Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 14, 1989, 3-12

REPRESENTATION THEOREMS FOR ANALYTIC FUNCTIONS WITH QUASIMEROMORPHIC EXTENSIONS

Zerrin Göktürk

This paper is concerned with normalized quasimeromorphic functions of the extended plane $\bar{\mathbf{C}}$ which are analytic in a domain D of the plane, and have a pole only at one point. For these functions, which are strictly finitely multivalent in $\bar{\mathbf{C}}$, we generalize representation theorems concerning normalized quasiconformal homeomorphisms of $\tilde{\mathbf{C}}$ which are conformal in D. The representation formulas yield estimates for the power series coefficients.

1. Definitions

A function f is called k-quasimeromorphic in a plane domain D, if f is spherically continuous and a generalized L^2 -solution of a Beltrami differential equation $f_{\bar{z}} = \mu f_z$ in D, where the complex dilatation μ satisfies the condition $\|\mu\|_{\infty} \leq k < 1.$

We introduce the class F_k^p of k-quasimeromoprhic functions f of $\overline{\mathbf{C}}$ whose restrictions to $D^* = \{z \mid |z| > 1\}$ are meromorphic and of the form

(1.1.)
$$f(z) = \sum_{n=0}^{p} a_n z^{p-n} + \sum_{n=1}^{\infty} a_{p+n} z^{-n}, \qquad a_0 = 1, \ p \in N,$$

and $f(z) = \infty$ only for $z = \infty$. $\sum_{k=1}^{p} p_{k}$ denotes the subclass of F_{k}^{p} consisting of functions f whose singular part at ∞ reduces to z^p [2]:

We denote by \sum_k the class of k-quasiconformal homeomorphisms f of $\bar{\mathbf{C}}$ which are conformal in D^* with a development of the form

(1.2)
$$f(z) = z + \sum_{n=1}^{\infty} b_n z^{-n}.$$

The research was supported by the Academy of Finland.

Zerrin Göktürk

2. Representation theorems

Theorem 2.1. A function $f \in F_k^p$ has the representation (2.1) $f = P \circ h$

where $h \in \sum_{k}$ and P is a polynomial of degree p with leading coefficient 1.

Proof. Let $f \in F_k^p$ and μ be its complex dilatation. From the existence and uniqueness theorems for the Beltrami equation it follows that there is a unique quasiconformal homeomorphism $h \in \sum_k$ with complex dilatation $\mu_h = \mu$ a.e. The function $P = f \circ h^{-1}$ has then the complex dilatation zero a.e. in **C**. Since it has L^1 -derivatives, it is meromorphic in $\overline{\mathbf{C}}$, and hence rational. Because f has the only pole at $z = \infty$, P is a polynomial. If follows from the normalization (1.1) that it is a polynomial of degree p with leading coefficient 1.

Let $f \in \sum_{k}^{p}$. Then the polynomial P in (2.1) is the Faber polynomial of degree p of h, since the only polynomial of degree p such that the singular part of P[h(z)] at ∞ reduces to z^{p} is the p^{th} Faber polynomial of h.

Remark 2.1. Let $L_{0,k}^{\infty}$ denote the set of complex valued measurable functions μ satisfying $\|\mu\|_{\infty} \leq k < 1$ and having support in the closure of the unit disc D. A function $\mu \in L_{0,k}^{\infty}$ determines uniquely the element $h \in \sum_{k}$ whose complex dilatation μ_{h} equals μ a.e. but not the element of F_{k}^{p} . For, if P is an arbitrary polynomial of degree p with leading coefficient 1, then $f = P \circ h \in F_{k}^{p}$ with $\mu_{h} = \mu$ a.e. However there is a one-to-one correspondence between the functions $\mu \in L_{0,k}^{\infty}$ and the elements $f \in \sum_{k}^{p}$. In this case the uniqueness (and the existence) of $f \in \sum_{k}^{p}$ follows from the uniqueness (the existence) of the Faber polynomials.

It is an immediate consequence of Theorem 2.1 that a function $f \in F_k^p$ takes each value in $\overline{\mathbf{C}}$ exactly p times. In particular, a function $f \in F_k^1$ is a homeomorphism, a translation of its basic homeomorphism $h \in \sum_k$. Moreover, since 0-quasimeromorphic functions are meromorphic, F_0^p is the set of all polynomials of degree p with leading coefficient 1. We use the same notation F_k^p for the class of the restrictions $f|_{D^*}$ of all $f \in F_k^p$. Then every F_k^p , $0 \le k < 1$, is contained in the class F^p of functions f which take every value at most p times in D^* and have a development of the form (1.1).

A function g which is analytic in the interior of $C_R = h(|z| = R)$ for some $R \in (1, \infty)$ can be expanded into a series of Faber polynomials belonging to h, i.e., the function g has the representation

$$g(w) = \sum_{m=0}^{\infty} c_m P_m(w)$$

in the interior of C_R , where P_m denotes the m^{th} Faber polynomial of h, and

(2.2)
$$c_m = \frac{1}{2\pi} \int_{|z|=\varrho} g(h(z)) z^{-m-1} dz, \qquad \varrho \in (1,R), \ m = 0, 1, \dots$$

The representation is unique [8], [11].

Theorem 2.2. Let $f \in F_k^p$. Then f has the representation

$$f = f_p + a_1 f_{p-1} + \dots + a_{p-1} f_1 + a_p,$$

where $f_m = P_m \circ h \in \sum_{k=1}^{m} p_k$, m = 1, ..., p, and a_m are the power series coefficients of f.

Proof. Let $f \in F_k^p$. By Theorem 2.1 f has a representation of the form (2.1). Expanding P into series in terms of Faber polynomials P_m of h we obtain

$$P(w) = \sum_{m=0}^{p} c_m P_m(w)$$

where the c_m are given by (2.2). It is clear that $c_m = a_{p-m}$, $m = 0, \ldots, p$. Hence, $f = P \circ h = (\sum c_m P_m) \circ h$ and the assertion follows.

Consequently, for a given polynomial $G(z) = \sum_{n=0}^{p} a_n z^{p-n}$, $a_0 = 1$, and a function $\mu \in L_{0,k}^{\infty}$ there exists a unique quasimeromorphic function $f \in F_k^p$ which has complex dilatation $\mu_f = \mu$ a.e., and G as its principal part at $z = \infty$.

Let T be the operator defined by

$$Tw(z) = -\frac{1}{\pi} \iint_{\mathbf{C}} \frac{w(\zeta)}{\zeta - z} d\xi \, d\eta, \qquad \zeta = \xi + i\eta$$

and H the two-dimensional Hilbert transformation ([9] Chapter III.7). It is well known that using T and H, a function of \sum_k can be represented with the aid of its complex dilatation. The proof of the representation formula ([9], Chapter V.5) applies, with obvious modifications, to the functions of F_k^p also.

Theorem 2.3. Let $f \in F_k^p$. Then

(2.3)
$$f(z) = G(z) + \sum_{n=1}^{\infty} T\phi_n(z), \qquad z \in \mathbf{C},$$

where G is the principal part of f at $z = \infty$ and the functions ϕ_n are defined by $\phi_1 = \mu G'$, $\phi_n = \mu H \phi_{n-1}$, $n = 2, 3, \ldots$ The series is uniformly convergent.

Just as in the case p = 1, formula (2.3) gives asymptotic estimates for the coefficients of the functions in F_k^p .

Theorem 2.4. Let f belong to F_k^p and have the expansion (1.1). Then

(2.4.)
$$|a_{p+n}| \le 2k \sum_{m=0}^{p-1} \frac{p-m}{p+n-m} |a_m| + O(k^2), \quad n = 1, 2, \dots$$

The estimate is sharp.

Zerrin Göktürk

The proof given in [10], pp. 432–433, for the counterpart of (2.4) in \sum_k can be repeated as such, with the only difference that now $\phi_1 = \mu G'$.

Equality holds for the functions

$$f_n = f_{n,p} + a_1 f_{n,(p-1)} + \dots + a_{p-1} f_{n,1} + a_p$$

where the functions $f_{n,m}$ are defined by

$$f_{n,m}(z) = \begin{cases} \left(z^{(m+n)/2} + k z^{-(m+n)/2} \right)^{2m/(m+n)} & \text{for } |z| > 1, \\ \left(z^{(m+n)/2} + k \bar{z}^{(m+n)/2} \right)^{2m/(m+n)} & \text{for } |z| \le 1, \end{cases}$$

for $m = 1, \ldots, p$.

For the special case $G(z) = z^p$, inequality (2.4) yields the sharp estimate

$$|a_{p+n}| \le \frac{2pk}{p+n} + O(k^2), \qquad n = 1, 2, \dots$$

Let $F_k^p(\zeta)$ denote the class of functions f in F_k^p which take the value zero only at the point ζ . If $f \in F_k^p(\zeta)$, then it follows from Theorem 2.1 that

(2.5)
$$f = \left(h - h(\zeta)\right)^p$$

where $h \in \sum_{k}$.

Theorem 2.5. Let $f \in F_k^p(0)$. Then

$$(2.6) |a_1| \le 2pk.$$

Equality holds only for the functions

$$f(z) = \begin{cases} \left(z^{1/2} + ke^{i\theta}z^{-1/2}\right)^{2p} & \text{for } |z| > 1, \\ \left(z^{1/2} + ke^{i\theta}\bar{z}^{1/2}\right)^{2p} & \text{for } |z| \le 1. \end{cases}$$

Proof. The estimate (2.6) follows from $f = (h - h(0))^p$ when we take into account Kühnau's result $|h(0)| \leq 2k$ ([5]).

In Section 3 we shall derive the above estimates from a general inequality.

Let $f = (h - h(\zeta))^p \in F_k^p(\zeta)$ and let b_n , $n = 1, 2, \ldots$, denote the power series coefficients of h. We see that $a_1 = a_2 = \cdots = a_N = 0$ if and only if $h(\zeta) = 0$ and

$$(2.7) b_1 = b_2 = \dots = b_{N-1} = 0.$$

In this case,

(2.8)
$$a_n = pb_{n-1}, \quad n = N+1, \dots, 2N+1.$$

Theorem 2.6. Let $f \in F_k^p(0)$. If $a_n = 0, n = 1, 2, ..., N \ (N \ge 1)$, then

(2.9)
$$|a_n| \le \frac{2kp}{n}, \qquad n = N+1, \dots, 2N+1.$$

Equality holds for the functions

$$f(z) = \begin{cases} \left(z^{n/2} + ke^{i\theta}z^{-n/2}\right)^{2p/n} & \text{for } |z| > 1, \\ \left(z^{n/2} + ke^{i\theta}\bar{z}^{n/2}\right)^{2p/n} & \text{for } |z| \le 1. \end{cases}$$

Proof. Again, we make use of (2.5). Because (2.7) is true, $|b_n| \leq 2k/(n+1)$, $n = N, N+1, \ldots, 2N$ (Kühnau [6]). Hence, (2.9) follows from (2.8).

In particular, for N = 1 we have $|a_2| \le kp$ and $|a_3| \le 2kp/3$.

In [3] we proved that $|a_1| \leq 4k/3$ in \sum_k^2 , which can also be deduced from (2.9). In \sum_k^p , the estimate $|a_p| \leq k$ holds true ([2]).

3. Majorant principle for the class $F_k^p(\zeta)$

In this section we establish a counterpart of Lehto's majorant principle [10] for the class $F_k^p(\zeta)$, $\zeta \in \overline{D}$, from which we obtain estimates for the power series coefficients a_n of a function $f \in F_k^p(\zeta)$. The estimate for $|a_1|$ leads to a distortion theorem for |h|, $h \in \sum_k$ in \overline{D} .

We denote by $F^{\overline{p}(0)}$ the class of functions f in F^p which do not assume the value zero in D^* . Then every restricted class $F_k^p(\zeta), \zeta \in \overline{D}$, is contained in the class $F^p(0)$.

The classes \sum_k and $\sum'_k = \{h|_{D^*} \mid h \in \sum_k\}, 0 \le k < 1$, are known to be compact in the topology of locally uniform convergence. From the representation (2.5) it follows that every $F_k^p(\zeta), 0 \le k < 1$, is compact. Also, $F^p(0)$ is compact.

Let Φ be an analytic functional defined on $F^p(0)$. Then Φ is defined on every $F_k^p(\zeta)$, $0 \le k < 1$. Because the classes $F^p(0)$ and $F_k^p(\zeta)$ are compact,

$$\max_{f \in F^p(0)} \left| \Phi(f) \right| = M(1) \quad \text{and} \quad \max_{f \in F^p_k(\zeta)} \left| \Phi(f) \right| = M(k)$$

exist. The class $F_0^p(\zeta)$ contains only the function $f_0 = (z - \zeta)^p$, and we write $M(0) = |\Phi(f_0)|$.

Theorem 3.1. Let Φ be an analytic functional defined on $F^p(0)$. Then for every $f \in F_k^p(\zeta)$,

(3.1)
$$M(1)\frac{M(0) - kM(1)}{M(1) - kM(0)} \le \left|\Phi(f)\right| \le M(1)\frac{M(0) + kM(1)}{M(1) + kM(0)}.$$

In particular, if $\Phi(f_0) = 0$,

$$\left|\Phi(f)\right| \le kM(1).$$

Proof. In [10], inequality (3.1) was established in the case $f \in \sum$. Thanks to the simple relation (2.5) the same proof applies to $F_k^p(\zeta)$.

Corollary 3.1. Let $f \in F_k^p(\zeta)$. Then

(3.2)
$$|a_1| \le 2p \frac{|\zeta| + 2k}{2 + k|\zeta|}.$$

Proof. Let $\Phi(f) = a_1$. Then $M(0) = p|\zeta|$ and by Theorem XI.6.3. in [1] we have M(1) = 2p. Thus (3.2) follows from the right-hand inequality of (3.1).

For the class $F_k^1(\zeta)$ we obtain from (3.1)

$$|a_1| \le 2\frac{|\zeta| + 2k}{2+k|\zeta|}.$$

Corollary 3.2. Let $h \in \sum_k$. Then for $\zeta \in \overline{D}$

$$\left|h(\zeta)\right| \le 2\frac{|\zeta| + 2k}{2 + k|\zeta|}.$$

Proof. The function $f = (h - h(\zeta))^p$ is in $F_k^p(\zeta)$. Since $a_1 = -ph(\zeta)$, the assertion follows from (3.2). As $k \to 1$, it gives the well-known sharp estimate $|h(\zeta)| \leq 2$ in \sum .

For $\zeta = 0$ Corollary 3.2. yields the sharp estimate $|h(0)| \leq 2k$ [5].

Corollary 3.3. Let $f \in F_k^p(0)$. Then

 $|a_1| \le 2pk, \qquad |a_2| \le p(2p-1)k.$

The first estimate is sharp.

Proof. The first estimate follows from Corollary 3.1 for $\zeta = 0$.

For the second estimate, let $\Phi(f) = a_2$. For $\zeta = 0$, $f_0(z) = z^p$ and therefore M(0) = 0. By Theorem XI.6.3 in [1], M(1) = p(2p-1) and the assertion follows from (3.1).

For p = 1 we obtain $|a_1| \le 2k$, $|a_2| \le k$ for the class $F_k^1(0)$ [5, 6].

Remark 3.1. The second estimate in Corollary 3.3. is not sharp for p > 1. For, let $f \in F_k^p(0)$. By the representation (2.5)

$$(f(z))^{1/p} = h(z) - h(0) = z + \frac{a_1}{p} + \sum_{1}^{\infty} c_n z^{-n}$$

and

$$c_1 = \frac{a_2}{p} - \frac{p-1}{2p^2}a_1^2.$$

Since $|c_1| \leq k$, this together with the first estimate in Corollary 3.3 yields

$$|a_2| \le pk + 2p(p-1)k^2.$$

Remark 3.2. Let $\Phi(f) = a_n$, $n = 3, 4, \ldots$, for $f \in F^p(0)$. Then M(0) = 0 and by Theorem XI.6.3 in [1], $M(1) \leq C(n,p)$, where C(n,p) is a constant depending on n and p only. By Theorem 3.1 we have then $|a_n| \leq kC(n,p)$ in $F_k^p(0)$. We note that bounds of this kind cannot be always found for the class F_k^p .

4. Class $S_k^p(\zeta)$

We denote by $S_k^p(\zeta)$ the class of k-quasimeromorphic functions f of $\overline{\mathbf{C}}$ which are analytic in D and of the form

(4.1)
$$f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^n$$

and $f(z) = 0, \infty$ only for $z = 0, \zeta$, respectively.

 $S_k(\infty)$ denotes the class of k-quasiconformal homeomorphisms f of $\overline{\mathbf{C}}$ whose restrictions to D have the form

$$f(z) = z + \sum_{n=2}^{\infty} b_n z^n$$

and which leave ∞ fixed.

The proof of the following representation theorem is similar to the proof of Theorem 2.1.

Theorem 4.1. A function $f \in S_k^p(\zeta)$ has the unique representation

(4.2)
$$f = \left(\frac{h}{1 - h/h(\zeta)}\right)$$

where $h \in S_k(\infty)$.

Consequently, a function $f \in S_k^p(\zeta)$ takes every value in $\overline{\mathbf{C}}$ exactly p times. In particular, a function $f \in S_k^1(\zeta)$ is a homeomorphism. We write $S_k^1(\zeta) = S_k(\zeta)$.

Theorem 4.2. A function f of $S_k^p(\zeta)$ has the unique representation

$$f = (\tilde{h})^p$$

where $\tilde{h} \in S_k(\zeta)$.

(4.3)

If $f \in S_k^p(\infty)$, the representation (4.2) takes the form $f = h^p$

where $h \in S_k(\infty)$ ([2]).

It follows from Theorem 4.1 that the class $S_0^p(\zeta)$ contains only the function $f_0(z) = z^p (1 - z/\zeta)^{-p}$. We use the same notation $S_k^p(\zeta)$ for the class of the restrictions $f|_D$ of all $f \in S_k^p(\zeta)$. Then every $S_k^p(\zeta)$, $0 \le k < 1$, is contained in the class S^p of analytic functions f which take every value at most p times in Dand have the normalization (4.1).

Majorant principle. Let Φ be an analytic functional defined on S^p . Again, the classes S^p and $S^p_k(\zeta)$ are compact so that

$$\max_{f \in S^p} \left| \Phi(f) \right| = M(1) \quad \text{and} \quad \max_{f \in S^p_k(\zeta)} \left| \Phi(f) \right| = M(k)$$

exist. For the function $f_0 = z^p (1 - z/\zeta)^{-p}$ we write $M(0) = |\Phi(f_0)|$.

Theorem 3.1 applies for the classes $S^p_k(\zeta)$ and S^p : If Φ is an analytic functional defined on S^p , then (3.1) holds for every $f \in S_k^p(\zeta)$.

Corollary 4.1. Let $f \in S_k^p(\zeta)$. Then

(4.4)
$$|a_{p+1}| \le 2p \frac{1+2k|\zeta|}{2|\zeta|+k}.$$

Proof. Consider the analytic functional $\Phi(f) = a_{p+1}$. Then M(1) = 2p by Theorem XI.6.5 in [1] and $M(0) = p/|\zeta|$. Thus the assertion follows from (3.1).

Corollary 4.2. Let $f \in S_k^p(\zeta)$. Then

(4.5)
$$|a_{p+2}| \le p(2p+1)\frac{(p+1)+2k(2p+1)|\zeta|^2}{2(2p+1)|\zeta|^2+k(p+1)}.$$

Proof. Let $\Phi(f) = a_{p+2}$. Then $M(0) = p(p+1)/2|\zeta|^2$, and by Corollary 8.16 in [4] M(1) = p(2p+1). Thus the assertion follows from (3.1).

We obtain from (4.4) and (4.5) the estimates

$$|a_2| \le rac{1+2k|\zeta|}{2|\zeta|+k}, \qquad |a_3| \le 3rac{1+3k|\zeta|^2}{3|\zeta|^2+k}$$

for the class $S_k(\zeta)$. Furthermore, $|a_{p+1}| \leq 2pk^{-1}$ and $|a_{p+2}| \leq p(2p+1)k$ in $S_k^p(\infty)$. The first estimate is sharp.

Theorem 4.3. Let $f \in S_k^p(\infty)$. If $a_{p+n} = 0$, n = 1, ..., N, $(N \ge 1)$, then

$$|a_{p+n}| \le \frac{2pk}{n}, \qquad n = N+1, \dots, 2N+1.$$

Equality holds for the functions

$$f(z) = \begin{cases} z^p (1 + k e^{i\theta} z^n)^{-2p/n} & \text{for } |z| < 1, \\ (z\bar{z})^p (\bar{z}^{n/2} + k e^{i\theta} z^{n/2})^{-2p/n} & \text{for } |z| \ge 1. \end{cases}$$

Proof. The function $z \mapsto 1/f(1/z)$ is in $F_k^p(0)$. It has the expansion

$$\frac{1}{f\left(\frac{1}{z}\right)} = z^p \left(1 + \sum_{N+1}^{\infty} c_n z^{-n}\right),$$

where $c_n = -a_{p+n}$ for n = N + 1, ..., 2N + 1. Hence the assertion follows from Theorem 2.6.

¹ A different proof of this estimate was given in [2].

Theorem 4.4. Let $f \in S_k^p(\infty)$. Then for $z \in \overline{D}$

$$c^p \le \left| f(z) \right| \le C^p,$$

where c and C are Kühnau's constants [7]. The estimate is sharp.

The theorem follows from the representation (4.3) and Kühnau's distortion theorem ([7]).

Remark 4.1. Let S denote the class of conformal homeomorphisms f of D which are normalized by the conditions f(0) = 0, f'(0) = 1. It is known that the classes $S'_k(\infty) = \{h|_D \mid h \in S_k(\infty)\}, 0 \le k < 1$, are dense in S with respect to the topology of locally uniform convergence, as $k \to 1$. However, the classes $S^p_k(\infty)$ are not dense in S^p , nor are $\sum_{k=1}^{p} dense$ in $\sum_{k=1}^{p} dense$.

Zerrin Göktürk

References

[1]	GOLUZIN, G.M.: Geometric theory of functions of of a complex variable American Mathematical Society Translations of Mathematical Monographs 26, Providence, R.I., 1969.
[2]	GÖKTÜRK, Z.: On <i>p</i> -valent quasimeromorphic functions Proceedings of the Rolf Nevan- linna Symposium on Complex Analysis, Silivri 1976. Publications of the Nazım Terzioğlu Mathematical Research Institute 7, Istanbul, 1978.
[3]	GÖKTÜRK, Z.: Remarks on <i>p</i> -valent quasimeromorphic functions Proceedings of the Vth Romanian-Finnish Seminar on Complex Analysis, Bucharest, 1981. Lecture Notes in Mathematics 1013. Springer-Verlag, Berlin-Heidelberg-New York, 1983.
[4]	JENKINS, J.A.: Univalent functions and conformal mappings Ergebnisse der Mathematik 18, Springer-Verlag, Berlin, 1958.
[5]	КÜHNAU, R.: Wertannahmeprobleme bei quasikonformen Abbildungen mit ortsabhängiger Dilatationsbeschränkung Math. Nachr. 40, 1969, 1–11.
[6]	KÜHNAU, R.: Verzerrungsätze und Koeffizientenbedingungen von Grunskyschen Typ für quasikonforme Abbildungen Math. Nachr. 48, 1971, 77-105.
[7]	KÜHNAU, R.: Eine Verschärfung des Koebeschen Viertelsatzes für quasikonform fortsetz- bare Abbildungen Ann. Acad. Sci. Fenn. Ser. A I Math. 1, 1975, 77–83.
[8]	LEBEDEV, N.A., and V.I. SMIRNOV: Functions of a complex variable London Iliffe Book Ltd., London, 1968.
[9]	LEHTO, O., and K.I. VIRTANEN: Quasiconformal mappings in the plane Grundlehren der mathematischen Wissenschaften 126. Springer-Verlag, New York-Heidelberg- Berlin, 1973.
[10]	LEHTO, O.: Quasiconformal mappings and singular integrals Istituto Nazionale di Alta Matematica. Symposia Mathematica XVIII. Academic Press, Bologna, 1976.
[11]	SCHOBER, G.: Univalent functions Lecture Notes in Mathematics 478. Springer-Verlag, New York-Heidelberg-Berlin, 1975.

Boğaziçi University Department of Mathematics İstanbul Turkey

Received 16 March 1984 Revised 31 May 1988

12