(4) its multiplicity as a zero of the fixed de-
finitizing polynomial p.

Proposition 5.2. Let A=A" be a definitizable subspace in K?, with real
definitizing polynomial p. Then the non-real spectrum of A consists of a finite num-
ber of pairs A, X. Each isolated spectral point of A is an eigenvalue of finite Riesz
index v(A)=v(A):

k(4), AEC\R,
v(d) = {
k(M)+1, AeR.
Near the real axis we have

IRA(E+in)l = o(n=* @), & neR, n 0.

In particular, if ¢€R is an eigenvalue of A each corresponding Jordan chain is of
length at most k(&)-+1.
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