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ON REPRESENTABLE PAIRS

Tomds Kepka, Petr Némec and Markku Niemenmaa

Introduction

This paper is organised in five parts. We first consider some properties of
semigroups in Chapter 1 and prove structural results which might be interesting
as such. In Chapter 2 we define our central notion, namely, that of a representable
pair (S, f) where S is a semigroup and f is a mapping from S into the class of
non-zero cardinal numbers. We also give here some necessary conditions for a pair
(S, f) to be representable by a groupoid.

Chapter 3 contains a representation criterion. By using this criterion we are
able to prove in Chapter 4 several sufficient conditions for a pair (S, f) to be
representable by a groupoid. Finally, Chapter 5 contains a special treatment of a
semigroup of order five.

We assume that the reader is familiar with the rudiments of the theory of
abstract algebraic systems. The background can be obtained e.g. from (1], [2] and

[3].

1. Preliminaries

Let S be a semigroup. We denote S% = SS = {ab: a,b € S} and S™ =
$S™~1 for every positive integer n > 3. We also need the following sets:

Id(S)={a€ S:a=a’},
L(S)={a€ S:a€ Sa},
R(S)={a€ S:a€aS},
Li(S)={a€ S:a€Id(S)a},
Ri(S) = {a € S:a € ald(9)},
K(S)=[)s"
n=1
We shall now formulate some easy observations.

Lemma 1.1. (i) The set L(S) (or R(S)) is either empty or a right (or left)
ideal of S.
(i1) The set Li(S) (or Ri(S)) is either empty or a right (or left) ideal of S.
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(iii) The set K(S) is either empty or an ideal of S.
(iv) 1d(S) € Li(S) C L(S) € K(S) and 1d(S) C Ri(S) C R(S) C K(S).
If there exists an integer n > 0 such that S™"1 # S™ = K(S), we say that

the number n = nc(S) is the class number of S (now S° means a one-element
semigroup and S™1 =0).

Lemma 1.2. If S is finite, then 1d(S) is non-empty, L(S) = Li(S) and
R(S) = Ri(S). Furthermore, K(S)* = K(S).

Lemma 1.3. Let S be finite and S = S? (i.e., ne(S) < 1). Then S =
R(S)L(S). In particular, S = L(S), provided that S is commutative.

Proof. Put I = R(S)L(S) and define a relation r on S by (a,b) € r if and
only if a € bS. Now I is an ideal of S, r is transitive and a € R(S) if and only if
(a,a) € r. Then assume that a; € S—I. There are elements a3, b, € S such that
a; = azb, also a3, by € S such that a; = asby etc. Now (ay,a2) € r,(az,a3) € r
etc., so that (a;,a;) € r whenever 1 < ¢ < j. Since I is an ideal and a; ¢ I,
we conclude that I contains none of the elements as, a3, .... As S is finite, it
follows that there are positive integers ¢ < j such that a; = aj. Thus (a;,a;) € 7,
a; € R(S), and since R(S) C I by 1.2(i), we get a; € I, a contradiction. The
proof is complete.

Lemma 1.4. Suppose that S contains at most four elements and S = S?.
Then S = L(S)U R(S).

Proof. Suppose that a € S and a ¢ L(S)U R(S). By 1.3, a = bc, where
b € R(S) and ¢ € L(S). Clearly, b ¢ L(S) and ¢ ¢ R(S). Now the elements
a,a?,b and c are pair-wise different, hence card(S) = 4. If ba = b, then a =
be = bac = b%c? = b3¢® = ...; now b" € Id(S) for some n > 1 , the equation
a = b"c" implying a € L(S), a contradiction. Similarly, if ba? = b, we get a
contradiction. Consequently, ba # b and ba®? # b. The inequalities bb # b and
bc # b are obvious; thus we have proved that b ¢ bS. Hence b ¢ R(S) and we
again have a contradiction. We conclude S = L(S) U R(S).

Example 1.5. Consider the following five-element semigroup T':
0 b d

o O O O Oofa
O O 8 O oo

0
a
b
c
d

oS O O O O
O O O O O
QU © o O O

Now T =T? and a ¢ L(T) U R(T).
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Lemma 1.6. Let S be a five-element semigroup such that S = S? and
S # L(S)U R(S); then S is isomorphic to the semigroup T constructed in 1.5.

Proof. Let a € S—(L(S)UR(S)). Now a = bc, where b € R(S)and c€ L(S)
Furthermore, b ¢ L(S) and ¢ € R(S). The elements a,a?,b and ¢ are palr wise
different and, as in the proof of Lemma 1.4, one can show that b ¢ {ba, ba?, bb, bc}.
Since b € R(S’) b = bd, where d € S and thus S = {a,a?,b,c,d}. By using a
similar type of argument, we get ¢ = dc.

Now we know that b = bd and ¢ = dc and we try to compute the rest of the
multiplication table for S. It is easy to see that ab # a,ab 7é b,ab # c and ab # d;
hence ab = a? We also have ba = a?,ac = a® and ca = a?. Further, it is easy
to see that b? = a? and ¢? = a? Clearly, ad # a and ad 76 b. If ad = ¢, then
a=bc=bad =0b%d*=---,a contradmtlon If ad = d, then b = bd = bad and
a = bc = badc = bza(dc)2 = ..., again a contradiction. Consequently, ad = a?
and, similarly, da = a?. Since a ¢ R(S) U L(S), b ¢ L(S) and ¢ & R(S), we
must have cb = a2, ¢d = a? and db = a®. Clearly, a® # a, a® # b and a® # c.
If a® = d, then b = bd = ba® and a = bc = ba3c, which is not possible. Thus
a® = a?, and it follows that a* = a?, ba? = a?b = ca2 = a’c = da® = a’d = a?.
Finally, we have to see that d> = d. If we denote a®> = 0, we have the same
multiplication table as in the example. The proof is complete.

2. Groupoids and semigroups

By a groupoid we mean a non-empty set together with a binary operation
denoted multiplicatively.

Let ¢ be a groupoid. Denote by r(() the intersection of all congruences r such
that the corresponding factor groupoid is a semigroup. Now r(() is a congruence
on {, ¢(/r({) is a semigroup and r(() is the least congruence with this property.
Clearly, r(¢) is the congruence on ( generated by the ordered pairs (a(bc), (ab)e),
where a, b,c € (.

Throughout the paper, let C' denote the class of non-zero cardinal numbers.
Consider a semigroup S and a mapping f: S — C. We say that the pair (S, f)
is representable by a groupoid if there exist a groupoid ¢ and a homomorphism ¢
from ¢ onto S such that ker(g) = 7(¢) and card(¢~!(a)) = f(a) for every a € S.

We immediately have

Lemma 2.1. Let S be a semigroup and f: S — C a mapping such that the
pair (S, f) is representable by a groupoid. Then f(a) =1 for every a € § — 53.

Next we establish

Lemma 2.2. Let S be a semigroup and f: S — C a mapping such that the
pair (S, f) is representable by a groupoid. Let a € S? and

A={(bc)|bc€ Sanda=bc}.
Then f(a) < E(b,c)EA f(®)f(e).
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Proof. Suppose that

fl@)> Y F®)f(o).

(b,c)EA

Now there exist a groupoid ¢ and a surjective homomorphism g: { — S such that
ker(g) = r(¢) and card(g~!(u)) = f(u) for every u € S. Put H = g~!(a) and

L={zylzeg™'(b),y €g7'(c),(b,c) € A}.
Then L C H and L # H. Now we define a relation d on ( as follows:
d=(r(¢)—(H x H))U(Lx L)U ((H - L) x (H — L)).

Clearly, d is an equivalence relation, d C r({) and d # r(¢). In fact, it is not
difficult to see that d is a congruence on ¢ and (/d is a semigroup. However, this
is a contradiction. The required result follows.

3. A representation criterion

Let S be a semigroup and f: S — C a mapping. For each a € S, define a
mapping f,: S — C by f,(a) = f(a) and f,(b) =1 for every b#a, be S.

Theorem 3.1. Suppose that the pair (S, fo) is representable by a groupoid
for any a € S. Then the pair (S, f) is also representable by a groupoid.

Proof. Now there exist pair-wise disjoint groupoids ¢, (their operations are
denoted by ) and surjective homomorphisms

ga: (o — S

such that
ker(ga) = r(a),

card(g;'(a)) = f(a) and
card(g; (b)) =1 for every b€ S, b # a.

Now denote H, = ga‘l(a) and ( = €S H,. We shall define a binary operation
on ( as follows:

(1)If z,y € H, and a = aa, we put zy =z xy € H,.

(2) f z € H,,y € Hy and ab = ¢ where a # ¢ # b, then zy = g7!(a) %
g-1(b) € H..

(3)If z € H, and y € Hy (a #b) and ab = a, then zy = zxg;1(b) € H,.

(4)If 2 € H, and y € Hy (a#b) and ab= b, we put zy = g, (a)*y € Hp.
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Now we define a mapping g from ¢ onto S by
g(H,)=a  foreachae€S.

It is obvious that g is a homomorphism from ¢ to S.
We still have to show that r({) = ker(g). Clearly, r({) C ker(g). We shall

now construct two equivalence relations for our proof. Let a € S and denote
d = (ker(g) — (Ha x H,)) U (r(¢) N (Ha X H,))

and

s={(z,2)|z € (}U(r(¢) N (He X Ha)).

We are going to prove that d is a congruence on ( and s is a congruence
on (,-

Let z,y,z € ¢ and (z,y) € d. We have to distinguish between the following
cases:

(1) z,y € Hy for some b € S,b# a. Then (zz,2y) € ker(g) and (zz,2y) € d
unless zz € H,. If zz € H,, then zy € H,, too. Then there exists ¢ € S such
that z € H, and a = ¢b. If a # ¢, then

2z = g7 (c) % g5 (b) = 2y,
hence (zz,zy) € d. If a = c, then
zz =z%g; (b)) =zy

and again (zz,zy) € d.

(2) z,y € H, and (z,y) € r({). If 2z ¢ Ho, 2y & H,, then (2z,2y) € ker(g),
hence (zz,zy) € d. Now consider the case where 22 € H, and zy € H,. Then,
clearly, (zz,2y) € r(¢) N (H, x H,), hence (zz,zy) € d.

Now we have proved that (zz,zy) € d (in a similar way we could prove that
(zz,yz) € d). Thus d is a congruence on (.

After this we shall have a look at the relation s. Let z,y,z € (, and
(z,y) € s. Now we have to consider the following three cases:

(1) 2 ¢ H,. Then y ¢ Hyyz =y and (2% z,2%y) € s.

(2) ¢ € H, and z%z ¢ H,. Now y € H,,(z,y) € ker(ga), (2xz, 2xy) € ker(ga)
and thus z *z = z *xy implying that (z xz,zxy) € s.

(3) z € H, and 2%z € H,. Then y € H,,z*y € H,, and naturally
(z,y) € r(¢). Now put b = ga(2) so that @ = ba. If b # a (this means that
z ¢ H,), then (uz,uy) € r({) for any u € Hp, and, moreover, uz = z+z and
uy = zxy, hence (2% z,z2xy) € s.
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If b= a (then z € H,), we have (zz,zy) € r({) and now zz = z +z and
zy = zxy. Once again (z *z,z *y) € s, and we thus have shown that s is a
congruence on (.
Now it is clear that r({) C d C ker(g). There exist the projective natural
homomorphisms
p: ¢ —¢/r(0),
g: ¢/r(¢) = ¢/d
and a homomorphism

k:(/d— S

such that g = kgp.
Since s C ker(g,) we also have the projective natural homomorphism

fiCa— Cafs
and a homomorphism
v: (ofs— S
such that g, = vf.
Finally, define a mapping h: ( — ¢, by
hz) =4 & ifz € H,,
(@) =9g716) ifocecH, bta

The mapping h thus defined is a homomorphism from ¢ onto (,, and we now
have the following commutative diagram:

{—P o ()—9» (/4 K g

fa

> (/s

It is easily verified that ker(fh) = d = ker(gp), from which it follows that the
groupoids (/d and (,/s are isomorphic. Since (/d is a homomorphic image of
¢/r(€), it is a semigroup and it follows that (,/s is a semigroup, too.

We first conclude that s = ker(g,) and then r(¢) N (H, x H,) = H, x H,.
This implies that (¢) 2 H, x H,, hence r({) = ker(g). The proof is complete.
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4. Some representable pairs

We shall now establish some representable pairs by using the results of the
preceding chapters. However, we first prove two preliminary lemmas.

Lemma 4.1. Let M be a non-empty set. Then there exists a mapping t
from M onto M such that for all z,y € M there exist positive integers m,n such
that t™(z) =t"(y).

Proof. (1) Let k be a positive integer. Now the permutation #(1) = 2,
t(2) =3, ..., t(k—1) = k, t(k) = 1 on the set {1,2,...,k} has the desired
property.

(2) If we consider N, we define t(k) = k — 1 for every k > 2 and #(1) =1.

(3) Let a be an infinite cardinal number, A be a set with card(A) = a and
B be the set of all mappings f: A — N with f(z) # 1 only for a finite number
of elements z from A. Define a mapping ¢ from B onto B by t(f)(z) = 1 if
f(z) =1 and t(f)(z) = f(z) — 1 if f(z) > 2. Again, t has the desired property.

Lemma 4.2. Let S be a semigroup, a € L(S) (or a € R(S)) and let
f: S — C be a mapping such that f(b) =1 for every b € S —{a}. Then the pair
(S, f) is representable by a groupoid.

Proof. We shall now exceptionally denote the operation of S by (x). Denote
further R = S — {a} and let M be a set with card(M) = f(a) and SN M = 0.
Finally, let (= RUM.

Since a € L(S), there exists e € S such that exa = a. We first assume that
a € 1d(S) and define a multiplication on ¢ as follows:

(1) ez = (e xe) = t(z) for every z € M, where t is a mapping from M onto
M as given in Lemma 4.1,

(2) bc =bxc for all b,c € R with bxc # a,

(3) bc = any element of M if b,c € R and bxc=a,

(4) bz =braif bER, x € M and bxa #a,

(5) bz = any element of M if be R, b#e, b#exe, € M and bxa = a,

(6) zb=axbif be R, z€ M and axb#a,

(7) zb = any element of M if b€ R, z € M and axb=a,

(8) zy =axa for all z,y € M.

After this we define a mapping from ¢ onto S by g(z) =z if + € R and g(z) = a
if £ € M. Clearly, ¢ is a homomorphism. It remains to show that ker(g) = r(¢).
Once again, it is obvious that r(¢) C ker(g). Put s = r(() N (M x M). If
(z,y) € s, then (t(z),t(y)) = (ex,ey) € s, which means that s is a congru-
ence on the algebra (M,t) with one unary operation. If z € M, then, by the
definition of r(¢), (e(ez),(ee)z) € r({). Now e(ez) = t*(z) and (ee)z = t(z),
hence (t%(z),t(z)) € s. In fact, if n is a positive integer, then (t™(z),t(z)) € s.
Let (u,v) € M x M. Now there exist elements a,b € M such that u = t(a)
and v = #(b). By Lemma 4.1, there also exist positive integers m,n such that
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t™(a) = t™(b). On the other hand, (t™(a),t(a)) € s and (t"(b),¢(b)) € s, hence
(t(a), t(8)) = (u,v) € s. It follows that s = M x M. Then certainly r(¢) 2 M xM
and ker(g) = r(¢).

Then assume that a € Id(S). Choose an element w € M and define a
multiplication on ¢ as follows:

(1) zy=w for all z,y € M,y # w,

(2) 2w =z for every z € M,

(3) be =bxc for all b,c € R with bxc # a,

(4) bc=w if b,c€ R and bxc=a,

(5) bx =bxaif be R,z € M and bxa #a,

(6) bz=wifbe R,z € M and bxa=a,

(7) zb=axbif be R, z€ M and axb #a,

8) eb=wifbe R,z € M and axb=a.
Then we define a mapping g from ( onto S as in the first part of the proof.
Naturally, g is a homomorphism. Suppose that (z,y) € M x M. By the definition
of r(¢), (z(wz), (zw)z) € r(¢), i.e., (z,w) € r(¢). Similarly, (y,w) € r(¢), hence
(z,y) € r({). Now again r(¢{) 2 M x M and ker(g) = r(¢). This completes the
proof.

We are now able to give our first theorem about representable pairs.

Theorem 4.3. Let S be a semigroup such that S = L(S)U R(S). Then
the pair (S, f) is representable by a groupoid for any mapping f: S — C.

Proof. Just combine Theorem 3.1 with Lemma 4.2.

By using Lemmas 1.3 and 1.4 we immediately have

Corollary 4.4. The pair (S, f) is representable by a groupoid for any
mapping f: S — C if

(1) S is finite, commutative and nc(S) <1, or

(ii) S contains at most four elements and nc(S) <1.

The rest of this chapter is devoted to the investigation of the situation where
f(S) ={1,2}. We first prove

Theorem 4.5. Let S be a semigroup, a € S and let f: S — C be a
mapping such that f(a) =2 and f(b) =1 for every b€ S, b # a. Then the pair
(S, f) is representable by a groupoid if and only if at least one of the following
two conditions is satisfied:

(i) a € L(S)U R(S),

(i) there exist x,y,z € S such that a = xyz and either = # zy or z # yz.

Proof. If (i) holds, the result follows from Lemma 4.2.

Then assume that (ii) holds: i.e., a = zyz with z # zy. Now take an element
e S and put ( = SU{e}. An operation (%) on ¢ is defined in the following
manner:
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(1) uxv =wuv for all u,v € § with uv # a,

(2) uxv =a for all u,v € S with uv = a, and either u # z or v # yz,

8) zxyz=ce,

(4) exu=a*u and uxe =uxa for every u € S,

(5) exe=ax*a.
Define a mapping ¢ from ¢ onto S by g(e) = a and g(z) = z for every x € (—{e}.
Clearly, g is a homomorphism and ker(g) = r(¢).

The case where (ii) holds, a = zyz and z # yz proceeds in a similar way.

Now we prove the converse statement. Suppose that the pair (S, f) is repre-
sentable by a groupoid. This means that we have a groupoid ¢ and a homomor-
phism g: ¢ — S such that ker(g) = r((), card(¢~!(a)) = 2 and card(g~}(b)) =1
for every b € S,b # a. Assume that neither (i) nor (ii) is true. Let u,v,w be
elements of ¢ and = = uv,y = vw. If g(uy) # a, then also g(zw) # a, hence
uy = zw. If g(uy) = a, then g(zw) = a and we have a = g(u)g(v)g(w). Since
(ii) does not hold, g(u) = g(u)g(v) = g(z) and g(w) = g(v)g(w) = g(y). Since
a & L(S)U R(S),9(u) # a # g(w), ylelding v = ¢ and w = y. But then
u(vw) = uy = uw = zw = (uv)w, and we have shown that ( is a semigroup, a
contradiction. Thus either (i) or (ii) is true as required.

By combining Theorems 3.1 and 4.5 we get

Corollary 4.6. Let S be a semigroup such that for every a € S — (L(S)U
R(S)) there exist elements z,y,z € S with a = zyz and (z,yz) # (zy,2). Then
the pair (S, f) is representable by a groupoid for any mapping f: S — {1,2}.

It is also easy to see that the following result (which is in fact partially converse
to Lemma 2.1) is true.

Corollary 4.7. Let S be a commutative semigroup and f: S — {1,2} a
mapping. Then the pair (S, f) is representable by a groupoid if f(a) =1 for every
aeS-—S3.

5. An example

In Lemma 2.2 we proved that if the pair (S, f) is representable by a groupoid
and a € S?, then

fla) <D F(B)f (o),

where we go through all elements b,c¢ € S such that bc = a. In what follows we
consider the semigroup T = {0, a, b, c,d} from Example 1.5 and show that (T, f)
is representable by a groupoid if f(a) < f(b)f(c).

Let us assume that f(a) < f(b)f(c). Then take five pair-wise disjoint sets
P,A,B,C and D such that card(P) = f(0), card(4) = f(a), card(B) = f(b),
card(C) = f(c) and card(D) = f(d). Put ( = PUAUBUCUD andlet p: B — B
and ¢: C — C be mappings described in Lemma 4.1. From our assumption it
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follows that there exists a mapping h from B x C onto A. Now choose elements
z € P and w € D and define a multiplication on ( as follows:
(1) zy=yzr =2z forevery z € Pand ye AUBUCUD,
(2) zy =z for all z,y € AUB,
(8) zy=yxr =z forevery t € A and ye CUD,
(4) zy = z for every z € C and y € B,
(5) ey =z for all z,y € C,
(6) zy = z for every z € C and y € D,
(7) 2y = z for every z € D and y € B,
(8) zy==zforall z,ye P (y # z2),
(9) 2z =z for every z € P,

(10) zy =w for all z,y € D (y # w),

(11) zw = z for every z € D,

(12) 2y = p(z) for every z € B and y € D,

(18) 2y = ¢(y) for every z € D and y € C,

(14) zy = h(z,y) for every z € B and y € C..

Then define a mapping ¢ from ¢ onto T by g(P) = 0, g(4A) = a, g(B) = b,
9(C) = c and g(D) =d. 1t is easy to check that g is a homomorphism. We now
have to show that r(¢) = ker(g).

First, (z(zz),(zz)z) € r({) for any = € P. Since z(zz) = 2z = = and
(zz)xz = zz = z, it follows that (z,2) € r(¢), hence P x P C r(¢). Similarly, one
can prove that D x D C r(¢{). The inclusions B x B C r(¢) and C x C C r(¢)
can be proved as in Lemma 4.2 (now the mappings p and ¢ have the role of t).
Finally, if (z,y) € B x B and (u,v) € C x C, then also (z,y) € r(¢) and
(u,v) € r({), hence (zu,yv) € r(¢). By definition (h(z,u),h(y,v)) € r(¢), and
thus A x A C r({). We conclude that ker(g) = r(¢), and the proof is complete.
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