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HYPERBOLICITY IN COMPLEX ANALYSIS

H.L. Royden+

1. The Schwarz-Pick lemma

Everyone who takes a course in Complex Analysis learns the Schwarz lemma.
The most familiar form of the lemma states that a holomorphic firnction / with
/(0):0 and l/(r)l S l intheunitdisk l"l <L satisfiestheinequalities l/'(0)l < 1

and l/(z)l < l"l. It is usually proved by applying the maximum principle to the
function f (r)/".

Carathdodory [1912] first published this form of the lemma and its proof.
Carath6odory calls this result "The Schwarz lemma." He further comments that
most authors have used the Harnack theorem for purposes similar to his, but
notes that the "Schwarz lemma" is a purely function-theoretic equivalent, with the
advantage of being quite elementary in nature. Carath6odory attributes the first
use of this lemma in conformal mapping to Hermann Amandus Schwarz [1869],
who, in his treatment of the Riemann mapping theorem, uses the fact that a
holomorphic function / in the elosed unit disk *ith l/(z)l ( 6 there must have

l/'(0)l ( 6. Schwarz establishes this by looking at the Cauchy integral formula
for /'(0). Carathdodory seems to have been the first to recognize the importance
of this lemma for function theory and that one need not presuppose any regularity
of the function / on the boundary of the unit disk.

Poincard [1881] introduced the non-Euclidean metric for the unit disk and
noted that it is invariant under Möbius transformations of the disk onto itself.
In [189a] he established the version of the lemma which asserts l/(r)l < lzl and
used it to prove that every conformal map of the unit disk onto itself is given by
a Möbius tra,nsformation.

Lindelöf [1907] proved a general theorem which states that, if / is a holomor-
phic map of a domain D into a domain D', then the Green's functions G and G'
of D and D' satisfy G'(f (r),f ("0)) 1G(z,zs). This is equivalent to the Schwarz
lemma when both D and D' are the unit disk.

Georg Pick [1916] reformulated the Schwarz lemma to state that every holo-
morphic map of the unit disk into itself is distance decreasing in the Poincard
non-Euclidean metric. He expressed this both in the integrated form, which states
that the Poincard distance between two points is greater than or equal to the
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Poincar6 distance between their images, and in the differential form which states
that the element of arc length in the Poincar6 metric does not increase under a
holomorphic map of the unit disk into itself. This latter formulation is equiva-
lent to the statement that the non-Euclidean length of the image of an arc under
a holomorphic map of the disk into itself is at most equal to the non-Euclidean
length of the arc. The difierential form of the Poincar6 metric for the unit disk is

, ld"las: T4F,

and the differential form of the Schwarz-Pick lemrna takes the following elegant
form

ldfl ld'liTlr > I:i;iu'
or, equivalently,

It'Q)l

The integrated form of the inequality assumes the form

lf(")- f(dl
lt-f(rr)Ml

,, l,t - trl\ 
F - zrh|

This brief paper of Pick's contains another proof of the Schwarz lemma, based
on the theorem of Caratheodory which asserts that a firnction / holomorphic in
the unit disk with a non-negative real part there must have l/'(0)l < 1/2. Pick
also uses his formulation of the Schwarz lemma in connection with the elliptic
modular function to obtain the best bound in lzl < p ( 1 for a function / which
is holomorphic in the unit disk and is never 0 or 1 there.

The Schwarz lemma became a mainstay of the theory of functions of a com-
plex variable in the following yea,rs. It was widely used and greatly popularized by
Carathdodory, who showed its utility in a number of problems of conformal map-
ping. As a result of the general uniformization theorem developed by Poincar6 a^nd

Koebe, one extends the Poincar6 non-Euclidean metric to those Riemann surfaces
whose universal covering surface is the unit disk. The Pick formulation generalizes
so that any holomorphic mapping of the disk into such a surface must be distance
decreasing from the Poincard metric of the disk to this metric
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2. The Carathdodory metric

Carath6odory [1926] introduced, for each bounded domain D in C2, a met-
ric with the property that all holomorphic maps of D into itself are distance de-

creasing with respect to this metric. This generalizes the Pick formulation of the
Schwarz lemma to several complex variables. The Carath6odory metric po(prq)
of the domain D is defined by

P o(P, il : suP P a(P(P), P(q)),

where the supremum is taken over all holomorphic maps I : D -'+ A of D into the
unit disk A furnished with the Poincar6 metric pa,. It follows from the Schwarz-
Pick lemma that the Carathdodory metric for the unit disk A is just the Poincard
metric pa. If p, Q, md r are three points in D, and g atry holomorphic mapping
of D into the unit disk we have

pr(p(p),e(c)) < pt(p(p),e(')) + er(e?),e(q)) s Po(p,r)t po(r,s).

Taking the supremum over all such g glves

Po(P, q) < P o(P, r) * P P(r, q),

and we see that the triangle inequality holds for po. Since D is bounded, suitable
non-zero multiples of the coordinate functions map D into the unit disk, and we

see that po(p,S) ) 0 for p * q. Thus pp is a metric.
If /; t;b' i" uholomorphic map of D into a domain D' and 9 : D' -+ A,

a holomorphic map of D' into the unit disk A, then g o / is a holomorphic map
of D into A, and so

S po(P,8).

Taking the supremum over all such maps gives

pD' (f (p),/(q)) < po(p, q),

and we see that / is distance decreasing from the Carathdodory metric for D to
the Carath6odory metric for Dt .

This metric became a powerful tool in the hands of Carathdodory and Henri
Cartan. It was quite useful for expressing and deriving results about normal
families for holomorphic mappings in several va.riables. Cartan used these ideas
in his characterization of the holomorphic automorphisms of a bounded domain
which have a fixed point. Carathdodory introduced the indicatrix at a point for
such a metric (essentially the unit ball for the infinitesimal form of the metric)

et(v[rol] ,elf@,r )



390 H.L. Royden

and showed that an automorphism of D which takes p into g must efrect a linear
mapping of the indicatrix at p onto that at g. He also showed that the indicatrix
at the center of a convex circled domain is the domain itself.

The definition of the Carathdodory metric can be extended to unbounded
domains, complex manifolds, and even analytic varieties. In these cases, however,
it may happen that we only get a pseudometric, that is, we may have p(p,C):0
without p: q. This leads us to the important concept of a hyperbolic manifold or
variety: A manifold D is said to be (Carathdodory) hyperbolic if its Carath6odory
metric is a metric rather than a pseudometric.

There is an infinitesimal (or diferential-geometric) version of the Carathdodo-
ry metric for a manifold M: We define a nonn ll€ll : G(€,p) on the tangent
vectors € at p by setting

G(t,d: suP{lp*€l, P I M -+ a, 9@) : o}'

This infinitesimal metric was first investigated in depth by Reiffen [1963], who
showed that it gives the same length for arcs as the Carath6odory metric, and
is thus the inner metric corresponding to the Carathdodory metric. This metric,
which is properly called the Carath6odory-Reiffen metric, is, in its integrated form,
equivalent to the Carath6odory metric. Since it is the inner metric derived from
the Carathdodory metric, it is always at least as large as the Carathdodory metric,
but it is actually larger in many cases. The Carathdodory-Reifen metric also
decreases under holomorphic maps, both in its integrated and in its differential
form. This fact for the difierential form of the metric is a result quite similar in
expression to the usual differential form of the Schwarz-Pick lemma.

The problem of finding the Carathdodory (or Carathdodory-Reiffen) metric
explicitly in a particular case is usually difficult, and there are few domains in
several complex variables where we know it explicitly. The determination of this
metric for a multiply connected plane domain leads to extremal problems for holo-
morphic maps of the domain into the unit disk. These were solved in fairly explicit
terms, however, by Lars Ahlfors 179471, who showed that the extremal function
for a domain of connectivity n is given by a holomorphic map .f which maps the
domain exactly n-to-one onto the unit disk. This map is now called the Ahlfors
map. There are some generalizations to domains of infinite connectivitS regarded
as the complement in the Riemann sphere Ö of a closed. bounded set E. in this
case the infinitesimal form of the Carathdodory metric at oo is usually referred to
as the Ahlfors'capacity or the analytic capacity of the set .8. Garabedian [194g]
and Ahlfors [1950] applied the techniques of dual extremal problems to similar
problems on firiite Riemann surfaces.

In the case of one complex variable we can apply the principle of Lindelöf,
which is forrirulated in terms of Green's functions. For simply connected regions
this is equivalent to the Schwarz lemma, but for multiply connected regions it yields
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stronger inequalities, although not as strong as the exact inequalities obtained from
Ahlfors'theory.

3. The Ahlfors-Schwarz lemma

Pick's formulation of the Schwarz lemma in terms of the Poincar6 metric for
the disk was well known and often exploited during the twenties and thirties. It
was also well known that the Poincard metric (as used by Pick) had constant
negative Gaussian curvature equal to -4 everywhere, but no one supposed there
was a causal connection between these facts until Ahlfors [1938] provided one.

This seminal paper by Ahlfors established the connection between curvature and
hyperbolicity: He showed that if a conformal metric

6s: \ldzl

on the unit disk has Gauss cunrature which is everywhere less than or equal to

-4, then every holomorphic map / of the disk into itself is distance decreasing
from the Poincard metric to the )-metric, i.e.,

r(/(,))lf'Q)a"l=#

If we take ) to be the Poincar6 metric, so that ): 1/(1 -lrl'), then the Ahlfors
form gives the usual Pick formulation. For a eonformal metric ds : \ldzl, lhe
Gauss curvature .K is given by the formula

K- -A log )

^2
Once formulated, the Ahlfors-Schwarz lemma is not difficult to prove, and the
original proof in Ahlfors [1938] (republished in Ahlfors [1973]) is simple and el-
egant. The ingenuity of Ahlfors consists in believing that a lemma of this sort
might be true and that there was a connection between the curvature.of a differ-
ential metric and the distance decreasing property expressed by the Schwarz-Pick
lemma.

The great utility of the Ahlfors version lies in the fact that, for specific do-
mains or Riemann surfaces, it is usually far easier to construct a metric which
has curvature everywhere less than or equal to -4 than to construct one whose

curvature is everywhere equal to -4. Ahlfors himself used this formulation of the
Schwarz lemma to give a new estimate for the Bloch constant. Although the use

of a conformal metric whose curvature is sometimes less than -4 will not give the
sharpest possible bound for the derivative of the mapping function from one re-

gion to another, it will give some bound, and that is good enough to establish that
the family of mappings from one domain into another is a normal family. Thus
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an elementary construction in the triply-punctured sphere of a conformal metric
whose curvature is bounded from above by a negative constant gives a short proof
of Montel's theorem that the farnily of functions which omit three given values is
normal.

In connection with his formulation in [1938], Ahlfors introduced the concept of
a supporting metric: The conformal metric d,s : )ro14"1is said to be a supporting
metric for the metric ds: ),ldzl at the point p if Å6 is defined a,nd smooth in a
neighborhood U of p with )o(p) : ,\(p) and )(S) > )s(q) for all g in U. He then
observes that we need not assume smoothness for .\ so long as the metric )ldzl has
at each point a supporting metric whose curvature is at most -4. The advantage
of this formulation is that, if )1 and ,\2 each have curvature less than K, then the
metric obtained by taking the supremum of the two at each point has a supporting
metric at each point with curvature at most K.

Grauert and Reckziegel [1965] observed that the Ahlfors form of the Schwarz
lemma could be extended to give inequalities for holomorphic maps of the unit disk
into higher dimensional complex manifolds when the manifold has a difierential
metric with negative curvature in a suitable sense. Let us define the Gauss curva-
ture .[{(Å) of a continuous conformal metric ds : f(()ld(l at 0 to be the infimum
of the curvatures at 0 of all the smooth metrics which are supporting metrics of
,\ at 0. By a differential metric on a complex manifold M we mean a continu-
ous function G(€, z) on the tangent bundle of M which assigns a non-negative
"length" to each tangent vector { at the point z, such that G(o€, z) : lalG((, z) .
If cp is a holomorphic map of a domain in C, the pullback of G, deffned by
g*G : G(p'(0,9(())ld(|, is a conformal metric on A. We define the holomor-
phic sectional curvature of the metric G at a point z in M by

I((G): sup{K(p.G) : 9(0) : z, p'(0): e}

where the supremum is taken over all holomorphic maps g of aneighborhood of 0
in C and the curvatureof. g*G is ta.ken at ( - 0. If G is any differential metric
on M whose holomorphic sectional curvature is everywhere less than or equal to
-4 and / : A --+ M is holomorphic, then /*G is a differential metric on A with
curvature everywhere less than or equal to -4 in the supporting sense. Thus the
Ahlfors version of the Schwarz-Pick lemma asserts that

G(f ,(o, /(o) ldfl < ldf I,= .
1 - lfl''

This gives us a generalization of the Ahlfors version of the Schwarz-Pick lemma
for maps of the disk into a complex manifold in higher dimensions.
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4, The Kobayashi and other hyperbolic metrics
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Although Carathdodory states in one ofhis papers that he is not sure how use-

ful his metric will be in the future study of functions of several complex variables,
it found numerous applications by him and by Cartan. Kobayashi [1967a, b], how-
ever, introduced a new metric for complex manifolds which has proved even more
useful. We shall see that the Carath6odory metric is the smallest of the class of
metrics which generalize the Schwarz lemma and that the new metric of Kobayashi
is the largest. These metrics are particularly useful in the hyperbolic case, that is,

when they are actually metrics rather than pseudometrics. The advantage of the
Kobayashi metric lies in that, being larger, it will be an actual metric for some

manifolds on which the Carath6odory metric is only a pseudometric.
Let us define a hyperbolic metric p to be a functor which assigns a metric

pu to each complex manifold (in some class of ma^nifolds) such that for the unit
disk pa is the Poincar6 non-Euclidean metric for the disk and such that each

holomorphic map / from M to N is distance decreasing horr;- p74 to pry :

p N (f (p),/(q)) < p u(p, q).

Let p be a hyperbolic metric in this senrie. If g is a,ny map of the manifold M
into the disk A, we must have

p{p@),p(q)) < pM@,q).

But the supremum of the left hand side of this equation is, by definition, the
Carathdodory metric pcu@,q). Thus

PcM@,s) < PM(P,q)',

and we see that the Carathdodory metric pc is the smallest possible hyperbolic
metric.

On the other hand we get the largest possible hyperbolic metric on M by
considering holomorphic maps of the unit disk into M: Define the unreduced
Kobayashi distance 6u(p,g) between two points p arld q of. M by

6u(pt,pz) : inf pa((r, Cz),

where g ranges over all holomorphic maps of A into M with p(C) : p;. If g is
any such map and p is any hyperbolic metric, then

Pu(Pr,Pz) < Pa((r, (z),

taking the infimum over p shows that

pu(pt,pz) < 6u(Pr,Pz).
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The distance 6m(pr,pz) does not satisfy the triangle inequality and so does
not give us a metric (or pseudometric). But, as Kobayashi observed, we do get a
metric if we take

pfr@,e) : inf fu*@,,0,*r),
i=1

where the infimum is tahen over all finite chains p:ptt pzt ...t pn: g. This is
Kobayashi's definition of the metric for M . We observe that, if / is a,ny holomor-
phic map of M into.lf and I any holomorphic map of A into M wil}a p(e;): p.
for i : L, 2, then /o g is a holomorphic map of A into .ly'. Hence

6ry(/(pr), f(pr)) < pt(h,(;z).

Taking the infimum over all such g, gives

6r (/(p'), f (p")) 1 6 u(pr, pz).

Fbom this we see that
p# (f (p), f (pr)) < pfi(p, q).

Thus the Kobayashi metric is a hyperbolic pseudometric and is clearly the largest
possible one.

We ca,n reformulate the preceding consideration in terms of infinitesimal met-
rics. By a hyperbolic infinitesimal metric we mean an assignment of an infinites-
ima,l metric Gu(€rp) to each complex manifold M (in some class of complex
manifolds) such that for the unit disk A

Ga(6,4:&
L - lrl'

and such that for any two manifolds M and N of our class and any holomorphic
map .f : M +JV we have

G,v (f *€,/(p)) S G u(€, p).

Let g be any holomorphic map of the manifold M to the disk 6 with <p(p) :
0. Then, since the infinitesimal form of the Poincar6 metric in A at z : 0 is
the Euclidean norm, and since g must be distance decreasing ftom G y to the
Poincar6 metric, we must have

lp.€l < G uG,d.

Taking the supremum over all such maps g gives us

Gfr({, p) a G u(€, p),



Hyperbolicity in complex analysis 395

where G?r(€,p) is the Carathdodory-Reiffen infinitesimal metric. This shows that
the Caratheodory-Reiffen metric is the smallest possible hyperbolic infinitesimal
metric.

Let us define an infinitesimal metric Fu on the manifold, M by setting

Fu(€,p): inf{a-| :9: A.o - M, p(0) : p, p'(0) : 6}.

where Ao is the disk of radius o centered at 0 and the infimum is taken over all
holomorphic maps p which map some Ao into M. Suppose that f : M ---+ N is
a holomorphic map of the complex manifold M to the complex manifold /V and
tlnat 9 is amap of Ao into M with 9(0) -p and p'(0): (. Then /op maps
A into N, and we have

Fr(/.€, f(p)) 3"-'.
Taking the infimum over all such maps g, gives us

Frv(Å€, /(p)) < Fd,r(€,p).

This shows that Ft,r is a hyperbolic infinitesimal metric.
If G pr is any infinitesimal hyperbolic metric and p a map of Ao into M

with 9(0) - p and p'(0) : (, then the distance decreasing property of hyperbolic
metrics asserts that

GuG,d < a-l.

Taking the infimum over all such maps g shows that

Gu(&p) < Fu(€,p),

and that Fu(Ld is the largest infinitesimal hyperbolic metric.
If we define the arc length of a differentiable curve c(t) in M tobe the upper

Riemann integral

{- "*1o1t),r(t)) 
dt

and define pu(p,q) to be the inffmum of all the lengths of all difierentiable curves
joining p to q, then py is a hyperbolic metric. Since the Kobayashi metric pK
is the largest hyperbolic metric,

pM(p,il < pfr@,q).

It was shown in Royden [1971] that, in fact, we have equality:

pM(p,il: pft@,il.
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Consequently, the Kobayashi metric is the integrated form of the infinitesimal
metric Fiy. This means that the Kobayashi metric is an inner metric (i.e., one
defined by arc length).

We say that a complex ma^nifold is (Kobayasht) hyperbolic if the Kobayashi
metric on M is a metric rather tha^n a pseudometric. lf M and, .ff are two
complex manifolds and .lf is hyperbolic, then all holomorphic maps of M into .lf
are equicontinuous. Thus a family of holomorphic maps of M into .lI will be a
normal family as soon as we have a suitable compactness condition on the images

{fOl}. There is a generalization of the Hopf-Rinow theorem which asserts that,
if an inner metric on a locally compact space is complete, then the closed bounded
sets of the space are compact. Thus if the complex manifold N is complete
hyperbolic, i.e., is such that the Kobayashi metric is complete, then the family
of all holomorphic maps of. M into /V is a normal family. Applications of these
notions can be found in Kobayashi [1970], [1973] and Wu [1967].

5. The Ahlfors-Schwarz lemma in several variables

The extensions to several complex variables discussed so far have been done
by defining the metrics, Carath6odory, Kobayashi, etc., in such a way that the
distance decreasing property for holomorphic maps follows directly from the def-
inition. The Grauert-Reckziegel results are a partial exception: Although the
holomorphic sectional curvature of a differential metric on a complex manifold
is defined here in a manner that allows us to apply the Ahlfors-Schwarz lemma
directly to the pull-back of the differential metric to the disk, the concept of hole
morphic sectional curvature for Kätrler metrics was known earlier. If 8op"5 is
the curvature tensor and (o is a unit tangent vector at the point p, then the
holomorphic sectional curvature in the direction ( is given by the formula

rf(€) : 2R,pra€" €F €' €6.

In the case of a Kåihler metric this is just the Riemann sectional curvature of the
section determined by the vectors € "ttd 

i{. It is also the Gauss curvature of a one
(complex) dimensional curve through p which is geodesic to ffrst order at p and
whose tangent vector at p is a multiple of (. In the case of a Hermitian metric
the holomorphic sectional curvature in the direction ( is still given by the formula
above, provided .R is the curvature of the connection which is compatible with
the metric and with the complex structure of the manifold. If the metric is not
Kähler, however, the holomorphic sectional curvature is no longer described by
the Riemann sectional curvature of the metric. It is also possible to give explicit
formulae for the holomorphic sectional curvature in the case of a regular complex
Finsler metric (cf. Royden [1986]).

Chern [1968] showed that in certain cases a holomorphic mapping f : M -+
lf must be volume decreasing in terms of Kähler metrics on M and trf if the
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Ricci curvature of ,iV is bounded above by a suitable negative constant and the
scalar cunrature of M is bounded from below by a suitable negative constant.
Chern assumed M to be compact or to be a polydisk with the product of the
Poincard metrics of the factors. Lu [1968] extended these results to show that a
holomorphic rnapping was distance decreasing in these cases if the holomorphic
sectional curvature of the Kåihler metric on JV was bounded above by a suitable
negative constant and the Ricci curvature of M was bounded from below by a
suitable negative constant. Again M is assumed to be compact or the polydisk
with the standard metric.

For results such as these to hold some restriction (other than those on curva-
ture) must be placed on the manifold M where the mapping .f is defined, since
the disk Äo of radius a ( 1 with the non-Euclidean metric of the unit disk A has
curvature -4 everywhere and can be mapped onto the unit disk A with deriva-
tive a-l at the origin. ln fact, if we took the spherical metric of Ö for the metric
on Ao, we would have a metric with curvature *4 everywhere and still have a
non-constant map from Ao to A. Alfred Huber [1957] showed, however fhat if. M
is a Riemann surface with a complete conformal metric of non-negative curvature,
then there is no non-constant conformal map of M into the unit disk.

Yau [1978] was the first to show that one could get bounds on the gradient of
a holomorphic map f , M + N in terms of a lower bound on the Ricci curvature
of M and a negative upper bound on the biholomorphic sectional curvature of
M, provided that M is complete. Chen, Cheng, and Look [1979] proved that
a holomorphic map f , M --+ .[V from a complete Kähler manifold M whose
holomorphic sectional curvature is bounded from below by a negative constant

-o2 into a Kähler manifold iV with holomorphic sectional curvature bounded
above by a negative constant -bz must satisfy llafll ! a/t. They must also
assume that the Riemann sectional curvature of the metric on M is bounded from
below by some consta-nt. Some improvements of these results were obtained in
Royden [1980].

We illustrate these results by proving the theorem for the case of smooth
differential metrics on M and .lf when M is compact:

Theorem. Let f : M --+ N be a holomorphic map from a compact complex
manifold M to a complex manifold N , and suppose that M has a d,ifferentiable
metric whose holomorphic seetional curvature is everywhere greater than or equal
to a negative constant -a2 and.lf åas one whose holomorphic sectional curvature
is everywhere less than or equal to a negative constant -b2 , Then

lld/ll s

Proof. Since M is cornpact, there is a point p e M where lld/ll attains its
maximum value rn and a tangent vector € at p such that lld/(€)ll : rn ll{ll. Since
the holomorphic sectional curvature of the metric on M is greater than or equal to

a

T,
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-a}, we can find a holomorphic mappin1 I of the disk A into M with VQ) : p
and 9'(0) a multiple of ( so that the curvature of the metric 

^(O 
: ll9'(Oll on A

has curvature at the origin which is greater than -42 - e. Since the holomorphic
sectional curvature of the metric on .lf is less than or equal to -b2 at /(p), the
metric p : llj o p)'(Oll on A has curvature at the origin less than or equal
to -b2. Now p/^ < rn in A with equality at the origin, and so logp/) has a
maximum at the origin. Thus we must have

0 > Alogp - Alog ),) b2p2 - (a2 + e)\2.

at the origin. Hence
ffiuZ .az+e*:T:pr

and the theorem follows by letting e go to zero. E

Although we have assumed the metrics smooth for the sake of convenience,

we can take curvatures in the sense of supporting metrics and modify the proof as

in Ahlfors' original paper. If. M is not compact, we can still carry out a modified
version of the above proof provided we have a positive function u which is proper
(the sets where u 1 c are all compact), which has bounded gradient and whose

complex Hessian uop is bounded from above. In this case we look at a point where
(1 - eu) lld/ll has its'maximum and apply similar considerations. lf M is complete
and either Kähler with biholomorphic sectional curvature bounded from below or
Hermitian with bounded torsionl a,nd Riemann sectional cunrature bounded from
below, then we may take u to be the distance from a point p0, after we smooth
it in a neighborhood of ps
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