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A STOCHASTIC PARAMETER OPERATOR SYSTEM

G. Butsan and M. Kozachenko

Let H be a real separable Hilbert space with the norm | - |;, X(H) the
Banach ring of all linear bounded operators on H with the uniform operator
norm | - |2, 02(H) the ideal of all Hilbert-Schmidt operators in X (H) with the
Hilbert-Schmidt norm | - |3. Further let o2(H) + I = G2(H) be the topological
semigroup with the topology transferred from o2(H) by the shift of the identity
operator I, (2, F, P) some probability space, o2(H,) the Hilbert space of all
random elements £ : Q — o5(H) with the norms | - |4, |£]s = E[¢|2 (and [¢|2 =
sup|,<1 E [€z13), G2(H,Q) = 05(H,Q) + I with corresponding topology, o} a
filtration of o-algebrasfrom F when 0 < s <t < T < o0,andfor 0 <s<r <7<
t < T < oo, wehave o7 C 0!, o7 and o! are independent. Denote by A,[s,?] the
partition {s =t9 <t; <--- <tp, =t} of the interval [s,t] and call the sequence
{An[s,t]} a decreasing sequence of partitions if §, = maxg(tx—tx—1) — 0,n — oco.

Now we consider a system Z! in G2(H,Q), 0 < s < t < T, which is
o!-measurable, and study the problem: when does the following limit exist in

G2(H,Q)
11m H Ztt,’: L= (1)

and does not depend on the decreasing sequence of partitions {A,[s,t]} ? Here
the product [] is formed in increasing order of the indices from left to right.
One of the problems is the existence of the infinite product of independent
stochastic operators.
It is easy to see that X! satisfies the following evolutionary equation

XIXt=X!, XI=I(mod P), 0<s<7<t<T (2)
and therefore it is the evolutionary system from [1].
Denote
2!=EZ!, Au0,5]={0=60<6;<---<8,, =s},

bn = nzlall.cx{e, — 8, tr — tk—l}, :t(t)(n) Hzo H Ztk . (3)
3 k=1
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Theorem 1. If the system Z! satisfies the conditions (4)-(6), then the
limit (1) exists in Go(H, ) and does not depend on the decreasing sequence of
partitions {Ay[s,t]}. The conditions (4)—(6) are introduced as follows:

(4) for all T € [0,T), there exist ZI_, ZIt € Go(H,Q), ZT = I satisfying
ZT_=Tor ZI*t =1,

(5) forall 0 < s<t<T, there exists limzi(n) = 2! € Go(H) as é, — 0, z!
does not depend on the decreasing sequence of partitions {Ay[s,t]}, and v, =
sup|z (s — avé“(n)l2 — 0 as 6, = 0; for all 7 € [0,T], (27_)71,(27")" 1,27 _,
o7t (272)7, (27) 7 € X(H),

(6) there exists lim Y (2% —zttl’: 1) =Y} € 02(H,Q) which does not depend on

tk—1
the decreasing sequence of partitions {Ay[s,t]}.

Let us prove first some auxiliary equations (7)-(11), (12), (16), (17). We first
claim that
for all 7 € [0,T), z7_ = 27_ and 27+ = 27+ ©)
To prove (7) let us consider % = lim [5=, " zg¥_ . Tt follows from (5) that
this limit exists and does not depend on the decreasing sequence {A,[s,?]}. Then
it is easy to see that z! satisfies the evolutionary equation (2) and, by (5), that
the limit limz] = z?! ,TTt,existsfor 0<s<t<T.
Let us show that zt~ = z!. In fact, when 7 T t, there exists, for any
e > 0, k. such that I:ct_ - x:"‘ |2 < €/2. Thus, there exists Ay, [s,7x,] =

{s =4 < <{, =7} such that |z3* — ]Iz, z |2 < ¢/2. Therefore

|zt~ — H,_l z; |2 < ¢, and in this inequality we can take the limit when 6,, — 0

because 733 does not depend on the sequence of partitions {An[s, ]} (cf. (5)). Thus
z!™ = z!. Now using the corresponding limit procedure we can obtain the equality
iz} =7lz!_ = 2! yielding 2! 2{_ = z! z!_. Taking the limit when s T ¢ and
taking into account the evident equality z:= = I (cf. (5)) we obtain the first
equality in (7). The second equality can be proved analogously.

We show next that

forall 0<s<t<T, (z})"! € X(H), |zt]s < C1(T) < o0, (8)
(25)7 2 < C2(T) .

If the first property of (8) is not fulfilled, then the statements (m(t+3)/ e x(H)

or (x(t +s) /2) € X(H), etc. would not be fulfilled either and we would obtain

sequences s < ti, converging to a point 7 € [0,T], such that (z%*)~! ¢ X(H).
Observe that we have three possibilities for these sequences: s <t < 7, sp <
7 <ty or 7 < s; < t;. The first and third of them lead to a contradiction with
the obvious equality 2]~ = I = 27} (cf. (5)), whereas the second one contradicts

with the equality (7)™ = (z7+)=! . (27_)~1.
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Let us then prove the third inequality in (8) because the second one can
be proved analogously. Let us suppose that |(w§)‘1| , is not bounded. Then
we can find in [0,T] sequences sx < tj converging to a point 7 € [0,7], and
|(:v§’;c _1| , — 00 for k — oco. For all of the three cases considered above for
analogous consequences, we obtain analogous contradictions with the equalities
mentioned above.

Next we show that

s;1p|x3’°(n)|2 < C3(T) < o0, s,:1p|(wf)’°(n))—1|2 < Cy(T) < 0. 9)

To prove the first one of these estimates consider the inequality
supla ()], < suplatt — 28 ()], + suple,,
kn k,n k

which combined with (8) and the regularity conditions (5) completes our proof.
Let us suppose next that supk,n|(:c§_,“(n))_1|2 = oo. Then we can find in

[0,T] a sequence t,, which converges to a point 7 € [0,7] when n — oo and

|(:c3’°" (n))™!|, = oo for n — co. Then inf|y|1S1|xf,k" (n)y|, = 0 for n — oo, and

from the evident inequality inf|,|, <1 |z(t,'°"~y, < |z‘t)k" —z g (7’L)|2-i—inf|y|1 <1 lx:,"" (n)yl1

(cf. (5)) we obtain the result inf|y|1§le)’°" y|, = 0 when n — o, i.e. |(m(t)"" )7, =
co. But this contradicts (8). Thus the estimates (9) are proved.
Now from the condition (2), estimates (8), (9) and the obvious inequality

skupl(ﬂcﬁ” (25 (n) 7, < Skup{l(:vé" |z (n) 7Y, Slltplwff - z¢*(n)|,
s ,
we can see that

skup|(:1:f)’“ -1 (avff‘(n))'ll2 —0 whenn— oo. (10)

Let us show that the next equalities are true for all 7 € [0, 7],

Y7 =27 —2T Yt =27t -1t (mod P). (11)

T—>

As the proofs of these equalities are similar we prove only the first one. Let us
consider the system

my,—1

vt __ 1 e _ _t

Ys - 6%,1130 E (Ztk—l ztk-—l)'
k=1

The definition of Y} does not depend on the sequence {Anls,t]} (cf. (4), (6)),
and analogously to (7) we can prove that Y_ = 0 for all 7 € [0,7]. Taking the
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limit in the obvious equality ¥ = Z!_+ z!_ + Y! when s 1t we obtain the proof
of the first equality (11).
Finally, from (4), (5), (11) we obtain:

forall 7€ [0,T),27_=1, zl_=1I, zI_=1I, Y _=0
or ZIt =1, zit=1, «I*=1, Y/t=0 (modP).

T

(12)

In other words at any point 7 € [0, T these systems are simultaneously continuous
either from the left or from the right.
Let us note now that Y} (cf. (6)) satisfies the evolutionary equation

Y/ +Y!=Y! Y7 =0, (mod P), 0<s<t<T<oo (13)
and the obvious property
EY!=0, 0<s<t<T<oo, (14)

which we used repeatedly in the considerations above. In addition, the random
elements
) Foy

te-1
for0<s=t<t1 <Lty =T. _
It is easy to see that every system Y} which satisfies the conditions (13)-(15)
above satisfies the next relation too:

,k=1,...,m, areindependent (15)

[117:5, + 115 < O5(T) < oo (16)

i=p

In fact, if we use (14) and the properties of | - |5 (cf. [1], pp. 48-52) we obtain the
inequality

r T T
[T+ 72,02 < TTO + 9, )< exp{ IR )
1=p i=p i=p

< exp{ZIth' 13} < exp{|7T|5} = Cs(T) < 0.

i=p

Let us then prove the following estimate

H|x‘- H(n)Zgi_ (2 ()M, < Co(T) < o0. (17)

i=p
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For that purpose, let us apply the known properties of the norms | - |4 and | - |5
(cf. [1], pp. 48-52) and the estimates (9) to obtain the inequalities

H|x"-‘(n>zt.1 CHOP

i=p
[Tt (2, - ) ) + 1
i=p
< exp (2 Yot (22, — 26 ) ()2}
i=p
< e {CHTICHT) Y28, — 5t [}
=
<07(T)exp{}:|Zt. L A N W 2
=p
< Cx(T) exp{z;lzt' NP 2N e 7
<
—C7(T)exp{|Z(Zt‘ =2t )Y+ 1D (18)

where C7(T) is a constant. The estimate '(17) can then be obtained from the last
inequality combined with (6).
Let us next prove:

Lemma. The limit

= lim Ewt" Y (z8) (19)
exists in | - |4 when 0 < s <t < T and it does not depend on the sequence of

partitions {Ay[s,t]}.
Remark. We call the limit in the formula (19) a stochastic integral and
denote it f:xg dYy(z5)7t.

Proof of the Lemma. Exactly as in [2] and [3] it is sufficient to show that the
expression

Mmp Tk

,|2w‘* RANCORED 9D BE-e AN CHus NN ')

k=1 1=1
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tends to zero when §, — 0. Here A,[s,t] = {s = to <ty <o <t =t}
Ar[svt] = U;cn;‘lA,.k [tk—latk]a Ark[tk—latk] = {tk 1= 30 < sk S - < ka = tk}-
Using (9) we can write the expression (20) in another form

Mn Tk My Tk
|EZ$3’“ 1Y (:vt" - szo' 1Y (zo) |
k=1 i=1 k=1 =1
A te—1 2
<2ZZ —xo ) (z ‘
k=1 i=1
my, Tk X 2
#2303 oy (@) - @)
k=1 =1
my Tk . vs? 2
<201(T) Y |(ag —= )Yag_ll4 (21)
k=1 i=1
my Tk
+202(T)ZZ!Y )™ = (zg)7|
=1 i=1
t ot A & sk ok 2
cun($onrvi, - 55w |
k=1 i=1
my Tk 2
+];§y (zg)? Znﬁ:l(xak 7))

Here Cg(T') is a constant. The expression in the brackets on the right hand
side of the inequality (21) consists of two terms. The first one is the difference
between the integral sums for the left stochastic integral (£) |, 'zt dYy and the
second is the difference between the corresponding integral sums for the right
stochastic integral (r) f dYy (z§)~!. Both these integrals exist and their defini-
tions do not depend on the decreasing sequence of partitions {A,[s,?]} (because
of the property (12) and results of paper [2]). Therefore the right hand side of the
inequality (21) and the expression (20) tend to zero when 6, — 0.

Passing to the proof of Theorem 1 let us consider the term

Zy(n) = Hw“ ()2, (zg ()™ (22)

If we prove that the following limit
= Jim Zi(n) (23)

exists in' G3(H, ) and does not depend on the sequence of partitions {A,[s, ]}
then from the condition (5) and the property (10) it will follow the existence, in
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G2(H,Q), of the limit
= lim (23(n)) " Z}(n)ab(n) = fim, kH zi., (24)

finishing the proof of the theorem as well.
To prove (23) let us note that Y} and Y} are continuous from the left or from

the right (depending on 7) at every point 7 € [0, T] simultaneously and according
to the lemma they satisfy the conditions (13)—(15). By [4] the following limit exists
in Go(H,§) and does not depend on the sequence of partitions {An[s,]}:

my

m JT (¥

t
6”_',6: k-1

+1I).

Let us show that
mn

lim Y
55 —0 ( te—1

+1)= lim Zi(n) = X!. (25)
k=1 n

To prove this equality, as in [4], it is sufficient to consider the decompositions
Ap[s,t] from (20) and use the following estimate

|ﬁ(Yf: 1 H RO IO )
=

mp k—1

=Y 1@, + DT, -2t ()28, — 2t ) (=l ()]

k=1 1=1
7 tl 1 t; -1 2
3 | IO
i=k+1
my k—1
<3y [T, + Dab @[T, - 28, + 242
k=1 d=1
e ) (26)
A tia1 i i -
OV | OO
i=k+1
my, k—1
S TI e, +0) [ af = 27 ) B el ()™
tk-1

k=1 i=1

mp mn k—1 t
I ez e+ S TIE +0 [ a8
k—1

i=k+1 k=1 i=1

(@) = )™ I stz o))

i=k+1
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Since ¥;! admits the properties (13)~(15) we can rewrite the first term on the right
hand side of (26) in the form

m, k—1
33 | T (e, + Do~ ¥, - Zik, + 2] @ ()™
k=1 i=1
mn 2 k—1 B .
I ez, @ )7 + Y Btrace { TT (%, + Dzit~* ()
i=k+1 k#j i=1
j—1
S S N (1) el | EE R OV AN CH OV R ()
- i=k+1 (27)
(28, -2 )i [ a6z, @)
i=j+1
k—1 j—1 .
—1; = St -1 ot t; t;
AT @, +Dxe, T1 (i, + Ded ¥, = 2o, + 2]
=1 i=k+1

(@) I =5 mzh, s o))

1=7+1

The first term in (27) is, by estimates (8), (16), (17) and the properties of the

norms | - |4 and | - |5, bounded by the estimate
3C5(T)CHT)CA(T)Co(T) Y _|Var, — Zar_, + x4

k=1
Mmn
tg 1) ¥4
§ :(Ztk—l _ztk—1)_Y3
k=1

tending to zero as n — oo due to the condition (6).

In order to estimate the second term in (27) we note that from the Cauchy-
Schwarz inequality, the estimates (9), (16), (17) and the evident inequality va? + b2
< a+b when a > 0, b> 0 it follows that its modulus is bounded by the estimates

= Co(T)

2
4

k—1
SE{|[] @, + et )T, - 28, + =42 ) (i)™
k#j i=1

j—1
I e m)ZE (@ () e () (2, — =) (6 ()7
1=k+1

my k—1
e oz @) | TI, + D7,
=1

i=j+1
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J-1
H (th' 1 +I)$3’ l(n)[ tio1 Ztt,’ 1 +zt, 1]
i=k+1

() ] ezt ) ) < (Zlkﬁ (Fe, +1)
i=j+1 k#j i=1

zg” ‘(n)[Yti” L Ze )@t ()T

H 257} (n)Z4_, (a5 (n)) ad T () (24, — =_,) (e (n))

i=k+1

e mz @)

i=j+1
j—1
-(Z!H (W, + 0¥, TI (B, + Ded VY, - 28, + 28]
k#j i=1 1=k+1
. dd. 2\ 1/2
JCHO | RO AN O
t=j+1
2 3 o3 i t tj 2 1/2
= C5(T)C3(T)C4(T)CG(T)(Z ZIYtk AR 2 tk 1|4|Zt; 17T R 1|4)
k=1 j=1

my k—1 2

/ . My
(S e, - 28, 4D s cwm |- Yo, )|,
k=1 j=1 k=1

tending to zero as n — oo due to the condition (6). Here C1o(T) is a constant.
Thus the first term on the right hand side of (26) tends to zero when n — co. In
order to estimate the second term let us rewrite it in the form

MS

Y-

12 1
(Ztk 1 T R 1

L+ 17194, (28)

x~
1l
—

ST, + 0| [ (et - () ¥ g (o)
k=1 i=1 tk-1
mn k-1
H 2y " (n)ZE_ (ef (n))” I + ZEtrace{H(th' 1)
i=k+1 k#j =1

([ G- et agee@ ] I sz e es)

-1 i=k+1



200 G. Butsan and M. Kozachenko

S )28, — 4 )EE ) [T o mzh ey}

i=5+1
k-1
{H(l/tto'l Ytik1 H ( t;x
i=1 i=k+1
t ) . ) -7 ; _
QARG EE R OLACHONE | EOLNCHO S
-1 i=j+1

Using the estimates which were proved as indicated above we can see that the
first term in (29) is bounded by

. 2
tk 1 :Z:(t)k-l(n)) dYO‘r 4)

) sup gt =l )V,

mp tr
Cll(T) (Z /; (:L‘E — xo’c 1)dy'0
k=1 k-1

tkl

SCII(T)()(z) /tmgdf’o thk 1Ytik1

tending to zero as n — oo due to the condition (5) and property (12), which

is sufficient for the existence of the left stochastic integral (£) [, : ¢ dYy and its
independence of the sequence of partitions {A,[s,t]}. Now it is easy to see that

the integral (¢) f: z§ dYO" is additive as a function of the intervals [tx_1,%x].
Analogously, the modulus of the second term in (29) is bounded by

>l [l +0) /< — 2 () A (e () 7

k;éj i=1

H 2y~ (M) Z4_ (a5 () ad T (n)(Zg)_, — =i)_, ) (eg ()7

i=k+1

I e ezt ) HH (T, + D72 H (T, +1)
i=j+1 1=k+1
] / (— = (n)) ¥y (2 () 7] 11 A OVHINEI O
<on@m{Y(| [ e it

ktj -t

+ )lzt; 1 ::) 1|4}1/2

ty
/t (2l — 2= (n) ¥y
k-1
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M

+ sup|:ct'° t $3k‘1(n)|§|)7;|2)1/2

X ([ @i -stnyame+| [ i = s opars

< 012(T)(|(£)/ :Eg dYOT' _ izék ly’tik )
# k=1

<!Z t, 1_zt ) Y,

(@ [ zpaii - Zx“ g0l

where C12(T) is a constant. Analogously, the right hand side of the last inequality
tends to zero when n — oo.

Thus the second term on the right hand side of (26) tends to zero when
n — 0o, too.

The third term on the right hand side of (26) can be estimated in the same
way as as the second term if one uses the property (10) instead of the condition
(5) when considering the right stochastic integral (r) f: dY7 (zF)™1; its necessary
properties are guaranteed by the relation (12) and the results of the paper [2].

Aty )

. 2\ 2
A sfeg = ey )

Remark 1. If we omit in the condition (5) the property that z! € Ga(H)
we must consider in (1) the convergence in mean square with respect to the norm
| - |2 instead of | - |3. The convergence in (23) remains valid with respect to the
norm | - |4.

Remark 2. If Z! and z! are uniformly continuous, i.e., |Z! —1I|; — 0,
|zt — Il — 0 when t —s — 0, then Theorem 1 is true without the condition
(5). In fact, the properties (8) in that case are evident and the properties (9) are
replaced by the next relation when §,, — 0:

sup_ {lef — 27 (n)l2, [(27) ™" = (2 () M2} — 0, (30)
tr—1 <7<t

which can be proved by rule of contradiction. Then the property (30) is used in
estimating the expression (29) instead of the condition (5) and the property (10).

Theorem 2. If the system Z!, 0 < s <t < T < oo satisfies the conditions
(4)—(6), then the formulas

= Jim IIZtk , = Jim II (Var, +2ik ) (31)

and
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= Jim Z(X:: LT Th) (32)

where z! = E X!, are true. Here convergence is with respect to the norm | - |4 and
these limits do not depend on the decreasing sequence of partitions {A,[s,t]}.

Proof. First of all let us note that due to the inequalities (9) and (17) the
following inequality is true for every partition A,[s,t]:

, < 1<p<r<m,. (33)

t. 1
)pl

Let us consider the term

r

[[(=0 7 ()Y, (25 () ! + 1)

= H"’t' ") (Vel, + 2, (@5 () (34)
= oy ) ([T, + 22l () )

i=p

and note that, due to the estimates (9), it is enough to prove that the term (34)
is bounded in order to show that

< o0 (385)

tll t:—)‘5

u,p,r 1_

holds. Therefore, using the known properties of the norms | - |4 and | - |5 (cf. [2])
and the properties (9), (13) and (14) we obtain the next estimate

’Hw“ NV, ) 4], <H(lx (O AMNEHCHREERY

i=p

< exp{Ci(T) ZIYJ' L } < exP{Cl(T)lyﬂTli} <

i=p

for the expression (34). By using once more the estimate (9) we then easily obtain
the inequality (35). Here C1(T') is some constant.
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Let us now estimate the difference

2
‘HZtt":l Ytikl-l_ tk 1)4
my k—1 =
Enlalﬁllenm>ﬂxﬁﬁaa
k=1 =1 i=k+1
my, k— my 2
= z H Zt, 1 Ztt: 1 - Z:: 1 }/tik 1) H (l,tf' 1 tl 1) 4
k=1 =1 i=k+1
k-1 -1 (36)
+ Y wraceB ([ 20t (20, =it - Yir,) [T (W, +=ii,)
k#j i=1 i=k+1
my k-1 J—1
}/t:] 1 H (Ytt.' 1 +Ztt:-1))]:[ Ztt: 1(Ztt: 1 ztt)’:—l) H Ztt: 1
i=j+1 =1 i=k+1
' (Z:-'i-1 - th 1 Y;?f‘ 1) H t. 1 tz 1)

i=j+1

By using the estimates (33), (35) and the properties (2.8), (2.10) of the norms
| - |4 and | - |5 in the paper [2] we can note that the first term on the right hand

side of the expression (36) is bounded by the term

4

my
22 t Srte |2 _ 292 t ¢|?
o’B letk 1—zt: 1 tkk—1|4_a B ‘Z Z‘: 1_ztk 1) Y
k=1 k=1

mn (37)
o?B%2, withe, = | ) (Z*

th-1

Ztk 1) Yt

k=1

On the other hand, using the Cauchy-Schwarz inequality and the properties (6),
(13), (14) we note that the modulus of the second term on the right hand side of
the expression (36) is bounded by the term

k—1
(T ze (e, - =t - Yar) H (Vi 42 )V

k#j i=1 i=k+1

t; /2 Zt, tr tr
H (Yi. 1 t. 1 I ) (ZI ti—1 Ztk 1 ztk—l)
1—]+1

/
Halhqmﬂynm v )"

i=k+1 i=j5+1
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Saﬁz(ilz:: s (Zl A I
2ﬂ(Z|ZZ’: - )‘“(zlzt, v )
o’p? ZIY‘LJZ (2t ~=2)] < cumyed.

Therefore the difference (36) is bounded by the term e2C3(T), which due to the
condition (6) converges to zero as n — oo. Here C3(T) and C3(T) are some
constants. Thus the formula (31) is proved, because, due to Theorem 1, the first
limit in this formula does not depend on the sequence of partitions {A,[s,#]}. In
order to prove (32) let us show, first of all, that the first equality on the left hand
side of

= lim Dz‘* NI el = / (a5)" d¥y 2] (38)

is true. Here the convergence is considered in the norm | - |4 and does not depend
on the sequence of partitions {A[s,?]}. Let us call this limit a stochastic integral
and, analogously to (19), denote it accordingly. It is easy to see that the existence
of the limit in (38) and its independence of the sequence of partitions {A,[s,t]}
may be proved in the same way as in (19). Therefore, we need to prove only the
first equality in (38).

For this purpose, by using the relations (8), (14) and (19) we obtain

2

Y- Z(mf{‘") RMNCE

t = t 1 b ¥ l t
S e - S / 27 d¥y (f) at
k=1 te-1

k=1
my te 3
- \Z(wz gy e - zsdmxarl](wak
k-1
17 .
o) el Vi )7 - [ 5 a¥s e
k= te—1

Cu(T) Z

tr

texrtr tk -1 T( T

eV @) - [ e dta) ]
tr—

1

. 2
$¥ ) - [ ety (39)

S

=C,
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Here C4(T) is some constant, and we essentially use the additivity of the stochastic
integral f: zf dYy (2§)~! for intervals, which follows from the independence of the
limit (19) of the sequence of partitions {An[s,?]}.

Now the right hand side of the expression (39) tends obviously to zero due to
(19).

Let us furthermore note that the obvious equality X! = (z§)~!X!z{ follows
from the formulas (23) and (24). Using it, the equality (38) and the estimates (8)
we obtain the relations
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The first term on the right hand side of (40) tends to zero for é, — 0 because
of (25) and the theorem from [6]. The second term on the right hand side of (40)
tends to zero for 6, — 0 by (38), and this limit procedure does not depend on the
sequence of partitions {A,[s,t]}.

Thus the formula (32) is proved and our theorem is proved, too.

Corollary. Under the conditions of Theorem 2 the formula

Xy = lim JI(¥ar, +28.,) (41)
" k=1
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is true.

For the proof let us note that the system X! satisfies all the conditions (4)-

(6) of Theorem 1. Especially, (32) gives the condltlon (6). Moreover, the obvious

equahty EX; = z! follows from the relation (25). Using the formula (31) for
= X! we then obtain the formula (41).

Remark 3. From Theorem 2 and the formula (31) it follows that the condi-
tion on Z}, i.e. the existence of the limit

Y!= lim Z(Z,k k),

0
" =1

is also a sufficient condition for the existence of the limit

hm H ik 1 tk 1)'

In particular, if Z; = X! and if it satisfies the conditions (1)~(4) from [5] then a
careful check of the proof of the main theorem in [5] (formulas (14), (15)) shows
that for the existence of

st hm Z(th 1 _ztlc 1)

it is sufficient to require the following weaker condition

su T - < 0o 42
A [.‘Pt]kz_:l tk 1 ( )

instead of the condition (2) in [5]. Thus, due to Theorem 2 the condition (42) will
be sufficient for the validity of the formula (41).
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