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ON APPROXIMATION CONDITIONS OF THE
DISTRIBUTION OF THE MAXIMUM SUMS
OF INDEPENDENT RANDOM VARIABLES

A.N. Startsev

Let £ni,2 =1,...,n,n > 1 be an array of row-independent random variables
with E £,; = ani and D ,; = 02;. We can assume, without any loss of generality,
that 02, +---+ 02, =1 for every n > 1.

Define, with an abuse of notation,

k k
to=S0=0, Si= ZE,,;, t = Za,zu-, Sn = max(Sn1y- .., Snn)-

We are interested in conditions for S, — A, to converge weakly to some limit law;
here A, is some centering sequence.

For identically distributed random variables £,; with o, =n"1i=1,...,n
such conditions were found by A. Wald [14], who established the following results:

(1) If limpoonaz =a, 0 < a < oo, then for any z >0

a’z?

w3/

e [

where, in particular Wy(z) = max(0,2®(z) — 1);
(ii) If limp—oonan1 = +00, then for any z € R

hm P(S <z)=W,(z) = - u) du,

lim P(S, —nan < z) = &(z) = (2r) /2 /_z exp(—u?/2) du.

n—o00

Analogous results in the case of identically distributed random variables, but
in a more general situation, were obtained by A.A. Borovkov [2].

K.L. Chung [3] extended the results of A. Wald to the case of nonidentically
distributed random variables having common means and variances. He obtained
in addition the rate of convergence of the order n=1/26Inn when E |€,; — a,;[* <
C<ooforalli=1,...,n and n>1.
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V.B. Nevzorov [6] obtained more general conditions for the convergence to
the normal law in the scheme {,; = &;/Bn, where B2 = "  D¢;. He proved
that the conditions

(a) {&i:1> 1} satisfy the central limit theorem;
(b) lim y/n min(E¢,...,E£,) = +oo;
(c) D& <D<oo, Bi>dk, d>0, k=12,...,

are sufficient for the weak convergence of the random variables (} = (maxi<k<n Ck—
E(,)B;! to the normal law; here ( =& + &+ -+ &, k=1,2,... .
In our notation the conditions (b) and (c) take the following form

lim n min an; = +oo, 02, <Cin71,
n—oo 1<i<n

tr > Cokn™!, 0<Ci<oo, =12 k=1,....,n, n>1.

Nevzorov constructed examples which show that it is not possible to take
conditions (b') E(x > Ck, C >0,k >1and (¢') C1k < B} < Cik, k>1,0<
C1 < 02 < oo instead of (b) and (c), respectively.

We shall give only one of these examples since the other one is rather exotic:
random variables satisfy the central limit theorem but not the Lindeberg condition.

Example. Let {n;, ¢ > 1} be independent standard normally distributed
random variables. Define

5’6:{?;2/2’ Z;gm when ra=1,3,....
k )

It is easy to check that the conditions (a) and (b) are satisfied and E(, = 5n —
6log,n when n = 2™, but

P(¢(r <0)— 0# ®(0), asn — co.

In spite of this, the convergence to the normal law takes place for n = 2™ — 1.
The reason for this phenomenon will be evident later.

In arecent paper V.M. Kruglov [4] obtained necessary and sufficient conditions
for the convergence of the distribution of Sn to the limit laws W, and ® in the
general scheme of partial sums, both under moment restrictions and without them,
but the convergence to the normal law under moment restrictions is considered
only for non-negative means.

In the present paper sufficient conditions for the convergence of the distribu-
tion of S, to the normal law and to other limit laws are given in a more general
case by the method of approximation of the Wiener process (the invariance prin-
ciple). A similar approach was used by A.V. Nagaev and the author [5], [12] in



On approximation conditions 271

an asymptotical analysis of mathematical models of epidemics, exactly as by A.A.
Borovkov [2] in an analysis of this problem in the case of identically distributed
random variables and by Yu. V. Prohorov [9] in an investigation of transition phe-
nomena in the queueing process and then by V.B. Nevzorov [7] in a research of
limit distributions of various order statistics of successive sums of random vari-
ables, but with zero means.

Let us pass to the formulation of the results obtained. It is assumed that
{€ni : 1 <i < n} satisfy the Lindeberg condition.

Define Ax =ESi=ap1 +an2+--+ank, k=1,...,n, n>1.

Theorem 1. Let apry > 0, ny < k < n. If imy,otn, = 1 and if

limp, oo miny<k<n, (An — Ax) = 400, then

lim P(S, — A, <z)=®(z) forallz € R.

n—oo

Remark. We want to point out that, if ¥ = [na], 1/2 < @ < 1, then under
the conditions of the previous example one has

Ap— A < =n(1/2-6(1 —a)) — —oo, if a>11/12.

We claim that P(S, — A, < z) — 0, but this follows at once from the fact that
Qnn = —/n/2 — —o0. In fact,

P(S, —Ap <) < P(Sp—1 — An—1 < T+ ana) = &(z — v/n/2) + 0o(1) = o(1).

It is not difficult to show that the conditions of Theorem 1 will hold for n = 2™ —1.

Corollary 1. Let an; >0, k= 1,...,n. If there exists ny < n such that
limp—ootn, = 1, limpoo(An — An,) = 400, then limy_oo P(Sn — Ap < z) =
®(z) forallz € R.

This statement is the same as the sufficiency part of Theorem 7 by Kruglov [4].
Now we are going to give results where the limit law is not a normal one.

Theorem 2. If lim, .o maXi<k<n |[Ar — g(tx)| = 0, where g(t) satisfies a
Lipschitz condition and ¢(0) = 0, then for any z € R

lim P(S, < 2) = P(gmax, (w(t) + 9(t) < =),

where w(t) stands for the standard Wiener process on [0, 1].

Corollary 2. If lim,_.c maxi<k<n |Ax| = 0 (ie., g(t) = 0), then for any
zeR* B
lim P(S, < z) = Wy(z) = P( max w(t) < z).

n—oo 0
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This result follows also from Theorem 4 by Kruglov [4] and Theorem 10 by
Rényi [10], where it is supposed that a,; =0, i=1,...,n.

Corollary 3. Let any = an, 02, = n~ !, k =1,...,n, n > 1. If
lim,—oona, = a, |a| < co, then for any = > 0

lim P(S, <z)=P(w(lt)<z—at,0<t<1)
a?/2
=1- exp{—a:(lal — a)} /0 D(za/2)? (u) du,

where py(u) = 1/q/(7u3) exp(2\/g—u—q/u), u > 0, ¢ > 0, is the density function
of the Wald distribution.

This statement follows also from Theorem 6 by Kruglov [4], where the exis-
tence of the limits

. . Qpg ) Qni
lim min — = lim max — =a
n—o01<in 0 ; n—o01<i<n 0,

is required but the explicit form of the limit law is given in the case a > 0 only. The
explicit form of this limit law is given by Borovkov [2], but his result was obtained
in the case of identically distributed random variables under the condition that
the sequence a, tends to zero without change of the sign.

If a > 0, then we obtain the result of Wald [14]:

JLIIéo P(S, <z)=W,(z) = /2/2 P(za/2)? (u) du.

Proof of Theorem 1. Define
(1) Po(z)=P(8§, —Apn<2)=P(Sy < An—Ax+z,k=1,...,n),

where SY = Sk — Ak, k=1,...,n.

Let sp(t), 0 <t <1, be the random polygonal line constructed by using the
points (tx, S2) and g,(t) the polygon with vertices in the points (tx, Ap—Ag), k =
0,1,...,n.

Then we can rewrite (1) into the form

(2) Po(z) = P(sn(t) < gn(t) +z, 0<t <1).

According to the invariance principle it is possible to construct s,(t) and w(t)
on the same probability space such that (cf. [1])

3) sn(t) = w(t) + en(?),
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where the random process ¢,(t) satisfies the following condition

(4) €n = sup |en(t)]| L,0asn > .
0<t<1

Now it is not difficult to show that (2)—(4) imply the inequality
(5) Pa(z) > P(w(t) < ga(t) +z—¢, 0<t<1) 46,

for any € > 0, where 6, = O(P(en > €)).
On the other hand by virtue of the central limit theorem

(6) P,(z) < P(S? < z) = ®(z) + o(1).

After defining the following events
A= {w(t) < gn(t)+z—¢, 0<t<tn}, B={w(t)<gat)+z—¢, to, <t <1}
we can rewrite (5) into the form

(7) Po(z) > P(B) — P(BA) + 6,.

Lemma. If h,(t) is a non-increasing function for t € (7n, 1], limp 0o Tn = 1
and limy,_,00 hpn(1) = ho, then

Qn = P(w(t) < hn(t), Ta <t <1) — &(ho), asn — co.

Proof of Lemma. It is easy to see that
(8) Qn < P(w(1) < ha(1)) — 2(ho).
Since h,(t) is a non-increasing function, we have

Qn > P(w(t) < hn(1), Tn <t<1)
9 = P(oglt%?-(-r,. w(t) + w(Tn) < hn(1)) — @(ho).
Here we have used the fact that

P P
o w(t) — 0, w(rp,) — w(l), as n — oo.

Clearly, (8) and (9) together give then the statement of the lemma.



274 A.N. Startsev

We are now returning to the proof of Theorem 1. By the lemma and the
conditions on g¢,(t) we can obtain

(10) P(B) = ®(z —¢) + o(1).
Now we will show that P(A) = o(1). In fact

1 - <t<
P(A) > P(w(t) < . gn(t) +z—¢, 0<t<t,)

> : : _
2 P(gmax w(t) < JJin gn(t)+2 €)

(11) =1-2P(w(1) > OStnl_értl"l gn(t)+z—¢€)=1+0(1),

since ming<t<t,, gn(t) = mino<k<n, (Ap —Ag) 5 o0 as n — 00.
The statement of Theorem 1 follows then from (1), (6), (7), (10) and (11).

Proof of Theorem 2. Tt is easy to see, by using the preceding arguments, that
for any € > 0

Pw(t) <g(t)+z—e—Ap, 0<t<1)—6, < P(Sn<2)
S Pw(t) <g(t)+z+e+An, 0t <1)46n,

where A, = maxi<k<n |4k — 9(tr)|, 6n = O(P(en > €)).
The statement of Theorem 2 follows then from the inequality (see [8] or [9])

|P(w(t) < g(t)+h, 0<t<1)—P(w(t) <g(t), 0<t<1)|<Ch.

In order to prove Corollary 3 we remark that L. Takécs [13] has obtained the
following result (see also Borovkov [2])

T
— at
P(w(t —at, 0<t<T)=1- o' (222 43/2 g4
(wit)<z—at, 0<t<T) :L'/O (\/Z)

implying the claimed form of this probability.

Acknowledgement. The author thanks the referee whose remarks have
helped to improve this paper.
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