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CONVERGENCE PROPERIIES FOR THE
TrME-DEPENDENT SCHRöOTNCER EQUATTON

Peter Sjögren and Per Sjölin

Abstract. Consider the solution to the generalized Schrödinger equation Pu= i?uf 0t in
the halfspace {(c,t) € R," x R,;t > 0}, with initial values u(c,0) = /(r). Ilere P is an elliptic
operator in thå' c va.riables with constant coef;Ecients. Assume that / belongs to the Sobolev

space flr. When P=L,itisknownthat s) 1/2 impliesthat u convergesto f alongalmost
all vertical lines. We extend this result to an a.rbitra,ry P and sha.rpen it by replacing "almost all"

by ,,quasiall". The values of u must then be made precise in a certain way. A related maximal

function estimate is proved.

By means of a counterexample, it is shown that the vertical lines cannot be widened into

convergence regions. Ifowever, for quasiall boundary points (c,0), we prove that u t / along

almost all lines through (c,0).

1. Introduction and results

Fbr f belongit g to the Schwartz space §(R") set

( 1.1)

where the Fburier transform defined by

u(r , t)- (2n)-" l*_ 
ei,'e eiq€'f i f€) d,€,

u'.( r) : sup l"@,t)|,
0 <t<1

r €R', t€R,

n€R',,

s € FL, by defining the norm

iis
f

flgl : I e-i..'r f(") dr.
Jkn

u is then a solution to the Schrödinger equation L^u - i0" I 0t . WeThe function
set

(1.2)

and also introduce Sobolev spaces H ,_ H t(R") ,

lt/11,, - (t+
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(1.3)
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It is then known that the estimate

u(r,t) - (2n de, r € Rn, t € R,

problem Pu - i)ul}t, u(.,0) - f .With this ?,1 ) we use again
We then have the followirrg extension of (1.3).

f e s,

(1,1,.( dl')

holds for all balls B in R" if s ) nf 4 ar,d if s ) tl2 (see L. Carleson [1],
B.E.J. Dahlberg and C.E. Kenig [4], C.E. Kenig and A. Ruiz [5], P. SjöIin [6], and
L. Vega [fl). In particular it was proved in [6] that (1.3) holds for s ) 7f2, and
this result was applied to study the existence almost everywhere of lim1*s u(a,t)
for solutions u to the Schrödinger equation.

We shall here extend these results from [6] in several ways. First we replace A
by an elliptic operator P : -p(D), where D : (Dt,...,Dn) and D7, : -i7l1xx.
The polynomial p is real and elliptic, i.e., its pricipal part does not vanish in
R" \ {0}. Its degree rn is at least 2. Then if / e .S(R"), the function

I "i,'€ 
eitp(€,)irgI

solves the Cauchy
(1.2) to define LL* .

Theorem 1.

for any bill B in R".
This inequality is related to the convergence properties of u at the boundary,

when / € H ". Improving the known almost everywhere convergence results, we
shall obtain convergence along quasievery vertical line. The capacities to be used
are those of Sobolev spaces. They are defined for s > 0 by

Here G" is the Bessel kernel, G"(O : (t + 111,1-"t' . By C"-q.e. we mean
everywhere except on a set of Cr-capacity 0, and similarly for C"-9,.a. When
s > nf 2, only the empty set has Cr-capacity 0.

Afunction f eH" canbewrittenm-f -Gr,r.gwith ge L2,andconversely.
At C,-q.a. points c, this convolution is well defined in the sense that G "*lgl(r) <oo. One can recover these well-defined values of /, knowing / almost everywhere.
Indeed, it is easily seen that the means of / in small balls centered at r converge
to G, * s@) if G"* lgl(") < -.'We now describe how to make the solution u precise by defining it at suffi-
ciently many points. Let f e H". For every t, (1.4) defines u(.,t) as an Lz(R)

c,(E) -inf {tt, ll7;oa s
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function, because of Plancherel's theorem. This gives a measurable, a.e. defined

function u in R" x R. With a point (r,t) as center, we let 8",r(6) be the ball

in R'*1 of radius 6 > 0, and

8'.,r(6): {(r', t);l*' - rl < 6}

the horizontal disc. Define the value u(x,t) as the limit as 6 -+ 0 of the mean

value of u in either 8,,r(6) or 8'",r(6), at all points (z,t) where this limit exists.

We shall speak of the ball and the disc method. Notice in particular that the disc

method for f :0 gives us back the C"-q.e. defined values of /.
Theorem 2. Let s > 712 and take f € H". Defrne u by means of (7.4), and

make u precise by the ball or the disc method. If 0 < p < s - 7f2, the following

holds for Ce-g.a. r: The function u is defined at every point of the vertical line

{r} x R, iti restriction to the line is continuous, and its vaJue at (r,0) is /(r).
we remark that instead of balls B,,r(6), it is possible to use half-balls B,,r(6)n

{(*',t'); t' > t}. This is more natural at t :0 if one is interested in u for t > 0

only.
For solutions to initial-value problems in a halfspace R'xR1 given by kernels

like the Poisson or heat kernel, one has convergence in an approach region at almost

all boundary points. This means that there exists a strictly increasing function

7: R+ - R+ such that the solution u(A,t) tends to the boundary value at (r,0)
as (9, t) ---+ (r,0) and ly - *l <'y(t), for a.a. r eR.n. For our problem, however,

there is no such convergence region, except trivially when / € If" and s > nf2.
(In that case, / is continuous and u is a continuous extension of /.) The following
counterexample is for the standard Schrödinger equation Lu: i}ul0t.

Theorem 3. Assume that y R+ * Ra is a strictly inueasing function.
Let u and f be related by (1.t). Then there exists an f e H"p(li-n) such that

u is continuous in {(r,r); i > 0} and

( 1.5)

forallr€Rn

lim sup 
I 
u(y, r)l - *oc

(y,t)*(r,0)
ly-rl<z(t),t)o

This means that near the vertical line through every boundary point (r,0)
there can be bad points accumulatingat (a,0), at which u takes values far from

/(c). However, the bad points are sparse at most boundary points, in the sense

that most lines through (r,0) do not intersect them. This is the content of our

last result.

Theorem 4, For f e H", s > 7f2,|et u be given by (1'.4) and made ptecise

as described above. Let 0 1p < s- 712. Thenfor C n-q.a. r € R" , the resttiction
of u to the line t --+ (r * at,t) is continuous for a.a. o € R".
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This of course implies convergence to f (a) along almost all lines through
(r,0), since we know from Theorem 2 that u(a,O): f (*).

We prove Theorems 2 and 4 by first showing that u is locally in a mixed
Sobolev space. This can also be seen by the method of Constantin and Saut [2], [3].

2. Proofs for vertical approach

Proof of Theorem 1. We shall follow the idea in the proof of Theorem 1 in [6].
Choose real functions po € Cf(R") *d {, € Co-(R). Instead of u we shall
consider

(2.L) Sf (*,t): es@){,s(t)u(a,t).

We shall first prove that

(2.2)

where ": (* - L)/2. One finds that

l*_ l*lt tr*,t)l' d,a dt : l*. l*.,?Qr - €)$(pit)- p(€))i(€)701) ae a,t

where ? : p2o, ,b : ,b'0. We set

K(€,,i: (r + lfl)'(r + lryl)"f(rt - 0,$@O) - p({))

Arguing as in [6], we see that to prove (2.2) it suffices to prove that

(2.3)

The case l(l < 2 in (2.3) is easy since the Q factor makes 1( rapidly decreasing
in 17. Now assume that l(l >2.It is clear that

and hence

ll*c,dla,r s ct€t" lloa - elll,$@rn) - r(€))l an+

*, I bt - ef"le(n - €)l l$tot t - no))l an.
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The last integral is bounded because of the gä factor, and (2.3) follows if we can

prove that

(2.4) ltoa- ell l0(rrn) - p(€)) 
I 
o, 

= 
cät-'".

We need only deal with large l€1, ""d 
since tp €.S it suffices to prove that

(2.b) l,,lilr- ell l0(rrn) - p({)) 
I 
o, 

= 
cl€l-'"

where Be : B(€; 
"ol€l) 

: {n; lry -€l < "ol€l} 
and c6 > 0.

To estimate p(rt) - p(€) i" Bq, we fix ( and consider gradp. Let nz be

the degree of p and p,r, its principal part. Since gradp- is homogeneous of
degree m - 7, the ellipticity of p implies that gradp* + 0 in R" \ {0}. With
p : lgradp-(6)l-'gradp*((), one ca,n therefore choose cs and c > 0 so that
u.gradp* > cl(l--r in .86. The constants cs and c do not depend on (. Since

grad(p - p*) is of degree at most m -2, it follows that

u .gradp > cl(l--r in Bg

forlarge (,withanew c. Wereplace 4 bycoordinates (s,q') definedby

\:€+su*rl', s€R, ry' Lt).

With p : p(q): p(s,7'), this gives l7pl7rl > "l(l--r in .86. For each 4', there
exists an ss € R such that

le?i -p(Ol > cls - sell(l--l in 86,

sothat t^. ..r ,,-N
l,t@tnl-p(())l s c1, * l" -,oll(l--')-^

for any N. Also

lOf,t- €)l < c(1+ ln,l)-'.
Integrating in the new coordinates, we obtain (2.5) from these two estimates. Now
(2.3) and (2.2) follow.

Setting

lls/ ll'r, (H,): l*,lls/ (*, 
') il'r, «*l d*,

we can write (2.2) as
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An estimatefor 7Sf l7f can be obtained in a similar way, cf. [6]. One finds that

Interpolation yields

ll's/ll t,(Hrrz+) < c ll/llr" ,

by the Htlz+6(R) norm when 6 > 0. Since ?o and ,ho

follows.
To prepare for the next proof we introduce mixed

Q,r > 0. Defi.ne

norm in R is dominated
are arbiträry, Theorem 1

Sobolev spaces H n,, for

H Q,,: HQ,,(R" x R) : (G, A G,) + L2(R"+\,

where Go and G, are Bessel kernels in R" and R, respectively. The norm in
Hp,, is the obvious one. Notice that Ifs,, : Lz(H,). We start by estabiishing
some properties of äp,r1 &ssuffiing r > t12.

Let *,1 and *2 denote convolution in r and in f , respectively. If. u e HB,r,
we can write

(2.6) ,: (Gn$ G,) * 9: Gp*1(G,*29)

with g e Z2(R"+t;. For r > ll2 one has G, e Lz(R), so that for each f

l{G, *, s)@,t)l < 1;C,llz,,1n1 llg(r,.)llr,,rnl .

The right-hand side here is in ,2(R,") as a function of c. But then (2.6) says

that c -+ u(x,l) is in än(R") for each l. This means that we have a continuous
restriction map A;: He,, - Hn(R) to each horisontal hyperplane R" x {t}.

Interchanging the variables, we write u : G, *z (Ge *t g). The function
t --+ u(r,f ) will belong to -Fl.(R) if and only if , -- G e ',t g(r,t) is in ,2(R) . By
Minkowski's inequality,

(2.7)

Here

is a function in
hence finite for
continuous, for

llc n *t s(*, .) llp rn) S (G , * llg ll Lz @t)) 
(r)

llgll Lz(dt) (,)- (l lg'-,,)l'or)'

trz(R"). But then the right-hand side of (2.7) is in
C Q-q.a. r. We conclude that t + u(r,t) is in Hr(R) ,

C a-q.a. r .

H n(R"),
and hence
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We shall say that the value a(r,,t) is well defined if

(2.8) (G, A G,) *lsl(x,r) < *.
What we have just seen implies that this happens for (r, t) e E x R,, where the
complement of. E c R" is of Cn-capacity 0.

We claim that (2.8) implies

(2.e)

and similarly for the means h Bt,,r(6). Indeed, set x6 : la(a)l 
lxa1oy with

8(6) : 8o,o(6). The mean in (2.9) is then X6 * (GB I G,) + s(a,t). Clearly,
Xt*(Gn*G,) convergespointwise to (Gn8G.) as 6--+0. Inscribing "8(6) ina
product of an n-dimensional ball and an interval, we obtain a majorization

xa*(GnBG,) <CGQ8G,.

Now (2.8) implies (2.9) via dominated convergence. For 8|*(6) we need only use
the fact that r - u(r,l) is in än(R").

Proof of Theorem 2. Let f e H ". We write ,9/ for the function obtained
when we define u by means of (1.a) and then multiply by po(r)rbo(f). Since ps
alad rbs are arbitrary, we can replace u by S f in the whole proof.

With / € 5, we first argue as in the preceding proof, using instead of .9/
its first-order derivatives with respect to r. This will produce either an extra (
factor or a differentiation of gs@) in the integral expression for .9/. For / e S
we get

llgrad, S fll yz 6i < C llfll np_^11,

and thus

llS/lla,,. < C llfllrup-^11,.

If we differentiate also with respect to f , the result will be

ll5/llo,,, < c llf ll ru,"*^11,.

This can be combined with our previous estimates in ffo,o : L2(Ho) and ffs,1 -
L'(Hr). Interpolating one index at a time, we conclude

llS I ll a,,, < C ll f ll ru,*t t 2+m(?-, t 2)

for 0 ( g, r 11 and / e §. By means of higher order derivatives, this can
actually be extended to arbitrary Q,r ) 0. Given s > L12 and 0 < p < s - 7f2,
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we can choose r > 112 so that s: p* 1,12+m(r -ll2). Extending ,S, we get a
continuous linear map ,9: Ifr(R") - H a,r(Rn x R).

Let f e H".Then .9/ is a convolution (Gn8G.) *9, 9 € L2. On Ce-j.a.
vertical lines, this convolution is well defined, with a continuous restriction. It
remains to see that its values there coincide with those obtained when we make
,9/ precise. For the ball method, it is enough to verify that ^9/ and ,S/ agree
a.e. in R'*1 , because of the properties of H 8,, discussed above. But .S/ and
,9/ define the same function in .L2(R"+t), since we get two coinciding continuous
maps ff, -+ L2(ELn+r). To deal with the disc method, observe that (1.a) gives for
any fixed I a continuous map /{,(R") -r If"(R"). Multiplying by po(*)rbo(t),
we conclude that the restriction of S/ to R" x {t} defines a continuous map
H 

" 
a ff". This last map agrees with rBt o ^9: H 

" 
+ H, on.S and thus everywhere.

It follows that all the well-defined values of S/ are obtained when S/ is made
precise by means of discs.

It only remains to see that the values of /, or rathenbo(O)pof , are recovered
C n-q.e. in the hyperplane f : 0 when ^9/ is made precise. Both methods produce
the same well-defined values of §/. But since ,bo(O)pof is obviously recovered if
discs are used, the proof is complete.

3. Proof for wider approach

Proof of Theorem 3. We shall first define sequences (n;)f and (r?!)f such
that 2: Rtl R\<R, <RL< fis < Rå (...andpoints (*i,ti) € R" xR.,..
We set Si : {€ € R"; R; < l€l . Hi},

i(€): l€l-"(tos l€l)-'/o"-"t'€"-;t;1q12, ( € Si,

ana 7(6) : 0 otherwise. It is then clear that f e H^/2. Our idea is to make
lul large at the points ("i,ti). AIso set 63 :.f!lk)|tfr, lc:7,2,3,... We let
rL; nzt ...t nnr denote all points r in B(0;1): {r € R";lrl < t} such that
116z e Zn, onr+Lt ...t nn2 all points in in B(0;2) such lhat xf 6s e 2", and
generally nnr*l, ..., nn*+r all points in B(0;,t+1) such lhat xf 6pa2 e 2". Therr

11
fr+1>ti> 1r-,r'2

for n7. + 1 < j 1n*+r, k:0,!,2,... (ro :0). Note that the points (ri,ti)
accumulateateachboundarypoint (o,0),evenifonly (*i,ti) with lr;-rl < Z(ti)
are considered. To define (ni)I and (E!)f we first choose Rt:2 and A', : g.
Given Rr, R\, ..., Rj-r, R'j_, we then choose Ri ) R'i_r such that for & < 7
one has

(3 1) R?
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and

(3.2) ltk-tjlBj ) lrr- a1l+7.

Also set R'i: Rf where K is large.
Now let

u*(r,t): (ztr)-" [ .i'c'e 
"itl€12 

i(€) d€.
./l€l<R;

Then u-(., t) ---+ u(.,t) in I2(R") for each f , and

m-m

u^(o,t1 : fp*)-" [ "i(a-c;)'€";(t-t,;;s1z l(l-"(log l(l) -'l' d€ : t Ai@,t).
j=t r §i i:l

We first observe that

1Er,,,,,,1 =./=,,,."i_, t(t (r.stet) -e/a d,€

- n [*'-' r-1(log )-s/t d,r < c(logR'u-r)'/o < c(log Ru)'ln-u J,

for all (*,t). We also have

A*(**,t1,): (ztr)-" I l(l-"(los l(l)-'/n a€
Jsr

: 
" [^' r-1(log )-t/t d.r : c (11orRL)r/o- (log Ro)r/n)

JRx

> c(log R'u)'/o, c ) 0.

Forj>k)2onefindsthat

Ai(**,tx)- ( z,y)-* 
lr^-,d,5({ l: r-7 (los r)- s/ae;r?) 

d,r,,

F(r)_ (*r - nr) . €'r * (tr - t)r'.

F'(r) - ( np - *). (' + 2(tr - t),

where

It follows that

and

(3.3) F"(r) -Z(tk-tj).



Using (3.2) we conclude that

(3.4) lr'(")l > lt*- tilr>1t1,-tilBi, Ri u-r.R'i,

and an integration by parts gives

l: #"i*(r)6,: l: ffiiF'(r)eiF(')dr
:[6.,.(.)] : l:*(A) ",o«.,dr:A_B

Invoking (3.a) and (3.1), one obtains

and according to (3.4) and (3.3) we also have

' rsltk i j

and hence

22

(3.5)

It follows that
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lti@r,r*)l S c2-i.

(3.6) lu*(*o,to)l ) c(losR!)t/+ - CQogRr)'ln - C\2-i > c(logR'o)l/a,
&+1

when rn > ,t and .K is sufficiently large.
Tosee that u is continuousin {t > 0}, takeacompact set Z C {(r,t) ;, > 0}.

Since the sequence (.Bi) is very rapidly increasing, there exists a ,o ( oo such
that (3.1) and (3.2) hold for j > jo with (r7,,t7,) replaced by any (r,t) e Z. But
then one can also take (r,t) e L instead of. (rp,t1) in (3.5), j ) 7e. Hence, the
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u?n converge locally uniformly in {l > 0}. Since each u* is continuous, so is

in {t > 0}. From (3.6) we conclude that

how equality (3.7) extends to S'f . Let f € H, and take
in Hr. Then S'fi -) S'f in Hn,r,g.The Hn,r,o normis

o9
L.)

l"(*x,tr)l ) c(logR'x)'ln -» *oo

as fr ---+ *oo. This implies (1.5), and Theorem 3 is proved.
Before the last proof, we must introduce more mixed Sobolev spaces. Fix a

large ball B C R". Define a space

He,,,o: Ifa,,,o(R' x R x B) :(Gn I G,) +r,z L'(R" x R x B),

with the obvious norm. By *r,, we mean convolution in R" x R. The variables

will be denoted r € R",, € R, o e B.
Let u: (GnB Gr)*r,rg e Hs,r,o with r > 7l2.For Cn-q.a. r, we claim

that for a.a. a € B the value o(r,t,o) is well definedfor all e R and depends

continuously on f . As before, "well defined" means that the convolution integral
is absolutely convergent. We argue as when discussing H n,, in Section 2. Write
u : Gr*z(G e*1 g). We need only verify that for Cr-q.a. r the inner convolution
here is irL L2(dt) for a.a. o € B. But

and this last quantity is finite for C n-q..a. n . The claim follows.

Proof of Theorem 4. For f e S we write

(3.7) S'f (*,t,a)- S/( r + dt,t)

with ^S/ as before. To deduce an a priori estimate for S' f , we consider one a at
a time and argue as in Section 2. The only difference is that p(O will be replaced
bv p(€) * a.€. The result is

Here A and r are as

,S" H, + H n,r,o .

We now examine

f i e .S with f i -» f
given by

ll^9'fllun,,,o S Cllflln", f €5.

before and C _ C n. This gives a continuous extension

llrll'rn,.,o : llr(',,', e)ll'r,,, do.

Convergence ui --+ u it Hs,,,o therefore implies that ui(',',a) - u(',',4) in
H n,, for a.a. e ) at least for a subsequence. Restricting to R" x {r}, we get that

t,
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,j(.,t,a) -+ u(.,f,o) in Hnfot all f ,for a.a.ot. Ontheotherhand, Sf{.+ta,t)
S/('+ ta,t) in If" because of (1.a). For a.a. a, we conclude that for all t

(3.8) S'f(r,t,,a)-Sf(n+ta,t), a.a. r.

When f e H* we have

s'f -(GnEG,)*t,zg € Hn,,,o.

The property of H q,,,0 deduced before the proof implies that for most r and a,
the value S'f (*,t, a) is well defined for all f and depends continuously on ä. Here
ttmostt' is taken in the sense of Theorem 4.

It remains to see that if

(3.e)

then the value (Gn A G,) *t,z g(r,t,a) is obtained when ,9/ is made precise at
the point (r *ta,f). Disregarding those o in a null set, we can assume that (8.8)
holds. Notice that a can be kept fixed, since only the restriction 9(.,., a) is used.
We know that (3.9) implies that the value of (GnA G,)*r,rg at (x,t,a) is the
limit as 6 --+ 0 of the mean of the same function in the disc Bi,r(6) x {o}. But
this mean equals the mean of ^9/ in 8l*r.,r(6), because of (3.8). This settles the
case of the disc method.

For the ball method, we see from (3.8) that the mean of ^S/ in 8r+ro;(6)
equals the mean of. S'f in a set Ei*Q) x {"}. Here Et*$) is defined by

(*' ,t') e El,,(6) <+ (*' + t' a,,t') € Br*ta,t(6).

But (3.9) implies that the means of (GnOG.) *1,2g in Et,r$) x {o} iend to the
valueof thesamefunctionat (r,t,o). Thisisbecause Et,r(6) iscontainedinthe
ball 8,1(rt\+10l)6), andits volume is comparable to that of this ball. The
dominated convergence argument used for H n,, rtow carries over. This takes care
of the ball method and ends the proof of Theorem 4.
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