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1. Introduction

Consider a discontinuous group G of orientation preserving isometries of hy-
perbolic 3-space H. The quotient H/G is an orbifold. Let us fix a positive
number .I{ and denote by S the set of such groups G for which the volume of
HIG is at most -K. If K is large enough (for instance, if K > 10), then S
contains infinitely many non-isomorphic torsion-free groups. This phenomenon
does not occur in any dimension other than 3 (see [5]). On the other ha"nd, it
follows from Borel [1] that the arithmetic groups in 5 represent only finitely many
isomorphism classes. Our purpose is to prove the following

Theorem. There exjsfs in E a finite set of groups gr,...,Q" which are
maximal in the sense that each G € 5 l's the homomorphic image of at least one

9t, i e {1, . . . , s}. ?åe kernels of these homomorphisms a,re, when non-triviaJ, the
norrnal closures of parabolic elements.

This was proved in the spring of 1977. At that time our interest in this topic
was further stimulated through conversations with B. Mazur and W. Thurston.

The proof goes as follows. Given a sequence {G"} of non-isomorphic groups
from 5, we construct from a subsequence a "limit" G with the properties that
r) Ge 5

and, with the possible exceptions of a finite number of indices n € N,
2) there is a homomorphism of G onto G,r, and
3) the number of cusps in G is strictly larger than the number of cusps in G,r.

There is an upper bound for the number of cusps that a group G e 5 can
have. Thus, the groups in 5 with the maximal number of cusps represent only
a finite number of isomorphism classes. Similarly, those groups in 5 which have
exactly j cusps and which are not homomorphic images of groups in 5 with strictly
more tha,n j cusps must fall into finitely many isomorphism classes! The finite
list of groups 9r,...,Q" can therefore be selected from 5 by first choosing one
group from each isomorphism class occurring among the groups with the maximal
number of cusps and then, proceeding by decent on the number of cusps, choosing
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one group from each isomorphism class occurring among the groups which have
one less cusp than any of those already chosen and which are not homomorphic
images of any of those. A more detailed description of these matters will emerge
below.

Let us denote by 0 the set of hyperbolic orbifolds arising as quotients HIG of
groups G e E . Mostow's rigidity theorem [17], as extended to groups with cusps in
[L5], tells us that there is a one-to-one correspondence between isomorphism classes

of groups G e E and isometry classes of orbifolds M e 0. The geometrical version
of the theorem is that @ contains a finite number of orbifolds Mt,...,M" which
are maximal in the sense that every M € O arises as the result of Dehn surgery
about the cusps of at least one the Mi's. In the case of hyperbolic manifolds
(torsion free groups), this was elegantly treated in Thurston's lecture notes [19].
Also presented there was Gromov's result that Dehn surgery on manifolds reduces
the volume. It follows, as Thurston pointed out, that the number of hyperbolic
manifolds with a given volume is finite and that the set of all hyperbolic manifolds
of finite volume can be well-ordered essentially by the volume. Another study of
the volume of hyperbolic manifolds was done by Neumann and ZagSer [18]. More
recently an elementarlr development based on a theorem of Sctrlä^fli was discovered
by Craig Hodgson [7]. His approach works for all orbifolds. That is, Dehn surgery
about the cusps of orbifolds reduces volume and hence, at most a finite number
of orbifolds can have the same volume. Thus, the set of aJJ hyperbolic orbifolds of
frnite volume can be well-ordered by the volume.

In the next section we survey the theory of fundamental polyhedra. It is
followed by a brief discussion of cusps. In the final section the theorem is proved
with further details available in [12] ([12] focuses on infinite volume groups and
convergence of regions of discontinuity).

2. Polyhedra

Tlo prove the theorem we will make use of several results from the theory of
Kleinian groups. First of all we will be considering fundamental polyhedra usually
referred to as Dirichlet regions: Given a point o € H and an orientation preserving
isometry g not fixing o,the set of points in Ff closer to o than to g-1(o) is a
hyperbolic half space, E(9), bounded by a plane, I(g). If G is a discontinuous
group of isometries of H and o € H is chosen such that no element of G other
than the identity fixes a, then the Dirichlet polyhedron for G , based at a, is the
set P(G): f-lgec\{ialD(g). It is a convex, locally finite polyhedron with faces

lying on some of the planes .I(9). Those S e G for which .I(9) meets the boundary
of P(g) are called facet transformations. ff g e G is a facet transformation then so
ir 9-t and g maps .I(g)nre into f(g-l)n@; here @) denotes the closure
in H. Identifying the equivalent points on the boundary of P(G), one obtains a
model of the quotient orbifold H/G. The number of facet transformations in G
will be denoted bV fG). It depends on a (which we have suppressed) and may be
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infinite. However, whether it is finite or infinite does not depend on the particular
choice of base point. More detailed expositions can be found in Beardon [2],
Ford [3], Lehner [14], Maskit [16] or [11].

Each maximal cycle of equivalent edges of P(G) gives rise to a relation arnong
the facet transformations realizing the equivalences. Namely, when applied in
succession, their product fixes a line and thus has finite order.

According to Poincar6's theorem, the facet transformations generate G and
the edge relations form a basis for the relations among these generators. In par-
ticular, it f (G) is finite, then this gives a finite presentation for G. ConverselS
a polyhedron centered at a with assigned facet transformations which satisfy the
appropriate edge relations and have proper behavior at infinity is the Dirichlet
polyhedron for the (necessarily discrete) group generated by the facet transforma-
tions. (For the precise statement, see Maskit [16].)

A proof of Poincard's theorem appears in [16]. As a corollary we see that
any set of groups {G} which admit polyhedra {P(C)} with a uniformly bounded
number of facet transformations can represent only finitely ma^ny different iso-
morphism classes or, equivalentlg their quotient orbifolds must, up to isometry,
consist of only finitely many kinds.

Another important result is the following (see Wielenberg [21] for a direct
proof for hyperbolic space):

Theorem (Selberg, Garland-Raghunathan). The volume of H/G is finite if
and only if the action of G on the sphere at infinity is nowhere discontinuous (G
is of the first kind) and P(G) is finite (G is geometrically finite).

Thus, in the case of finite volume P(G) has at most a finite number of non-
compact ends. Each of these terminates at a parabolic fixed point, stabilized in
G by a parabolic subgroup of rank 2. The full stabilizer may contain elliptic
transformations as well.

The following result was proved in [13] and [21] for the torsion-free case:

fnjectivity theorem. There er'sts a positive constant c such that each
hyperbolic I-orbifold M :H/G contains an imbedded baJJ of radius c.

An explicit estimate of the universal constant c can be found in Waterman
[20]. The injectivity theorem allows us to construct fundamental polyhedra, by
suitably choosing the base point a, which all contain a certain ball. For these
polyhedra there will then be a uniform upper bound to the number of boundary
facets within a given distance of the base point.

3. Cusps

Parabolic elements in G always grve rise to non-compact ends in M : H/G
and thus in the fundamental polyhedron P(C). The geometry of these ends is
most easily described by using the upper half space model for H and ta.king oo
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as the fixed point. The parabolic element is then a euclidean translation. If
a discontinuous group G contains the translation z ---+ z * 1 then each of its
elements maps the horosphere of points above height L either onto itself or onto a
disjoint horosphere (see Beardon [2] or Maskit [16]). Thus, a neighborhood of oo
looks modulo G as it does modulo the stabilizer of oo in G. If the translation
by 1 is the shortest among the translations in this stabilizer, then we associate
with the fixed point m the horospherical neighborhood consisting of points above
height L. SimilarlS we associate cannonical neighborhoods to the other parabolic
fixed points. It is then easy to see that the cannonical neighborhoods of different
points are disjoint. When H/G has finite volume and oo is a pa,rabolic fixed point
for G, the stabilizer of oo is a so called Bieberbach group, consisting of euclidean
translations and rotations. The subgroup of translations has rank 2 and index
at most 6. If the shortest translation has modulus 1 , then the euclidean area
of a fundamental parallelogram for the group of translations is at least 

",612. 
tt

follows that the hyperbolic volume of the ca,nnonical neighborhood modulo the
full stabilizer is at least 1E/2+. Thus we have the

Proposition. If vol(H lG) < K , that is, if G € .9, fåen the number of cusps
in G is at most 8^f3K.

4. Compactness

Returning to the set 5 of groups G whose quotients have volume at most K,
let us consider a sequence {G,"},"eN from 5 and construct from a subsequence
a "limit" G g 5 as promised in the introduction. Since we a,re interested in the
groups only up to isomorphism, it may be assumed that there exists a point o € H
such that the Dirichlet polyhedra P(G") with centre o all contain the universal
ball B" of radius c with centre o (we may replace the original Go's by conjugates,
if necessary).

Let B, denote the ball of radius r with centre o. Then, for each fixed
r € R+, there is an upper bound, independent of n € N, for the number of
facets of P(G,) that meet Il". This is so because there is a uniform upper bound
for the number of distinct images of o contained in any compact subset of H.
Thus, we may from {G"}r,eN select a subsequence, which after relabeling again
is denoted by {G"},ery, with the property that the sets P(G") O B" converge
with structure. By convergence with structure we understa^nd that not only do the
sets P(G") fl B, converge as sets in H, but also, for each n € N, the uniformly
finitely many associated facet transformations converge. By repeatedly taking
subsequences, say as r runs through the natural numbers, we obtain at last a
subsequence (the diagonal one, say) whose polyhedra converge with structure in
all of H. Therefore, the limiting polyhedron P comes equipped with facet pairing
transformations and is thus a fundamental polyhedron for the group G generated
by these facet transformations (Poincar6's theorem, [16]). In fact, P must be the
Dirichlet polyhedron for G , that is P : P(G).
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Clearly the volume of P cannot exceed .K. This, by the theorem of Selberg
and Garland-Raghunathan, implies that the number of facets of P is finite and
so, by Poincar6's theorem, G is finitely generated, namely by its finitely many
facet transformations. Since these facet transformations of P(G) are the limits of
facet transformations of the approximating groups Go (ot polyhedra P(G")), the
convergence of the "diagonal sequence" {G"}rerv to G is not only geometrical
(polyhedral with structure) but algebraic as well. It follows from [9] or [10] that the
natural map from the facet transformations for G to the facet transformations for
G, extends to a homomorphism gn of G onto Gr. as soon as n € N is sufficiently
large.

It remains to show that G has strictly more cusps than all but finitely many
of its approximants. Since the sequence {G'}"eN (the original one and hence
any of the subsequences) consist of non-isomorphic groups, the numbers /(G")
(of facet transformations) must, as a consequence of Poincard's theorem, tend to
infinity. Since the number of facets meeting any ball B," is uniformly bounded,
these more and more facets must appear farther and farther away from the base
point o, that is, closer and closer to the sphere at infinity. Hence these more
and more facets must accumulate towards a necessarily finite set of points on (the
boundary of) P. The limit points are parabolic fixed points on G. We will show
that they cannot also be limits of parabolic fixed points on the polyhedra P".
They are the "new cusps"!

Let p1 t ...t pk be the parabolic fixed points on P and Sr, ..., ,Sr their
parabolic stabilizers. These groups, S;, are free abelian of rank 2 and among the
exceptions to Jorgensen's inequality [9]. For suffciently large n € N, their images
g"(S j) must also be abelian exceptions to that inequality. Therefore each cpr(,S;)
is either

1) cyclic,
2) generated by two commuting elements, one elliptic a"nd the other loxodromic,

or
3) free abelian of rank 2.

In the cases 1) and 2) there is a neighborhood of pj on the sphere at infinity
'rshich does not contain any parabolic fixed points from P,". This is so because
the fundamental polyhedron for cp,(,S;) approximates that for ,Si and meets the
sphere at infinity in a connected set (there a,re "no holes" in which old cusps could
disappear). One thus has a new cusp.

In case 3), pi has a neighborhood which contains (for n large enough) exactly
one parabolic point from each P,", namely the fixed point of gn(Sj), and these
points converge to pj. This is because the polyhedra for p"(S) tend to the
polyhedron for ^9;. In particular, a parabolic point pi on P which is the limit of
more and more faces on P,' (as n increases) must be a new cusp.

To show that G has strictly more cusps than any of its sufficiently close
approximants, it is no restriction to assume that the approximants have the same
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number of cusps, say C. For each n € N, choose a parabolic fixed point Pl,r, on
Pn. A subsequence of {p1,,n} must converge to one of the points Pt t . .., pt. Call
this point 91 . Next choose on P,, a parabolic point p2,,-, whic.h is not equivalent
to pt,n in G,r. A subsequence of. {p2,n} must converge to one of the points p1,
...t p*. Call this point qz. By [10] qt *d g, must be inequivalent under G.
Also, both gr and {2 must be old cusps, that is, their stabilizers have parabolic
images (Case 3). Continuing in this way, we see that each of the C inequivalent
cusps in (each) P,, are represented as inequivalent old cusps in G by points 91,
gz, ..., 96. Since G also has at least one neut cusp' it has more than C cusps.

5. Kernels

Recall that the homomorphisms grr: G + Gn came about as extensions of
the natural maps from the facet transformations for G to the facet transformation
for the G,.r's.

There exists a large ball B" which meets all the facets of P(G). Inside this
ball each P(G") looks combinatorially like P(G) (and geometrically almost like
P(G)).Therefore, in 8,, the edge-cycles are identical. The only differences in the
presentation for G and the presentations for the G,n's must therefore arise from
edge-cycles closer and closer to the sphere at infinity. This means that the "new"
relations in each Grr, relative to the relations in G, stem from the creation of new
cusps in G. Thus, the kernel of each go is contained in the normal closure of the
new parabolic elements in G. The details of this argument are in [12].
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