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ON REPRESENTABLE PAIRS

Tomriö Kepka, Petr Nömec and Markku Niemenmaa

Introduction

This paper is organised in five parts. We first consider some properties of
semigroups in Chapter 1 and prove structural results which might be interesting
as such. In Chapter 2 we define our central notion, namelg that of a representable
pair (,5, /) where ,9 is a semigroup and "f is a mapping from ,9 into the class of
non-zero cardinal numbers. We also give here some necessary conditions for a pair
(S, /) to be representable by a groupoid.

Chapter 3 contains a representation criterion. By using this criterion we a,re

able to prove in Chapter 4 several sufrcient conditions for a pair (,S,/) to be
representable by a groupoid. Finally, Chapter 5 contains a special treatment of a
semigroup of order five.

'We assume that the reader is familiar with the rudiments of the theory of
abstract algebraic systems. The background ca,n be obtained e.g. from [1], [2] and

t3l.

, t. Preliminaries

Let ^9 be a semigroup. We denote 52 : ^S^S 
:

SStt-l for every positive integer n > 3. 'We also need

Id(S): {o €,S: a: o'},
,(S):{oe ,S: o,e,9o})
n(fl - { a € ,S: a e oSl ,

Li(S) : { o €,S: a e Id(S)o },
Ri(S) : { o € S: a ea Id(^9) },

K(s): n sn.

\ Ie shall now formulate some easy observations.

Lemma 1.L. (i) The set f(S) (o, E(S)) it
ideal of S .

(ii) The set Li(S) (o, Ri(S)) is either empty

{ab: a,b € S} and S?? :
the following sets:

either empty or a right (o, Ieft)

or a right (or left) ideal of S .
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(iii) 
"åe 

set K(S) is either empty or an ideal of S.
(iv) Id(s) g Li(s) g r(s) g /((s) and ld(^e) g Ri(^s) g .R(s) g K(s).
If there exists an integer n ) 0 such that S"'r + S" : K(S), we say that

the number n : nc(S) is the class nuntber of S (now ,50 meains a one-element
semigroup and S-r :0).

Lemma L.2. If S is finite, tåen Id(S) is non-empty, L(S) = Li(S) a.nd
ft(S) : Ri(S). Furthermore, K(S)': If(S).

Lemma 1.3. Let S be frnite and S : 52 (i.e., nc(S) < 1). Then S :
A(flI'(S) . In particula,r, S : L(S), provided that S is commutative.

Proof. Put f : R(S)Z(,S) *d define a relation r on ,9 by (o, b) e r if and
only if a e bS. Now .I is an ideal of ^9, r is transitive and a € A(fl if and only if
(a,a) e r. Then assume that ar € ,S-f . There are elements a2rb1€ ,S such that
&t: azbt, also 43, bz e S such that az = asbz etc. Now (otror) e rr(a2ras) € r
etc., so that (c;, a) e r whenever 1. < i < j. Since .[ is an ideal and ar / I,
we conclude that .[ contains none of the elements o,2, ds, .... Ar 

^9 is finite, it
follows that there are positive integers i < j such that o; : ai. Thus (o;,or) er,
a; e E(S), and since 8(S) g I by 1.2(i), we get a; € I, a contradiction. The
proof is complete.

Lemma L.4. Suppose that S contains at most four elements and S : 52.
Then S: L(S)un(^S).

Proof. Suppose that a € ^9 and a / L(S) Un(^t). By 1.3, a: bc,, where
öen(^9) and c€r(S). Clearly b/L(S) and c /nG). Nowtheelements
arazrb and c are pair-wise different, hence card(,S) : +. lf ba : ö, then a :
bc: bac - b2c2 : b3c3 - ...; now ö'€ ld(,s) for some n ) !, the equation
a : bncn implying a e L(S), a contradiction. Similarly, if. baz : b, we get a
contradiction. Consequentlg 6a I b and bo' f å. The inequalities bb I b and
bc I b are obvious; thus we have proved that å / bS. Hence b / R(S) a,nd we
again have a contradiction. We conclude S : I(S) U .R(S).

Example L.5. Consider the followittg five-element semigroup T :

abc
0

a

b

c

d

000
000
000
000
000

00
00
ab
00
cd

Now T - T2 and a / LQ)U ^R(?).
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Lemma 1.6. Let S be a frve-element semigroup sueh that S : 52 and

S + L(S) U R(^S) ; then S is isomorpåic to the semigroup T constructed in 7.5.

Proof.Let a€S-(.D(^9)UR(S)). Now a:bc,where be R(S) and c€ r(S).
F\rrthermore, b / L(S) 

'and 
c / R(S).The elements Q,a2,å and c are pair-wise

different and, as in the proof of Lemma 1.4, one can show that ö / {b",ba2,bb,bc} .

Since å € J?(S),b:bd,, where de S andthus S: {a,a2,b,c,d}. Bvusinga
similar type of argument, we get c: dc.

Now we know that b: bd, and c : d,c and we try to compute the rest of the
multiplication table for S. It is easy to see that aö f a,ab f b,ab I c and ab I d;
hence ab: a2. We also have öa : a2tac: o2 and ca: a,2. Further, it is easy

to see ltiat b2 : a2 attd c2 : a2. Clearly, ad' I a and ad + b. If. ad : c,, then
a:bc=bad,:b2ad2:..., acontradiction. If ad: d, then ö:bd:bad and
a : bc : bad,c : b2a(dc)2 : ..., again a contradiction. Consequenlly, ad : a2

and, similarly, d.a : a2. Since a / n(S)U r(S)' b / L(S) and c / ft(S)' we

must have cb: a2, cd,: a2 and db: a2. Clearly, os # o, os # b and as f c.

If a3: d, then b:bd:ba3 and a:bc: öasc,whichisnot possible. Thus

a3 : a,2, and it follows that aa : a2, ba2 : a2b: co'2 : a2c: da2 : a2d,: a2 .

Finatly, we have to see that d,2 : d,. If. we denote a2 :0, we have the same

multiplication table as in the example. The proof is complete.

2. Groupoids and semigroups

By a groupoid we mean a non-empty set together with a binary operation
denoted multiplicat ively.

Let ( beagroupoid. DenotebV r(O theintersectionof allcongruences r such

that the corresponding factor groupoid is a semigroup. Now r(() is a congruence

on (, Ch() is a semigroup and r(O is the least congruence with this property.
Clearly, r(O is the congruence on ( generated by the ordered pairs (o(bc), (aö)c),
where arbrc € (.

Throughout the paper, let C denote the class of non-zero cardinal numbers.
Consider uL*ig"oup S and a mapping f: S - C. We say that the pair (S,/)
is representable by a groupoid if there exist a groupoid ( urrd a homomorphism g

from ( onto ,S sueå that ker(g) : r(O and card(o-t(")) : f (a) for every o € ^9.-
We immediately have

Lemma 2.L. Let S beasemigroupand f:S+C amappingsuchthatthe
pair (5,/) is representable by a groupoid. Then f(o) : L fot evety a e S - 53.

Next we establish

Lemma 2.2. Let S beasemigroupand f:S-'+C amappingsuchthatthe
pair (5,/) is representable by a groupoid. Let a e 52 and

A = {(b,") I b,c e. S and a : bc}.

Then f(a) S Dra,"len f(O)f(").
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Proof. Suppose that

f(") > t /(a)/(").
(ö'c)€a

Now there exist a groupoid ( 
"rld 

a surjective homomorphism g: ( - S such that
ker(g) : r(O and card(O-t(")) : f (") for every u € ^9. Put I/ :g-r(a) and

L : {xy lc e 9-r(A) ,y e s-LG), (å, c) e d}.

Then .t e ff and L + H .Now we define a relation d, on ( as follows:

d : (r(() - (H xä)) u (L x L)u ((r - L) x (H - L)).

Clearlg d is an equivalence relation, d e r(C) and d * r(0. In fact, it is not
difficult to see that d is a congruence on ( *td (ld, is a semigroup. However, this
is a contradiction. The required result follows.

3. A representation criterion

Let ^9 be a semigroup and /: ^9 - C a mapping. Fbr each a € ^S, define a
mapping fo: S-->Cby f"(a):f(") and /,(å):l forevery åla,beS.

Theorem 3.1. Suppose that the pair (S, å) is represenf able by a goupoid
for any a € S . Then the pair (.9, /) is also representable by a groupoid.

Proof. Now there exist pair-wise disjoint groupoids Co (their operations are
denoted by *) and surjective homomorphisms

go:(,o+S

such that

ffånil]r,?,I:,, €s,bta
Now denote Ho: gf,l(a) u,rrd ( : Uoesff,. we shall define a binary operation
on ( as follows:

(1)If c,U€H" ando:a&tweput tA:r*ye Ho.

- (2) If x €. Ifo,,A e Ha and aö: c where a # c f å, then ay : gf,L(a)*
s;r(b) e H".

(3) If o € äo and y e Ha (" f b) and aö: c, then rA: x*g,-t(ö) € Ho.
( ) If r € Ifo and y €Ha ("f b) and aå: ö, weput ry:9ö-1(a) *y eH6.
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Now we define a mapping g from C onto S by
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g(H"):o foreacha€S'

It is obvious that g is a homomorphism from ( to ,5.

We stillhave to show that t(O: ker(g). Clearly, t(O I ker(g). We shall

now construct two equivalence relations for our proof. Let a e ,5 and denote

4: (ker(e) - (H, x .tr,)) u ('(O n(H" x II"))

and

" 
: {(t,r) lr € ("} u (t(O n(H"x }I.))

We are going to prove that d is a congruence on ( urrd s is a congruence

on (''
Let x,a,z e ( and (*,A) e d. We have to distinguish between the following

cases:

(t) t, U€ Ho forsome ö€.9,b*o. Then (zc, zy)eke(g) and (zx,zy)ed'
unless zx e Ho. If. zx e Horthen zy €. Ho, too. Then there exists c € S such

that z € If" and a : cb. lf a {c, then

zr - s;t(") *s;t(b) : za,

hence (r*, zy) e d. If e, : c t then

zt=z*g;t(b):zy

and again (zr,zy) e d.
(2) *,a e Ho and (c,y) e r(O . If zx / Ho,za d Ho, then (zr,zy) € ker(g),

hence (zx,zy) € d. Now consider the case where zx € Ho aad. zy € Ho. Then,
clearly, (zr,zy) e r(O n(H", Ho), hence (zx,zy) e d.

Now we have proved that (zx,zy) e d (in a similar way we could prove that
(rz,yz) € d). Thus d is a congruence on (.

After this we shall have a look at the relation s. Lel, x,Urz e (" and

(r,a) e s. Now we have to consider the following three cases:

(t) * /.[/o. Then U / Ho,x:U and (z *x.,2*y) e s.

(2) x effo and z*x /Ifo. Now A € Ho,(t,y) e ker(g"), (z*x,zxy) € ker(go)

and thus z * $ : z * y implying that (z * a,z * y) e s.
(3) r € Ho and z *r € Hu. Then y I Ho,z*y €. -f;[o, and naturally

(c,y) e r(0. Now put b: g"(z) so that a: ba. If ö I a (this means that
z / Ho), then (ux,uy) € r(O for any u € H6, a,nd, moreovet, ?t$: z*x and
uU : z * y, hence (z * xrz *y) e s.
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If å: o (then z e Hn), we have (zx,zy) e r(O and now zu: z*c and
zA: z *y. Once again (z *r,rz*y) € s, and we thus have shown that s is a
congruence on (o.

Now it is clear that r(O g d,e ker(g). There exist the projective natural
homomorphisms

p: e -+ C/rG),
q: C/r(C) - C/d

and a homomorphism
k: (ld -'+ S

suchthat g:lcqp.
Since s e ker(g") we also have the projective natgral homomorphism

f: (" + ("fs
and a homomorphism

a: (ofs + S

such that go: uf .

Finallg define a mapping h: ( + (" by

1,,-\ {x ifr4-Ho,n\t)- 
lg,-t(ö) if c€ H6,bf a.

The mapping å thus defined is a homomorphism from ( onto (o, and we now
have the following commutative diagram:

(----P > (/r(() q , g/d * -.

(a f

It is easily verified that ker(/å) : d : ket(gp), from which it follows that the
groupoids (ld and (of s arc isomorphic. Since (ld, is a homomorphic image of
e lr(), it is a semigroup and it follows that (o/s is a semigroup, too.

we first conclude that s : ker(go) and then r(() n (H" x Ho) : Ho x Ho.
This implies that r(O f H'o x Ho, hence r(O : ker(g). The proof is complete.
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4. Some representable pairs
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We shall now establish some representable pairs by using the results of the
preceding chapters. However, we first prove two preliminary lemmas.

Lemma 4.1. Let M be a non'empty set. Then there exisfs a mapping t
from M onto M such that for aJl rrU e M thete exist positive integers m,n such

that t*(x) : t"(Y).

Proof. (1) Let å be a positive integer. Now the permutation t(L) :2,
t(2):3, ..', t(k-I): k, t(k):1 on the set {1,2," ',/c} has the desired
property.

(2) If we consider N, we define t(&): /c - 1 for every k 2 2 and t(1):1.
(3) Let a be an infinite cardinal number, A be a" set with card(A) : c a,nd

B bethesetof allmappings f:A--+N with f(*)* l onlyforafinitenumber
of elements r from Ä. Defineamapping t from B onto a by t(/)(r):1if
f(r):1 and t(/)(r) : f(r) - 1 if /(t) 2 2. Again, t has the desired property.

Lemma 4.2. Let S be a semigrouPt e € Z(S) (or a € .R(S)) and let

f: S --C beamappingsuchthat f(b)=7 forevery 6e S- {a}. Thenthepait
(S, /) is representable by a groupoid.

Proof. we shall now exceptionally denote the operation of ,9 by (*). Denote

further R: S - {o} and let M be a set with card(M) : f(") and S iM :0.
Finally, let (: RUM.

Since a € f(S), there exists e € S such that e *e: ct,. We first assume that
a /Id(S) a.nd define a multiplication on ( as follows:

(L) ex:(e*e):t(r) forevery x€M,where I is amappingfrom M onto
M as given in Lemma 4.L,

(2) bc:b*c forall b,c€R with åxcf a,
(3) åc: anyelement of. M if.b,,ce R and å*c:Qt
@)bx:b*a if 6e R, r€M a,ndå*af a,,

(5) åc : any element of. M if. b e R, b * ", b I e*e, x €. M and b*a: a,
(6) rö : a*b if. b e R, r e M and a *b f a,
(7) xb - any element of. M if. b e R, x €. M and a *b: a,
(8) "Y: Q'*Q, for all x,Y e M.

After this we define a mapping from ( onto,5 by g(r) : r if n € R and g(c) : q

if r € M. Qlearly, g is a homomorphism. It remains to show that ker(g) : r(O.
Once again, it is obvious that r(O e ker(g). Put s : r(O n (M x M). If.

@,v) e s, then (t1c;,t1y;) - (ex,ea) e s, which means that s is a congru-
ence on the algebra (.M,t) with one unary operation. lf. r € M , then, by the
definition of r(O, (e(er),(ee)x) € r(O. Now e(ea): t2(c) and (ee)r: t(r),
hence (t"(r),t(r)) e s. In fact, if n is a positive integer, then (t'(r),t(r)) e s.
Let (u,u) e M x M. Now there exist elements o,b e M such that u: t(a)
arrd u - t(b). By Lemma 4.t, there also exist positive integers rn,n such that
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t^(o):t"(b). on the other hand, (t*1o\,t(a)) e s and (t"(t),r(å)) e s, hence
(t(o),t(ö)) :(u,u) € s. Itfollowsthat s : MxM. Thencertainly r(O ) MxM
and ker(s): r(O.

Then assume that a € Id(S). Choose an element w e M and define a
multiplication on ( as follows:

(1) ,y: to for all x,y € M,y f w,
(2) xw: r for every x € M,
(3) öc:b*c forall b,ce R with å*cf a,
@) bc=u: if b,ceR and å*c:a,
(5)6c:b*a if 6€R, x€.M andåxaf a,
(6) ör :to if b e R, x € M and å*a: et
(7)rb:a*b if åe .R, ne M anda*bf a,
(8) rå = u; if b e R, x e M and a *b: a.

Then we define a mapping g from ( onto ,S as in the first part of the proof.
NaturallS 9 isahomomorphism. Supposethat (c,A) e MxM. By thedefinition
of r(O, (x(wr),(aw)x) € r(O, i.e., (c, to) e r(O. Similarls @,.) € r((), hence

@,U) e r(O. Now again r(O ) M x M and ker(g) : r(O. This completes the
proof.

We are now able to give our first theorem about representable pairs.

Theorem 4.3. Let S be a semigroup such that 5l : .t(,S) U R(S) . Then
the pair (S, /) i" representable by a groupoid for any mapping f : S + C .

Proof. Just combine Theorem 3.L with Lemma 4.2.

By using Lemmas 1.3 and 1.4 we immediately have

Corollary 4.4. The pair (S, /) is representable by a groupoid for any
mappingf:S+Cif

(i) S is frnite, commutative and nc(S) 1 L, or
(ii) S contains at most four elements and nc(S) < 1.

The rest of this chapter is devoted to the investigation of the situation where
/(S) : {1,2}. We first prove

Theorem 4.5. Let S beasemigroup, a€ S andlet f:S -rC bea
mapping sueh that f(") : 2 and /(å) : L for every b e S, b # o. Then the pair
(^t, /) is representable by a groupoid if and only if at least one of the following
two conditions is satisrted:

(i) aer(s)uft(s),
(ii)there exist r,y,ze S su&that a:rAz andeither rlay or zf yz.

Proof. If (i) holds, the result follows from Lemma 4.2.
Then assume that (ii) holds: i.e., a: rAz with c f ,y. Now take an element

e / S and put ( : ,S u {"}. An operation (*) on ( is defined in the following
manner:
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(1) u * t) : r.t'u for all u,a € S with uu f a,
(2) uxu:afotallu,u €,5 with 7ru:a,t andeither u*a or vt'yz,
(3) r* yz: e,
($ e*'u:a*u and u*e:u*afot every u€^9,
(5) e*e:a*a.

Defineamapping g from ( onto ^5 
by g(e): a and g(r): a forevery r € (-{e}.

Clearlg 9 is a homomorphism and ker(g) : r(C).
The case where (ii) holds, a: ryz arrd z f yz proceeds in a similar way.

Now we prove the converse staternent. Suppose that the pair (,5, /) is repre-
sentable by a groupoid. This means that we have a groupoid ( tt d a homomor-
phism g: C +,9 such that ker(g) : r(O,"a.rd(O-l(a)) :2 and card(O-t(ö)) : t
for every b e S,b * o. Assume that neither (i) nor (ii) is true. Let u,u,w be

elements of ( and t, :'u,utU : uw. lt g(uy) { a, lhen also g(rto) f a,hence
ila: su. ff g(uy): o, then s@w): a and we have a: s@)g(u)g(w). Since

(ii) does not hold, s(u) : g(u)s@) : g(a) and e(to) : s(u)s(w) : s@). Since

a / L(S) Un(S),g(u) f a * s@), yielding rtr: r and w: a. But then
u(uw) - uU : r.ntr : o?t) : (uu)w, and we have shown that ( is a semigroup' a

contradiction. Thus either (i) or (ii) is true as required.

By combining Theorems 3.1 and 4.5 we get

Corollary 4.6, Let S be a semigroup such that for every a e S - (Z1S; u
n($) there exist elements ttUt z € S with o, : tyz and (x,Vz) # (uy, z). Then
the pair (,S, /) i" representable by a groupoid for any mapping /: S -' {1' 2}.

It is also easy to see that the following result (which is in fact partially converse

to Lemma 2.1) is true.

Corollary 4.7. Let S be a commutative semigroup a'nd f: ^9 
--+ {1,2} a

mapping. Then thepair (S, /) is representable by a groupoid if f (a) - L for every
aeS-53.

5. An example

In Lemma 2.2 we proved that if the pair (,S, /) it representable by a groupoid
a^trd a €.92, then

f(") 3 !/{a)/{"),
where we go through all elements å,c € ^9 such that åc: a. In what follows we

consider the semigroup ?: {A,a,b,c,d} from Example 1.5 and show that g,f)
is representable by a groupoid if f(a) < l(U)f(").

Let us assume that /(o) < /(a)/("). Then take five pair-wise disjoint sets

P,A,B,C and D such that card(P): /(0), card(.A.) : f(a), card(.B): "f(b),
card(C) : f(c) and card(D) = /(d). Put ( : PUAUBUCUD andlet p: B -+ B
arrd g: C --+ C be mappings described in Lemma 4.L. Fbom our assumption it
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follows that there exists a mapping å from B x C onto A. Now choose elements
z e P and to € D and define a multiplication on ( as follows:

(1) ,A:yr: z for every r €P and y eAUBUCUD,
(2) *y : z fot aX' r,y e Au B,
(3) ry : A{D :z for every a €. A and y e C U D,
(a) *y : z forevery t € C and U € B,
(5) ,Y : z for all x,y € C,
(6) *y : z forevery 0 € C and a e D,
(7) *v : z forevery s € D and u € B,
(8) *y: z for all x,y € P (v * "),(9) rz: c for every r € P,

(10) cy : to for all t,y € D (v # .),
(LI) uo: c for every r e D,
(12) xy: p(x) for every x € B and y e D,
(73) ry : q(A) for every r € D and y €. C,
(! ry : h(r,y) forevery r € B and a e C.

Then define a mapping g from ( onto T by g(P):0, S(A): a, g(B): b,

s(C): c and g(D): d. It is easy to chec"k that g is a homomorphism. We now
have to show that r(O: ker(g).

First, (c(cx),(xx)x) € r(O for any x € P. Since r(rc): *r: c and
(xx)x: z{D: z, it follows that (t,z) e r(O, hence P x P e r(O. Similarly, one
carr prove that D x D I r(O. The inclusions B x B g r(O and C x C c r(()
can be proved as in Lemma 4.2 (now the mappings p and g have the role of t).
Finally, if (c,v) e B xB and (u,u) e C xC, then also (*,y) e r(() and
(u,u) € r(O, hence (au,yv) € r((). By definition (h(c,u),h(y,u)) e r((), and
thus Ä x A I r(() . We conclude that ker(g) : r(O, and the proof is complete.
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