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AHLFORS AND CONFORMAT INVAR,IANTS

Albert .'Baernstein If*

O. Introduction

Conformal invariants include quantities such äs harmonic measures, hyper-
bolic distances and extremal lengths which do not change under conformal map-
ping. It would be quite impossible to give a systematic introduction in a small
space, or even to discuss most of Atrlfors's contributions to this subject. Thus,
this article is in the nature of an excursion. Our point of departure will be the
conjecture of Denjoy about asymptotic values of entire functions, which Ahlfors
proved in 1928 by means of his "distortion theorem". We shall examine some work
leading up to this proof, and the proofs of the conjecture itself by Ahlfors and by
Carleman and Beurling which carne soon a,fter that of Ahlfors. Each of the three
proofs spawned theories and problems which are still of great interest in complex
function theory and beyond, and we shall follow some of these threads down to
the present day.

Perhaps the main theme of the subject is to find relations between confor-
mal and Euclidean quantities. During our journeg we shall visit some problems
that are now essentially settled, such as the relation between harmonic and Haus-
dorff measure in a simply connected domain (Section 6), a^nd others that are not,
notably Painlevd's problem of geometrically characterizing null sets for bounded
analytic functions (Section 7). For the "a,ngular derivative problem" (Section 5),
the authorities differ as to whether the problem is or is not completely solved.
These subjects have all been strongly influenced by the work of Ahlfors, either
directly, or indirectly through tools such as extremal length in whose development
he has played a major role.

My choice of topics has been somewhat arbitrary. I regret especially having no
space to discuss hyperbolic metrics or extremal lengths for multiple curve families.
See [Mi], [We 2], urrd [I] for some intresting recent results. Also, I would have liked
to discuss work related to Bloch's theorem, but there is time only to note that the
Ahlfors-Grunsky conjecture of 1937 about the exact value of Bloch's constant has

still been neither proved nor disproved.

t This research was supported by a grant from the National Science Foundation.
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1. The Denjoy conjecture

An entire function / is said to have the asymptotic value å if there is a path
7 in the plane C such that f(") - b as z + oo along 7. Denjoy conjectured in
1907 that if / has n different finite asymptotic values then its order is at least
nl2. That is, its maximum modulus M(r) on lrl: , must satisfy

,. loglogM(r) > In."LtJ-l.gr - '
He states that he can prove his conjecture when the asymptotic paths are

rays from the origin. Simple examples show that for each positive integer n entire
functions of order nf2 exist with n different asymptotic values.

If f has n asymptotic values b; there are corre-
sponditrg smooth paths 'yt which begin at the origin
but are otherwise disjoint. These paths divide the
plane into n simply connected domains C)r, and. f
is bounded on each lO,t, say l/l S 1 there.

If we assume the b; are distinct, it follows from
a theorem of Lindelöf from 1908 that f must be
unbounded in each f,);. Assume that the f,|,; are in
fact angular sectors, f,t; _ {z : larg z - pil
F. and R. Nevanlinna in 1922, äs an application of
their tttwo-constant" theorem, had proved a sharp
form of the Phragm6n-Lindelöf principle: If / is holomorphic in a sector I *g rl <
0 ul;.d bounded on the sides, then if / is unbounded inside its maximum modulus
must grow quicklS

liT,iåf '-"logM(r) > 0,

where ot : r /20 . At least one of lhe B; is I r f n. Thus, the maximum modulus
of / on l"l: , must satisfy

lim inf r -nlzlog M (r) ) 0,(1.1)

which proves Denjoy's conjecture, in the sector case, in a stronger form.
To extend this argument to the case of general O;, one needs a theorem of

Phragm6n-Lindelöf type for "curvilinear sectors". A result of this sort was found
by Carleman in 1920. Under the mapping w : logz the O; become striplike
domains, which we will also call O;. For any domain O, Carleman defines

O(o) : total length of Of] {z : Re z : x}.

Suppose that / is analytic in O, and define

M(n,f) - sup {lf @l : z € f),Re z - r}



Carleman assumes that O(")
is not bounded in CI then M(*)
differential inequality for M (x):

oo for every r and that l/l
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proves a first order

å.4
frloslogM(r)>=*, a)xs.

According to Beurling [Be] the proof is the first application of the method
of harmonic majorization. Integration shows that, when / is unbounded and
frO<&t<t2)

: I.',' #( loglos M(*z) -loslos M(*r).( 1.2)

The use of integrals of type "[O-t(") dx to measure the size of a domain
apparently originated with Carleman. It is surely one of the most brilliant ideas
in the history of complex function theory.

Returning to the situation of Denjoy's conjecture, let O;(r) : O(o, O;). Then

DL, O;(r) { 2r, and hence

(1.8) n2<2nå*

For c ) &r >,,-0, (1.2)and (1.3) ,*lr,
-2n(, -o1) 5 7(loslos M(a)- C(")).

For the original entire function /, this gives (1.1) with 2nf 12 instead of. nl2.
Thus, Carleman had proved that an entire function of order p can have at most
n' p 12 asymptotic values.

To obtain the full Denjoy conjecture, the 4lr in (1.2) must be replaced by
zr. Ahlfors discovered how to do this while in Zririch in 1928. His general idea is
to conformally map the striplike domain O onto the rectilinear strip

S:{z:lLmzl<l\
by an appropriate mapping O, O: O -+,S, and then apply the known Phragm6n-
Lindelöf result to / o Q-r. For such an argument to work one must have good
control over the distortion of O, and this is the content of what is now called
Ahlfors's distortion theorem.

We follow the presentation in Ahlfors's thesis [A L]. Assume that the simply
connected domain O is unbounded on both the left and right. That is, O contains a
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curv€ z = 0$), 0 ( t < 1, forwhich liml*sR€B(t): -oo, li*r*lReB(t): ee.
Aesumethat ReO(B(t)) + -oo as f -+0, fuO(B(t)) + oo as t+l. Foreach
o, O n {Re z : r} consists of one or more open intervals, at least one of which is a
crosscut of O separating the prime ends at -oo and oo determined by the curve
B. Lef 0, denote the crosscut which is first encountered bV 9. Assume that 0,
has finite length for every r, and define

0(x): length d,, u2(x): supReiD, u1(r): inJRe o.

u2 (x1) u1 (x2 )

Ahlfors distortion theorem. It t::0-'(*)d,x>2 then

(1.4) 
l,','ffi<ur(cz)-uz(xt)++.

If J is a,nalytic in O, bounded on äO and unbounded at foo, then for
g : f o O-1 the Nevanlinna brothers' form of the PL principle gives

,lifi,"u-"' logM(x'g) > o'

A simple argument ryith the maximum principle leads to an inequality

lqlogM(c,f)> ru{r) - O(1), c la,rge.

'For the domains which appear in the Dettjoy conjecture we have 0(r) <
O(r) < 2r. The distortion theorem is applicable when tz - rt ) 4tr. For
sufrciently large c1, t2, we conclude that

7T 

t,",' ffi( loglog M(*r, f) + c

where 12 ) rl and C depends only on cr . Since 0(r) < @(r), this gives a sharp
version of (1.2), a,nd the complete Denjoy conjecture follows, in the strong form
(1.1 ).

The distortion theorem is one of the seminal results of our subject. We shall
discuss it further in Section 4. In the next two sections we describe two other
proofs of the Denjoy conjecture, by Carleman [Cmn] and Beurling [Be], which
were published in 1933, both of which likewise have had strong inf,.uence on future
developments.

o
--f>
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2. Carlemants proof

Carleman's new idea is to replace his nonsharp first order differential inequal-
ity for M(x) by a sharp second order one for a certain quadratic mean. Assume
again that / is analytic in O, l/l < 1 on öO. The simple connectivity assumption
on O is dropped. Define

0*(x): length of the longest arc in O fl {Rez : r},

and also Q(t) bv

Q"@): /- 0or* lf @ + iill)' dv

where 
f /l is set equal to one for u+iy / O. Carleman proves a convexity inequality

for Q@),

Q,,@).#OOr.
The source of this inequality is the inequality of Wirtinger: If h(y) is a

piecewise smooth nonconstant function on [o, ö] with h(a) : h(b) :0, then

l"o {^,ril)" a, > ft l"u 
o,roror,

with equality for h(v): sin[z'(y - ")/(b - ")].Set g(c) : logQ(o) and assume that / is unbounded as Rez --+ foo. The
convexity inequality can be integrated to give

f'zdr
n J,, M s P(*2) + c#' (*r) + cz,(2.1)

when c1 , fr2 t.ne large, and Cr, Cz depend orr o1. In the Denjoy situation
0*(*) < O(t) S 2n, Q(a) < (2zr)t/ztog+ M(r). A second integration of (2.1) to
get rid of the tenn gt and use of (1.3) then leads to a proof that an entire function
with n difrerent asymptotic values indeed has order atleast nf2.

For just a moment let us think of our O, which is not necessarily simply
connected, as being sector-like instead of striplike. Define 0*(r) : oo when O
contains the whole circle lzl : r. Otherwise, 9*(r) will denote the angular measure
of the longest arc in On (l 

"l 
: ,). Assume that u is non-negative and subharmonic

in O, u : 0 on äO, and set u : 0 outside O. Tsuji [T, p. 116] observes that
Carleman's analysis is still valid, and obtains for

QU)': * Ir'o 
u'("'*) aP



294

the differential inequality

Albert Baernstein II

u(z) : ,n(") : u(z,lrl: R,Qn),

where Oa is a component of O fl (l"l < e), and ur denotes harmonic measure.
Tsuji cleverly integrates the convexity inequality to obtain a fundamental estimate
for wp. We state the version of [HWe, p. 123].

Tsujits inequality . For each Å e (0, 1), and

l"l

d,'Q n2

,d(log r7z'?)

Suppose that f) meets the circle ltl - R. Apply this with

d,r \
I

re*@ ).
wn(a) < 9(1 - ))-r/2 exp

Taking f, to be a sector, one sees that the 7r inside
the exponent cannot be rep'laced with anything larger.
When O is simply connected results of this type can be
deduced from the distortion theorem or other arguments which involve conformal
mapping, but for domains of arbitrary connectivity it appears that differential
inequalities of Carleman type are one of the few known ways to achieve sharp
estimates for harmonic measure.

To indicate just a sample of the many different situations in which Tsuji's
inequality has been applied, we mention Weitsman's theorem [We 1] that
lo6L/3(a,/) < * for meromorphic functions of finite order, the work ol H.y-
man and Weitsman [HWe] about means and coeffi.cients of functions in the unit
disk, and the recent work by Rossi [R] and Shen [S] about zeros of solutions of
differential equations ."(") + A(z)w(z):0, where ,4 is entire.

3. Beurlingts proof

Let us return to the context of simply connected O, which we again think of as

being striplike, though possibly bounded. Beurling's proof [Be p. 10a] of Denjoy's
conjecture is notable, alnong other reasons, for its explicit use of harmonic measure
in majorization arguments. Beurling notes that R. Nevanlinna had introduced the
harmonic measure u(z,E,O) when .E is an arc in öO, and that he, Beurling,
proposes to consider it for more general boundary sets .8.

( " r,::,
o

@:O ORe
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For zs e Q, E C äO, Beurling deffnes a,nother conformally invariant qua^ntity,

), which he calls "dista,nce extr6male", by

l'(ro, E,O) - zr
inf(length i2

area (o)

\'(ro, E,Q) : suP 12 (F(zs), F(E),F(O))

where the infimum is taken over all paths 7 in O which start at zs and end at a
point of -8, and the supremum is taken over all conformal mappings F of O for
which .F(O) has finite a,rea.

Beurling proves that the harmonic measure and dista^nce extr6male are related
by the inequality

(3.1) w(zs,E,O) < exp(l - \'("0,.E, O)).

If rr ( ozt zo: xtliy, and E C (Rrez > *"), then \2 ) r(r2-*r)"
.(areaO)-1. Hence

(3.2) u(z6,E,O) < exp(l - r(xz - c1)2(areaf,})-t).

Assume that O is unbounded on the right, and that / is a^nalytic in O, l/l < 1

on äO, but / is unbounded in O. Comparing losl/l with the harmonic measure
u(zrRez: o2sf,)'), where O' : O n (Re z l oz), one obtains for sufficiently large

loglog M(*z) ) r(x2 - c1)2(areaQ')-t.

Denjoy's conjecture, in the strong form (1.1), easily follows.
To prove (3.1), Beurling takes O to be the unit disk A, zo : 0 , and considers

mappings .F of the disk with

(3.8) areaF(a) : lolr'tr)l'd*dy 
< o.

Write u(E): w(0,8,A) and define

lf
G(r, p) : 

Jo lr' {t";v1l dt.

The main estimate is

(3.4) u({eiv, G(I,v) > t }) < "t-t" 
.

Given E c 0A,,, take t2 : 1-logcr(.B). By (3.4) there must be at least
orre eip € E such that F maps the ray reic onto a curve of length ( t. Thus

^2(0, 
E, L) < t', which is (3.1).
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Beurling obtains (3.a) by working with a first order differential inequality for
the mean value

r(r): # |,""r,,p)dp,
where E c 0A,.

Inequality (3.a) is valid not just for univalent functions, but for all analytic
functions .F in A withDirichlet integral ( n. Aconsequenceof (3.4) isthat such
functions satisfy

w ({eiv: lpq,\- F(o)l >, }) 3 et-t2 ,

and hence, for every a ( 1,

(3.5) lr" "*o('lr( eåe)- r(o )l\ ap I cq

Recently, Chang and Marshall [CM] obtained the endpoint version of this
inequality by proving that (3.5) is still true when c:1. Marshall [Mar 2] gives
another proof based on a^rr unpublished theorem of Beurling involving extremal
length. This theorem is closely related to borderline Sobolev estimates due to
Moser and others which play a role in certain problems of geometry. See [Ch] for a
survey. Ess6n [E] has combined Ahlfors's distortion theorem, Tsuji's estimate, and
symmetrization techniques to prove a considerable generalization of the Chang-
Ma,rshall theorem. Finally we mention that Beurling's inequality is one of the
tools in new work by Osgood, Phillips, and Sarnak [OPS] about the spectrum of
the Laplacian for plane domains.

Exponential square inequalities have become quite popular lately. Chang,
'Wilr*on, and Wolff [CWW] prove a local version of Beurling's theorem by show-
ing that analytic functions in the unit disk with bounded Lusin area function are
exponentially square integrable. Bafiuelos [Ban] proves a sharper result for func-
tions whose g* function is bounded. The proofs of both of these theorems are
based on probability theory. It would be interesting to find classical function the-
oretic ones, and to settle the open question of whether functions F with bounded
Littlewood-Paley g -function,

g'(p) : 
l,' ,, - r) lr'(' eia)l' d,

are exponentially square integrable.
Various aspects and generalizations of the Denjoy conjecture have been ex-

plored by ma.ny authors since 1933. See, e.g. [J 1]. Here we will take note only
of two recent developments. Jenkins [J 2] has given a short proof of a "spiral gen-
eralization"which Ahlfors states in his thesis but does not completely prove. The
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other activity is devoted to the question of "small functions". In a note in the 1956

Comptes Rendus, Denjoy returned to his subject of 1907, and conjectured that an

entire function of order p can have at most 29 different "asymptotic firnctions"
b;(z) of. ordet \f 2. Denjoy again confirmed his conjecture when the asymptotic
paths are rays from the origin. The best known general result at present is due

to Fenton [F], who proved that f can have at most 2p asymptotic functions of
order ( Lla. By contrast, the analogous small function problem for Nevanlinna's

defect relation D 6(") ( 2 has now been completely settled. see [Dr, $2] for a
brief discussion.

4. The distortion theorem and extremal length

To prove his distortion theorem Ahlfors makes use of the "length-area
method,,, which [A5, p. L] he states he learned about in the textbook by Hurwitz
and Courant. With the notations of Section 1, set w(a) : uz(a) - ut(*). This is

the oscillation of ReQ on the crosscut d". Ahlfors begins by noting that O(0') is

a curve 7' which visits all four sides of an ar x 1 rectangle, and hence

0)

?x

Integration, Schwarz's inequality and the relation

areaO({ z e dl:11 ( Re z I az}) < u"(rr)- ur(rr)

lead to the inequality

f " ds ! tr.( r^\ - tt^( c,\ + t "' 'l '(2) ar.t -* 1u{az) - uz(*r) * t,r(o1) + w(r2) - |J,, o(*) = uL\*z) J,, o(*) '*'

By clever maneuvering with a differential inequalitg Ahlfors shows the last three
terms on the right can be replaced by 4, as soon as Ji'axlep\ > Z.

Ahlfors used variants of the length-area method, and especially integrals of
the type I da le@), to prove many other results in the early L930's. For example,

[A 2] contains a "5 island theorem" for meromorphic functions which generalizes

Bloch's theorem about schlicht disks. At about the same time the length-area
method was being extensively developed in Germany by Grötzsch, but this work
was published in an obscure journal and did not become well known until much
later.

A decade later, "presumably in 1943-1944" according to [A 4, p. 81], Beurling
further abstracted the ideas in his thesis to conceive the method of extremal length.

lr,l 
o'(" * iv)lav >(r + u2(*))'/'
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Let I be any family of rectifiable curves in the plane domain O. Its extremal
length )o(f) is defined by

Åo(r) -
where the infimum is taken over all 7 € f and the supremum over all Borel
functions 0 ) 0 on O for which 0 < Ä p2 dxd,y < m. Clearly the extremal length
is a conformal invariant: )o(o)(O(f)) : )o(l) for every conformal mapping O.

An introduction to extremal length is given in [A 4], and a more thorough
account in [O]. The theory plays a central role in the study of Riemann surfaces
and of quasiconformal mappings in the plane and in space. Ifere we consider only
plane domains and will concentrate on one special case, the "extremal distance"
between two sets.

For subsets Er, Ez of the closure of O, the extremal distance dn(4,F2)
between them is defined to be the extremal length of the family of curves lying in
O except for endpoints, one of which is in .81, the other in E,2. For example, it's
easy to show that the extremal distance between the o-sides of an a x å rectangle
in bla, The "extremal metric", that is, a p for which the supremum is attained
in the definition of extremal length, in this case is Euclidean: gr : constant.

The theory of extremal length is closely associated with another conformal
invariant, the Dirichlet integral. For instance, in the case of extremal distance we
have [A 4, p. 65]

da(Er, Ez) : (/ f 

""f,) 
-'

where the function u is harmonic in O \ (.E1 U.E2), equals one on E,1, z€ro on E2 ,

and has vanishing normal derivative on 0O \ (Er U E2). The extremal metric p is
given by eldzl: lVulld,zl.

The distance extrdmale \(zs,E,O) of Beurling's thesis, while clearly a fore-
runner, is not an extremal length in the present sense. The main difference is
that in the definition of Ä(zs,.E, O) only metrics of the form p(z)lzl : lQ'(z)lldzl,
where O is univalent, are permitted in the competition.

To illustrate the workings of the method of extremal length we will outline
a conceptually appealing proof of the distortion theorem. For 11 1 x2 let E;,
i:L,2, be the crosscut 0x;,andwrite El:@(E;). Set p(z) :I/0(n) if. z e0,,
u1 1x 1n2, p(z):0 otherwise. The p-length of curves in O joining ,81 and
E2 isatleast [i" dr/0(r), and this integral also equals the p-a"reaof O. Hence

l,'," *9,I ds(81,Ez): ds(E'1,EL).

To complete the proo! one must show that the extremal distance ds(El,EL)
is majorized by the horizontal distance u{az) - uz(x), plus a constant. One way

(int., I, eQ) ldrl)'
sup-; 

J'n a'Q) dr dy
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to do this [A 4, p. 76] is via a reflection and symmetrization argument due to
Teichmiiller. Jenkins and Oikawa, [JO 2], [J 3], found an even simpler proof. Let
,S' denote the part of 5 between El and E!2, arrd Fr, Fz the top a^nd bottom of

^9'. Then
ds(E'r,EL) : ds,(El, EL) : (a",(fr, fr))-t.

The second equation, the "conjugation principle", is confirmed by mapping
,9' onto a rectangle with Fr, Fz going to a pair of opposite sides. Jenkins and
Oikawa give arr explicit choice of g which provides a lower bound fot d,s,(F1,.F2),
and the desired upper bound for d,s(E!, E').

Let d,(21,22,O) denote the hyperbolic distance in O, normalized as in [A 4]

so that d(0,.R) : l"S((1 + R)lG - n)) when O is the unit disk. The distortion
theorem implies the Euclidean-to-conformal inequality

1,"' #, = 
Lo(""z2'Q) * 4'

when the zi are points with Rez; : ri. Thus, if O is narrow the distance is large.
In Section 6 we discuss an inequality of this type for harmonic measure.

Theorems of the distortion type play a major role in diverse situations of
geometric function theory. For instance, they lie at the base of Hayman's theory
of p-valent functions [H"V]. Suppose that / is analytic in the unit disk A. For
0<A<oodefine

p(n)-

where n(to) is the number of zeros of f (z) -r"o in A, and Z(ft) : {z e A, , l/(r)l: .R ). Following up on earlier work of Cartwright and Spencer, Hayman proves
an analogue of the distortion theorem [Hay, p. 25],

@
-+>

L* 
l:"n(Retv) 

ds - * l,(R)l 
f'(')lla'l

(4.1)
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where Rz : M(r,"f), *d Rr, A are constants which depend on the number of
zeros of "f urrd the ffrst few power series coefficients of /.

An immediate consequence of (a.1) is that if / takes on each value at most
p times then M(r,/): O((t -r)-2p) as r + 1. Hayma,n combines (4.1) with
Carleman's observation n2 < 2trDOr t to prove [H.y, p. 32] that a p-valent
function cannot be too big at too many different places. This theorem, of Denjoy
conjecture type, is in turn a key ingredient in Hayman's proof [Hay, p. 104] of
the "asymptotic Bieberbach conjecture" that the coefrcients o' of a normalized
univalent function f(") = z *... satisfy the relation

[* lo'l < 1.
r!+oo n

Jenkins and Oikawa [JO 2] give an extremal length proof of (4.1), and, in
another paper IJO 1], extend some of Hayman's theorems to a setting involving
harmonic functions. See [Ham] for recent work in this direction. We note that
(a.1) is a close relative of the theorem of Beurling which Marshall proves in [Mar 2].

In his thesis Ahlfors calls the distortion theorem "die erste Hauptun-
gleichung". He proves also a zweite Hauptungleiihung which gives an inequality
in the opposite direction, of the form

(4.2) uz(tz) - ut(nr) < l,',' # * K,

provided the domain O satisffes rather strong symmetry and smoothness condi-
tions. It is easy to see that no good result ofthis sort can be expected for arbitrary
O, but various authors have been able to substantially weaken Ahlfors's hypothe-
ses. Forexample, supposethat O: {z:-q{o) <y <qz(a), -oo ( o ( m},
where a; ) 0. Jenkins and Oikawa IJO 3] prove that (4.2) is true with

K - (t*'l'z) (u:''

where rn : inf"rcc<c2 rrrin1,2 a;(c) and 7; is variation of a; over [c1,c2] of order
2/3.

5. The angular derivative

Suppose that F conformally maps the right half plane onto an unbounded
domain O, and that limF(z): oo when z -r oo in any angle l*Srl < a <nf2.
F is said to have an angular derivative at oo, or, in the terminology of [JO 4], be
conformal at oo, if the limit

+vfrz1 + c

7t

,,tim F(?)-, 
laryzl (a(
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exists and is neither zero nor inffnity.
Passing to logarithms in both planes, we can replace the half plane by our strip

S: { z: llmzl <112} *d assume that F maps ,S onto a striplike O. Following

IRW 2], we normalize by assuming that O contains the positive real axis, and also
that limReF(z): oo when Rez + *m in ,9 with llmzl < a <t12. In this
formulation, the mapping has an angular derivative if

rm(r(z) - z)

exists and is finite, wilh z approaching oo as just indicated. It is easy to see that
this is a property of O rather than .F. When it holds we shall say that O has an
angular derivative (A.D.).

Problem of the angular derivative. Find necessaty and sufficient Eu-
clidean geometric conditions on O for it to have an A.D.

This problem is stated by Ahlfors in his thesis [A 1, p. 47]. Loosely speaking,
O has an A.D. if it is nearly equal to 5 at oo, and the question becomes "how
nearlytt.

In [A 1] A]rlfors applied his first and second main inequalities to obtain some
necessary and some sufficient conditions for A.D. to exist. For example, if Q1 has
the form

or : .9 u {z: L, < llmzl < 1, ai <Rnz < bi}

ai o1

he proved D/bi - o) < oo is sufficient for O1 to have an A.D. For domains of
the form

Q2 - S \ * iy : + - ei

he proved that le] ( m is necessaxy

and lei ( oo is sufficient.
Study of the A.D. has been carried on by many authors. The article IRW 2]

will provide a good starting point for the interested reader.

Q1

ör,
j:l
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Jenkins and Oikawa IJO 4] and,
independently, Rodin and Warschawski

[RW 1], showed that existence of A.D.
can be characterized in terms of ex-
tremal distance.

Since C, contains the positive real
axis there is a crosscut 0, of Q lying on
Re z - r which intersects the real axis.
Note that when O:,S we have ds(0"r,0,r): n2- ut.

Theorem. ([JO 4], [RW 1].) The domain O åas an A.D. if and only if, when
&tt 02 -) OO, A1 1 12,

dn(0,,, 0,r) : (*, - rt) + o(1).

According to [J 3, p. 100] this "must be regarded as its [the A.D. problem's]
definitive solution". On the other hand, Rodin and Warschawski [RW 2, p. 1] main-
tain that the problem of finding a Euclidean characterization remains unsolved,
but that the extremal length approach "places the angular derivative problem
in the broader context of estimating conformal invariants in terms of Euclidean
quantities".

In [RW 2] the authors apply this theorem to give a very explicit geometric
solutionwheneither Oc.9 or ^9C O. ffO c S then [RW2, TheoremL] O
has A.D. if and only if the part of ,9 \ O in Rez > 0 can be covered by disks A"
with centers on ä,9 and radii r,, such that f,. r2n < *. If S C O, say that O
contains a square Q which borders S if Q is a square with Q C O, and either
the lower side of Q is contained in Imz :7/2 or the upper side in lrnz: -I12.
The necessary and sufficient condition for O to have an 4.D., when ,S C O, is
that whenever O contains disjoint squaxes which border ,5, the sum of their areas
is finite.

Referring back to the domains O1 and f,l2 considered by Ahlfors, it follows
that O1 has an A.D. if and only if D(åj - ej)2 ( oo. For O2, an A.D. exists if
and only if !e;2 < m.

Burdzy [Bur], using Brownian excursion theorg has recently given a substan-
tial generalization of Theorem 2 of [RW 2]. He assumes that S \ O is small, and
gives a necessary and sufficient smallness condition on O \ ,S for A.D. to exist.
Burdzy phrases his smallness condition in terms of Lipschitz minorants of öO. In
IRW 3] the authors show that Burdzy's theorem can be restated in terms of the
covering conditions of [RW 2]. They give also a proof of the sufficiency part based
on extremal length.

Carroll [Crl] has given a "classical" proof of the necessity by constructing,
when,S\O is smallbut O\^9 islarge, afunction u subharmonicin O, ( 0 on
0O, which satisfies

li+ e"'u(x): *oo.
t++oo
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Flom this, he is able to deduce that the conformal rnapping F: ^9 
--+ O must

satisfy lim,*4oo [ne f1o; - c] : {m.
The domains O for which it is not yet possible to decide quickly the A.D.

question on the basis of Euclidean data neither contain nor are contained in 
^9.

The "comb domains " furnish an intersting class. Fbr a ) 0, e ) 0, let L(a,e)
denote the union of the vertical rays above a + i(Lr- e) and below a - i(l - e).
Define

f)-c L(o i, € j).\U
j=t

1

2 I

+l ai

ll
It DE, "? 

a *, it follows from Burdzy'z theorem that fpr( aj+r - o)" <
oo is necessary and sufficient for O to have a^n A.D. But if, for example, ei - j-rl2 ,

it is apparently not known which range of ai is the right one.

6. ffarmonic measure

We discussed Tsuji's estimate for harmonic measure in Section 2. Here we
shall concentrate on the case of simply connected domains.

Consider first the unit disk A, and let E be a closed subset of 04. Let
l(E) : log(cap.E)-1 denote the Robin constant of .8, where cap is the logarithmic
capacity, and C" denote the circle l"l: ,. In [AB 2], A]rlfors and Beurling prove
a relation between capacity and extremal distance:

(6.1)

(6.2)

The limit on the right is the "reduced extremal distance" in A from .E to
the origin. Theorem 4.9 of. [A 4] gives a more general result of this type.

Pfluger [Pf] gave a variant of (6.1). Suppose that K is a compact subset of
A, which we take to be a small disk centered at the origin. Then

.Y@) - 7r lTå ldo(c", E) - d6(c", aa)] .

lt@) - rda,(K, E)l
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where C depends only on K.
The proofs of both (6.1) and (6.2) are based on the Dirichlet integral charac-

terization of extremal distance discussed in Section 4.

Since cap.E > sin(|zrc.,(0, E, A)) ([A 4, p. 35]), Pfluger's theorem implieå an
inequality between two conformal invariants

where O is any simply connected domain, E c 0Q, zo € dl, and for K we take a
closed disk centered. a,l zs whose radius is, say, one half the distance from 2s to
0O. The constant C is then absolute.

There a,re many situations in which one can estimate da(KrE) from below
in terms of Euclidean data, and then (6.3) gives an upper bound for harmonic
measure. Consider, for instance, the striplike domain O discussed in connection
with Ahlfors's distortion theorem in Sections L and 4. Let zs: rt*iAr, fi2 ) t1,
O': Oo(Rez < a2) and E:0'r, the crosscut consideredthere. The distortion
theorem provides the required estimate of d,s,(K,0"r), and from (6.3) we deduce

(6.3)

(6.4)
dx\

I

o(*) )a(zot|xz,O') < Cexp (-" 1."'

This inequality is especially interesting when 0", is all of (Re z : xz) fl O. In
that case it is better than the one given by logarithmic tra,nsformation of Tsuji's
inequality (2.2).

Hersch [He] obtains a related result by means of explicit identities connecting
extremal length with harmonic measure and hyperbolic distances.

Pfluger's inequality (6.3) is one of the tools in the 1985 work of Makarov

[Mak 1], [Mak 2] about relations between harmonic and Hausdorff measures. Sup-
pose that O is a bounded Jordan domain md ,E C AO. Let Äo denote o-
dimensional Hausdorff measure, and ar denote harmonic measure at some fixed
point of O. Fbom the Beurling-Nevanlinna projection theorem [A 4, p. 43] it is
easy to prove that I\tz(E):0 implies w(E):0. That is, cr (( 4172.

Carleson, in 1973, proved via a very complicated argument that t r 11 !\pt1-,
for some absolute e ) 0, and conjectured that u 11 Äo should be true for every
a < 1. Examples going back to Lavrentiev in 1936 show that w K1Ä1 can fail.

Makarov proved Carleson's conjecture in an even stronger form.
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Makarovts theorem. There is an absolute constant C sueh that It{E) :0
implies a(E) : 0, where

This theorem is astonishingly precise. Makarov also shows that for small
enough c there are quasidisks for which ar and the corresponding ÅL afe mutually
singular.

Let F be a conformal mapping of the unit disk A onto O. The content of
Makarov's theorem is that F cannot be too compressive on 04. Suppose that
r/(t) is nondecreasing and continuous, d(0) : 0. Let X(t) denote the inverse
of the function t + tr!(t). One of Makarov's intermediate results is that lower
bounds on lF'l in A propagate to lower bounds on 0Ä. Precisely, if A" is a small
disk of radius e, then

lr'Q)l>- rl,(1- lrl) in A implies c.,(A" n AO) S Cy(e)log!.

A key stop in the proof is to show that if u;(4" fl öO) is relatively large, then
so is ar(B), for some connected set B C AOnA2c. To do this, Ma^karov uses (6.3),
along with "Grötzsch's principle" [A 4, Theorem 4-28] to estimate the extremal
distances.

Along with his theorem that the mapping F cannot be too compressive,
Makarov proved also that .F' cannot be too expansive. A particular result is that
r.r is singular with respect to Ä14c for every e > 0. This confirmed a conjecture
of Oksendal in the simply connected case. Jones and Wolff [JW] have proved that
in fact Är+" I u.r for eveiy plane domain. For Q c R" the analogue of Oksendal's
conjecture was that c.r is always supported on a set of dimension ( n - 1 . Bourgain

[Bo] proved it is supported on a set of dimension 1n- e for some e ) 0, but
Woltr [Wol] has now shown that the full n - 1 conjecture is false.

Concerning multiply connected plane domains, Carleson [Csn 2] has given
examples in which the topological boundary of O has dimension larger than one

but the harmonic measure is supported on a set of dimension smaller than one.

This contrasts sharply with the simply connected case, where Makarov's theorems
show that the harmonic measure always lives on a set of dimension exactly one.

Returning now to simply connected O, a problem closely related to Makarov's
compression theorem remains unsolved. According to that theorem, lF'l satisfies
certain lower bounds, so that the derivatives of conformal mappings Ö from O

onto the disk A should satisfy upper bounds.

Problem. For which p is it always true that

h(t) -texp (" f"*i (.*roslosi))''')

l"l lo'( ,)lo d,x d,v ( oo?
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This is clearly the case for pr : 2. We shall restrict our discussion to p > 2.
Slit disks show it can fail for pt - 4. J. Brennan [Br] was led to this question in his
study of approximation theory. Adapting Carleson's argument that c..r 11 l\ pq",
Brennan provedthe existenceof e ) 0 forwhichintegrability holds for p( 3*e.
He conjectured that integrability should hold for every p < 4. The best known
result, p ( 3.39, is due to Pommerenke [Po 1], [Po 2], who worked with the inverse
mapping F: A + O and proved non-sharp upper bounds for means

I(r) - lr'U"nt)l-odo, p>0.

The Carleson-Brennan method relies on extremal length. Pommerenke's slick
and simple proofs involve the Schwarzian derivative ,Sp and differential inequalities
for .I(r), in the spirit of Carleman.

There has also been recent work about integrability of lO'l when one inte-
grates over one-dimensional sets. The basic theorem is due to Hayman and Wu

[HWu], who confirmed a conjecture of Piranian and Weitsman by proving that for
any conformal mapping O: O -r A and any line or circle .0,

1fnI
2n J-*

(6.5)
ln^rlo'(r)llarl s c <oo.

Simpler proofs have been given by Garnett, Gehring, and Jones [GGJ] and
Ferni{ndez, Heinonen, and Martio [FHM]. In [HWu] it is shown that C : 1035

is permissible. In [FHM] this bound is reduced to C : 4r2 and, a conjecture is
advanced for the best constant. The papers [GGJ], [FHM], [FZ], and [FH] contain
extensions in which lines are replaced by more general curyes. The definitive result
of this type has now been proved by Bishop and Jones (preprint, Yale University),
whoprovethat (6.5) holdsfor acurve .t, with C : C(L), if .D is "Ahlfors regular".
These curves are defined in [Dr, Section 8E]. The necessity of A]rlfors regularity
for (6.5) had been shown in [GGJ].

Returning to the case of lines, one may ask for which p ) 1 is it always true
that

lr^nlo'( 
,)l'ldrl( oo.
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In [FHM] it is proved that O' € Lp(L n CI) for all p
1 * e for some absolute e
conjecture is that integrability should hold for every p €
llr2). But this turns out to be false. There is a "tree" T ,

of the type pictured, so that for O - C \ 
" 

we have
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forsome p<2lBae2l.
The theory of harmonic measure advances on many fronts. Marshall and

Sundberg [MS] used their computer to guess the extremal case for a problem of
Hall's lemma type, and then used extremal length to confirm their guess. Dubinin

[Du], see also [Bae], invented a new tool, "desymmetrization", to solve a "re-
verse extremal problem" about slit disks, thereby proving a conjecture of Gonöar.
Lewis a^nd Wu [LW] proved some difficult estimates for harmonic measure in mul-
tiply connected domains which enabled them to prove a conjecture of Littlewood
about the spherical derivative of polynomials and to put a dent in a conjecture of
Arakelyan about deficiencies of entire functions.

Various aspects of recent work on harmonic measure axe surveyed in [Csn 1]

and [G 3]. The older article [Hal] contains much information still of interest.

7. Analytic capacity

In 1888 Painlev6 took up the following problem: Give Euclidean conditions
on a compact set .K so that whenever K is contained in a domain O and / is a
bounded analytic function on O \ K, then / has an analytic extension to O. No
condition which is both necessary and sufficient has yet been found. Such sets will
be called Painlev6 null. It is not hard to see that K is Painlev6 null if and only
if the space H*(K") of bounded holomorphic functions in the complement of K
consists only of constants.

In 1947 Ahlfors [A 3] introduced a quantitative version of Painlevd's problem.
Define

t(K):r"p {;y,1-)l , ll/llr-r*") < 1} ,

where /'(*) : lim,-oo ,(f (") - /(*)). The number 7(K) is now known as the
analytic capacity of .I(. It is clear that 7(/() : 0 if and only is K is Painlevd-null.

If the one-dimensional Hausdorff measure 
^t 

(If ) is zero, then also 7(K) : g.

This result goes back to Painlevd. It is also classical that Ä1.."(1{) > 0 implies
'y(I{) > 0. On the other hand, A1(.I() > 0 does not imply 1.(K) > 0. Proofs of
these results may be found in [G 1].

In 1950, Ahlfors and Beurling IAB 1] studied Painlevd null sets, along with
those for related firnction classes. This paper contains the first account of extremal

t lo'(" )lo d*- oo
J RNO
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length to appear in a widely circulated journal. Among their results is a theorem
that K is null for the class of a,nalytic functions with finite Dirichlet integral if and
only if removal of 1( does not increase the extremal distance between pairs of sets.
In case I( is a subset of the unit circle, they prove also that K is Dirichlet-null
if and only if the complement of K in the circle has inner log-capacity equal to
one. Since capacity is describable in terms of transfinite diameter this qualifies as
a Euclidean characterization. But for arbitrary compact sets it appeaxs that, as
in the case of Painlevd null sets, such a characterization remains unknown.

Concerning Painlev6's problem, Denjoy in 1909 asserted that if 1( is a subset
of a rectifiable curve l, then ilK) :0 if and only if Ä1(K) : 6. Denjoy's
proof was valid only in the case when I is a line. Ahlfors and Beurling [AB]
gave a proof of the case when I is analytic. The truth of Denjoy's assertion
for arbitrary rectifiable I was finally established in L977, as a consequence of
Calderdn's theorem about boundedness ofthe Cauchy integral on curves together
with various other machinery such as Ga,rabedian's duality theory. A proof is
outlined in [Mar 1], where the reader will find much other interesting information.
The proof that Ä1(K) > 0 implies "(K) > 0 is purely existential. Except in
special cases it still is not known how actually to construct bounded analytic
functions in the complement of. K.

In 1967 Vitushkin, see [Mar 1], offered a conjecture for the Euclidean char-
acterization of general Painlevd null sets. Let t,e denote the ray Ngz - d and
lPa(f<)l the Lebesgue measure of the orthogonal projection of .I( on Le. Defne

Bu (I() - lpt(/() I ae.

' This expression was introduced by Crofton in 1868 in connection with his
solution of the Buffon needle problem. Let L(r,0) denote the line passing through
reie and orthogonal to l,6.If K is contained in the unit disk, then BulK) r.p-
resents the probability measured via dr d0f2r, that a randomly chosen "needle"
L(r,0) will intersect .K.

Vitushkin's conjecture was that K is Painlev6 null if and only if Bu (/() : g.
But this turns out to be false. Mattila [Mat] gives an indirect disproof by showing
that Bu (If) : 0 is not a conformally inva,riant condition. An explicit disproof
has been given by Jones and Murai, who construct a set K with .f6) > 0 but
Bu(.ff):0. See also [Mu 1]. Murai [M" 2] has improved on this by constructing
for each a e (0,1/2) a set Ko with 7(K.) > 0 but "Crofton o-measure" zero.
Murai's lecture notes [Mu 2j provide a rich account of new work on relations
between analytic capacity and theorems of Calder6n type about boundedness of
the Cauchy integral operator on curves. These notes contain also a "simple" proof
of the original Calderön theorem due to Jones and Semmes.

As far as I know, no new conjecture concerning Euclidean characterization of
Painlevd null sets has been advanced to take the place of Vitushkin's.

1 fzn
2" J,
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If a domain O does carry some bounded non-constant analytic functions, one

can then ask if it carries a lot of them. The "corona problem" provides a specific
formulation. Suppose that fi,...,fo e ä-(O) and inf,6sD|fi(.l)l > 0. Do
there exist gi € H@(Q) suchthat ! fiSi= L? If such 9; always exist, wesay O
has the corona property.

Carleson proved in 1.962 that simply connected domains have the corona prop
erty. It was proved shortly therea,fter that the same is true for finitely connected
domains. But Cole, in 1970, showed there are Riemann surfaces for which the
corona property does not hold. It is an open question whether every plane domain
has the corona property. Garnett's book [G 2] a,nd survey [G 4] provide good
introductions to this subject.

In case K is contained in a line Garnett and Jones [GJ] proved that O : K"
does have the corona property. This is an analogue of Denjoy's theorem from
1909 that for linear sets 7(I() ) 0 +r 

^t(K) 
) 0. Moore [Mo] has extended the

Garnett-Jones theorem to the case when K is contained in u gt*e curve, but
the Cl case is still unsolved. The proof by Garnett and Jones uses a reflection
argument which appears to have no obvious analogue for general curves. Probably
the more basic difficulty is our lack of knowledge about how actually to construct
ff- functions in the complement of. K.
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