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A PROBLEM ON JIJLIA SETS

I. N. BAKER. autl A. EREMEI.{KO

l.Introrluction. Throughout the papet f, g will denote rational functions in
the complex plane. To avoid exceptional trivial cases it will be assumed that f is

neither constant nor a Moebius transformation. For n€N the n-th iterute of / is

written f . The set N(/):{z; f" is normal in some neighbourhood of z} and the

Julia set /(,f)=ÖVf (f) are fundamental in the iteration theory of I We recall

that t(f) is a non-empty perfect set, that J(f):J(f'), tr€N, and that
J(f) and N(/) have the property of 'complete invariance', expressed for -I by

t ( f ) :f (r ( f )) :f -,(r ( f )).
The functions f, g are called permutable if fog:gof. Julia [3] showed that

for permutable f, s one has J(f):J(d. Indeed if a€I[(/) and ä>0 we may

choose p=0 so small that the disc D:D(u, s)cN("f) and that the spherical

diameter of f"(D) is at most ä for all n€N. Since g is uniformly continuous in the

spherical metric we can assume ä so small that the diameter of /'(g(D)) :C(f'(D))
is uniformly small for all z. Thus S(a)€g(D)€N(/) and we have shown that
g(N(/)cN(/), whence N(/)cN(g) and by symmetry N("f) :N(g), l(f\:J (d.

One may ask if a converse of Julia's result holds, but it is easy to see that the

cases when ./:e or when .I is a circumference must be excepted. On the other

hand in the cases when "r(/) is neither Ö no, a part of a circumference or straight

line it is known since Fatou l2l that "I has a very complicated (non-differentiable)

structure, which suggests that the class of functions g such that J(g):1(/) should

be rather restricted, perhaps even thatf, g are then permutable.

For polynomials the results are not difficult. The set "I is said to have a rotåtional
symmetry .L if tbere is a linear function L(z):$77161-b, where å€C' 1ä;:1,
ä#1, such tttatl is invariant under z-L(z).

Theorem l. If f, g nre polynomials such that J(f):l(g):J, then either

I has a rotational symmetry or f and g are permutable.

A supplement to Theorem I will list the exceptional cases where rotational

symmetry occurs and show that if I (f) has a7'-1s16 symmetry, 1 <j <. *, then / and

g arerclatedto polynomials F, G which are permutable. A consequence of Theorem

I and its supplement is the following result.
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Theorem 2. If f is a polynomial such that J(f) is not a circumference, then
the set of polynomials g such that J(f):I(d is countably infinite.

The method of proof of Theorem 1 does not extend to rational functions.
However, a different argument can be used to deal with at least the large class of
rational functions where./ has a cusp.

lf y(t), y'(t), 0<r=1 are two differentiable arcs which intersect only at
«:y(0):y'(0), where they are tangent, then we shall say that y,y'form a cusp
at a. ln a small disc / centred at a the cusp region will be the smaller of the two
regions into which / is divided by y, y' . The set J (f ) is said to baye a cusp at a if
there are curves y,y'with the above properties such that for small /, J(f)nA
belongs to the cusp region.

Now -r(/) certainly has a cusp (at the point O if

(i) some iterate of / has a fixed point ( of order p>l such Lhat fe(O:t,
(f')' (O - l, (fe)"(€) *0.

.r(/) will also have cusps at preimages of points such as (. It is interesting to
try to characterise all the cusp points of "I and we can do this at least under an
additional assumption.

Theorem 3. If f is a rational function such that all the critical points of f
belong to N(f) and a is a cusp of J(f) then a is preperiodic.

Clearly the set of cusps for a function which satisfies the assumptions of Theorem
3 is at most countably infinite. A simple geometric argument, which will be given
later, shows that the assumption that the critical points of / belong to N(/) is
not in fact necessary to ensure the countability of the cusps. This is the key fact
needed to prove

Theorem 4. If the rational function f is such that J(f) has infinitely many
cusps thm the set of all rational g such that J(f):J(g) is countably infinite.

If a is a cusp of "r(/), then the backwards orbit 0- of s is infinite, and, provided
that

(ii) the critical points of / belong to N(f), then 0- consists entirely of cusps.
Without (ii) this is false, e.g. J(22-2) has just two cusps at +2.

Denote by C the class of rational functions (of degree at least two) such that
(i) and (ii) above hold.

Such functions satisfy the assumptions of both Theorems 3 and 4. The functions
of class C are in a sense much less restricted than polynomials. Only the restriction
that (f\':I at some fixed point lowers the dimension of the family to one less
than the full dimension Qd+l) in the case of rational functions of degree d. Thus,
for example, if d:2 we may find 4 dimensional complex manifolds of functions
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of the type

tt -\ _, - (a + 1)(z - €)'z +b(z - t)r \.) - \ | @_E)z+a(z_0+U,
which belon g to C tÅth d:2, p:1, for arbitrary complex (, a, b, å provided that

b*0, a+)'-alb*O, so long as lf(C+)')l<1. one has f ($:1, f'(€):l,f'(4)*0,
fG+11:1*,1. The two critical points of f ate then in N(f), one each in the

region of attraction of ( and of t+;".

2. The case of polynomials. Suppose now that / is a polynomial of degree

ru>l, with leading term azn. Denote by D the unbounded component of N(f),
in which the iterates .fo**./("f) is the boundary of D. It is classical (see e'g'

Fatou [2]) that there is a function B univalent in some p'- lz: lzl>K]cD,

such that lB{r)l =1 in D' and

Bofo 3-r Q) - at',.

B is closely related to the Green's function g(2, ..) of D; in fact

sn(2, *)-- los lB(z), - (*) rog 141.

(1)

(2)

The connection has been already noted e.g. by A. Douady [1]. We include an

explanation for completeness. A preprint by J. L. Fernandez uses this Green's

function to study a related question about the relation of a monic polynomial to

its Julia set.

Indeed if F is any spherically compact subset of D we have, for sufficiently

large k, that fk (F)cD' and then

B(fo) : GkBn", at, : a(@t'-L)l{n-r)),

non-zero in F so thatis analytic and

(3) los lB(r)l - n-k {loe la(fr@) I -toe larl}

gives a harmonic continuation of the left hand side to F. Fix a large valae H>K
and denote ,:{z: lzl:H). Let M:saplak)l in the region between y, f(y).
Let xbe the smallest value of /c such that l.fk(z)l>ä. Since f(0»1:6p we see

that x** as z*OD in D. Since l<lB(f.(z»l=tt *" obtain (2) from (3).

Proof of Theorem -I. Suppose thal f is as above and that g(z):bz-+... is a
polynomial of degree 11? such that J(f):"r(s:). Then there is a function c in D,

analogous to B, such that C(g): bC*. By the uniqueness of g(z -) for D we have
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From the expansion of g(2, -) at - we have

l1
iI1 log lal: i:Tlog lä1,

whence b*:öab for some ä such that läl:1. Further, since B(z)-C(z)-z
as fzf *- we also have B(z):C(z) sothat

(4) BA: aB', B(g): bB^,
and
(5) B(e"f): öB(fog).

Equating positive powers of zin the expansions at * of both sides of (4) and
using (1) gives

(6) gof qbo:6(.f"s +b).
Put this in (4) and set fg-yt. For large lwl
(7) B(Lw): åB(w), Lw: öw*(ö-l)bo.

Three cases arise.
(i) If ä:1 thenby(5) / andg arepermutable.
(ii) If ä is not a root of unity it follows from (1) and (7) tt:rrt B(z):z*bn,

and from (4) that .f (z):a(z+bo)-bo, e@):b(z+bo\*-bo. In this case.I is the
circumference given by lz*bol:q, where lale"-, :!.

(iii) ä is a primitive-l'-th root of unity for some 7>1. From (4) and (7) we have
B(ft7:53(f) and, by equating positive powers sf *, f(L):AU). Denoting
M(t):1a60 and D(t):ä, we have L:M-LDM and F(D):p"1p1, where
F:MfM-|. Thus F(l) is a polynomial of the form af (t+crlt! +crlt i *...) and
f(z) has the form

(8)
"f (r) - a(z *bi" {1 + ct(z *bo)- i + cr(z *bo)-zi +...} -bo

: (z*bi'fr{@+bö\.
Since /'(Z): L*(f\ we see that D and hence J(f) are invariant tnder z*L(z).
conversely a rotational symmetry of J(f) will result via the Green's function in
a relation of the form (7) and so one of the cases (ii) or (iii). Let us call the case
(iii) a symmetry of order 7'.

In case (iii) /(/):"7(g) does not necessarily imply that f, g are permutable.
Forexampleif äisaprimitive;'-throotofunity, äo:0 and f (z):p(/),Se):6p(d)
wherep is a non-constant polynomial, one has J(f):1(g), gof:öfog. However,
in case (iir) "f and g are related to a pair of permutable polynomials F, G as follows.
lf F=MfM-t, G:MgM-1 then (Q impties Sf:Lfg which leads to GF:öFG.
Since F(z): /Ä(d) by (8), with a similar expression G(z):g*fr1S), we may set
F{21:2"179r1)i --TFT-,, where T(z) : si, and G(21:* ltrlr'r1i. The potv-
nomials F, G are permutable:

GF - TGT*LIFT-L- TöFGT-I : TFGT-, : FG.
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We have now proved Theorem 1 with the following.

Supplement to Theoreml. If l(f) has a rotational symmetry then f
has one of the forms gioen in (ii) and in (iii), (8) abooe. In the case of a i-fold sym-

metry, l-j=*, although f and g mdy not be permutable, the related polynomials

F, G, described aboae, are permutable.

. Proof of Theorern 2. It is at once clear that the case (ii) above has to be excluded

in Theorem 2, since a(z*bo\-bo and b(z*bo)*-bo have the same"Iif laå"|:lb{1.
Suppose then that / is as in Theorem I but does not belong to case (ii) and

that g is a polynomial b**... such that J(f):J(d. We have case (i) or (iii),
so that in the above discussion ö : I or ä is a7'-15 root of unity for some j> 1. Since

bn-tö-dn-L we see that, given / there is a countable set of choices for ö,m,b,
The values of m,b fix g from B(g):bB*.

3. ProofofTheorem 3. (i) Suppose that / is rational (of degree at least two)
and that the critical points of / belong to N(/). D. Sullivan [4] has classified the

behaviour of ("f') in the components of N(/) into five types. Under our assump-

tions on / it is impossible for two of these types (associated with Siegel discs and

Hermann rings) to occur. Examination of the remaining cases shows that a point

C of J (f) can be a limit point of a sequence (f'(r)), where c is a critical point of
f, only if 6 is a fixed point of some fo, k=1, such that (f\'(0:t. There is at
most a finite set of such values (.

(ii) Suppose that a is a cusp of l(f) but that a is not preperiodic. Since all

l"@) are different we may choose fln*- so that d":f"(u) converges, say to

fieJ(f). By a change of variable it may be assumed that P#*. We claim that
ntv may be chosen so that a neighbourhood of f is free of points /'(c), where c is
a critical point of I If this is not the case, then for every convergent sequence

a, the limit is one of a finite set of values ( described in (i). Denote the minimum
distance between two such values 6 by ä.

Take a particular choice of un:f"(a)*B. Then there exist natural numbers
j andssuchthat

fi (r) : z* a"*(z- B)'*1*..., ctral # o,

holds near 2:8. Then (see e.g. [2]) there are s equally spaced cusp domains Dr,

l<i=s, with cusp at B, such that for some value of r with 0<4r<ä and B=
{z: lz-Bl<3r} we have

J(flnB cl)tDi, lz- fil = lfr(z)l o. 2lz- Fl, z€Din&.

For sufficient§ large v the inequality lu"- Pl-r holds and so there is a first k:k,
such that fkt(a\:fki+'"(a) lies in r=lz-fi1<.2r, Bat then there is a limit point
of ("f) which is different from all the ( of (i). The claim in (ii) is proved.
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(iii) We have the cusp o( of J(f) (assumed not preperiodic) and a sequence

a,:f""(a)-fi, where the disc D(fr,3d of centre B, radius 39, contains no points

of the form f"(c), c critical for f Denoteby z:gu(w) the branch of the inverse

of w:f\(z), chosen so that w:d,v corresponds to z:a. Then g, is analytic and

univalent in D :D(6, 3s).

Note that by [2,§3U (i) the gy are a normal family in D and (ii) for a domain
/ such tbat ZcN(f)nD and.4 contains no fixed points of / we have g,(/)*J {f).
Since g,(a,):a it follows that the only limit function of (s,) is the constant d,,

andhence )",:gi(u\*Q as v*-.
Now consider

E,e) : {g"(u" + qt) - a} | (eA"),

which belongs to the class § of univalent functions in I r | - I , normalised by g, (0) :0,
Ei@):l. By replacing euby a subsequence it may be assumed that arg).u*a
limitp and En*rp€§ locallyuniformlyin ltl=l. Thus

g,(tr, + at) - a: QA,(E@ * s,(/))

where e,(l)*o locally uniformly in lrl= 1.

For any §'et177 such that O=lff-\\-*e, potting a,*ptu:fi', so that
tn+t:(B'- B1lQ, in (9) gives

(10) c,(p')-a: d.,(q(t)-tei)
whete EQ)*0, ei*g as v*0. If the cusp of l(f) at a is in the,9-direction, then
taking arguments in (10) gives .9:trrfargEQ). We have shown the following
result:

All points §' of J(f) near B lie on the analytic arc o: through B giuten by

E((§' - $l s)- nsi($- D, t >o-

There are now two cases to discuss, in (iv) and (v), according to whether "I(/)
contains continua or not.

(iv) Suppose that J (f ) contains a continuum. Since for any a€J (71 the points

f-"(rD are dense h J(f), it follows that o contains a subarc o' wåich belongs to
.r(/). Since fxed points of iterates of f are dense in J(f) we may suppose that
the end-points of o' are fixed points of some iterate fN and that o' is interior to an

arc of o which belongs to J(f). By the expanding property of (-f') on J(f) therc
is some ft€N such that fkN(o):J(f). Now (/&N)'*0 on..f and so at any point,
such as P€J(f), we have fr:fo*(P) for some fr.5.o' and thus B is an interior
point of an arc of l(f). This contradicts what was proved in (iii). Thus the theorem
is established in case (iv),

(v) Suppose that J(f) contains no continua, so that J(f)no is a nowhere

dense set on o. Since a,€o and (f")'(a)*O, while.r(/) has a cusp at a, it follows
that un is the end-point of a (maximal) arc d of oaN(f), while a, is a limit point
of a sequence,s,,"€"7(/)\1,. W" have un*8, I,*P on o as v->6.
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For large v and for F>r, nt:np-ny wehave f*(a):ur, f*({sn,,}):{rr,r}.
Thus /'maps the part of the analytic curve o rrear q,y to the part near ar. Now
Iu, Ir are given by equations of the type z:h(t), t6/":lan,bnl or t€fau,brl,
respectively, where å(l) is analytic and h'(t)+O. Since t(t):h-'of^oh(t) is real
analytic at the end, say bn, of [a,,å,] which corresponds to h(t\:an, ry' can cease

to be analytic (and real) as , traverses ln only if t*to=bn such that /'(ro) is a
singularity of h-r. If lo is the first such value of r to be reached, then for t€lto,b")
we have {r(t) real and also f*(h!))eN(/). Thus f'(h(t\) cannot have left 1, at
lo. Hence no such /o exists and thus f^(l")clo

Keeping v fixed, let p**. Then for a point z inthe interior of 1, (and hence

in N(/)), f^(z)*fl(J(f) as m:nt-nu*-' This is possible only if B is a fixed
point of some lfe and (fp)'(§):l. However, such a B is a limit of /'(c) for some

critical c, which contradicts the construction of f in (ii). Thus the proof of Theorem 3

is now complete.

4. Proof of Theorem 4. We begin with a simple geometrical observation. If l is
any compact subset of C and r>0, say that zsQI is an r-corner if the disc D(ze, r)
has the property that InDlzo, r) is contained in a sector of D(zo, r) with the angle
nl9 at the vertex zo.For a fixed r, Ihas only a finite set of r-corners. If not there
is a sequence z, of different r-corners such that zn conyetges to z'. For large

n,D(z', r)nl iscontainedinasquarewhosediagonal isz,znql,andhence D(z',r)al
reduces to a single point, which contradicts the construction of z'. Now every cusp
of 1is an r-corner for some rational r, so the set of cusps of 1is at most countably
infinite.

Now suppose that J(f\ has infinitely many cusps, and hence precisely a count-
ably infinite set of cusps.

If g is a rational function such that J(f):I(d, g must map cusps of ./ to
cusps. If the degree of g is dthen g is determined if its value at (2d*l) points is
known. Thus if we take 2d+l dtfferent cusp points (a,) and observe that there is
at most a countable set of choices for g(a) at each such point we see that there is
a countable set of g, at most, for each degree d.
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