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ON THE FREQUENCY OF TITCHMARSH'S
PHENOMENoN FoR ((s)-VIl

K. Ramachandra

1. Introduction
In this paper we study small intervals .I for t (of length ä ) expexp(e))

contained in [7,27,] for which

where 7 is the Euler's constant and p a certain real constant which is effective.

All our constants including the O-constants are effective. The Greek letter d will
denote the least upper bound of the real parts of the zeros of ((s). In the present

state of knowledge we do not know whether 0 < 1, or not. Only one of our
results depends on the hypothesis 0 < 1. (in place of the more drastic Riemann

hypothesis which asserts lhat 0 :112) and in this case it is only for convenience

that we assume that 0 is effective. The nth iterated logarithm lognT is defined

inductively log, ? : log?, and log,*, ? : lo8(log, ?). Similariy the nth iterated
exponential is defined by expr(?) : exp(?) and exp,-p1(") : exp(exp,(?)). Our
first result is that the inequality (1) holds for all ff satisfying

(2) T>H)CtIognT
where Ct ) 7 is a certain constant. Our next result is that jf the hypothesis 6 < 1

is true, then (1) holds for all ff satisfying

T>H2CzlogsT
where Cz ) 7 is a certain constant. We assume throughout that T ) Cs and

H ) CE where Cs and Ca are certain positive constants. Let now H < CrlognT.
Consider a set of disjoint intervals .[ contained in [7,2T,] fot which (1) is false.

Our third result asserts that the number of such disjoint intervals does not exceed

TXr' where Xt : expa(BH), where P > 0 is a constant. Again let H <
C2ligr?. Consider a set of disjoint intervals .[ contained in lT,2Tl for which (1) is

false. Our (fourth and) final result asserts that the number of such disjoint intervals

does not exceed Tx;' where X2 : expu( B'H) whete P' > 0 is a constant' Similar

results can be proved for l((1 + ir)l-l. We have only to replace e1 by 6"'ln'.
These results can be generalized suitably to ( and .L-functions of algebraic number

fields and so on.

(1)

(3)
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2. Titchmarsh series and a main theorern
The study referred to in the introduction is based (apart from other ideas)

on the following Theorem B due essentially to the author [7] (see also [s] and [3]).
There the author proved the following two Theorems A and B. We begin with the
following definition.

Titchma,rsh series. Let A ) 1 be a consta^nt. Let 1 : )r (.\z ( Ås ( ...
where llA < )n+r - \n I A. Let 1 : cttte2sds;...be a sequence of complex
nrrmbers, possibly depending on a parameter H ( > 10 ) such that lo*l < (^"H)A .

Put ,F'(s): DLr an)i" where s: o * if. Then F(s) is analytic in o ) A+2.
F(s) is called a Titchmarsh series if there exists a constant A > 7 with the above
properties and further a system of infinite rectangles R(T,T * fr) defined by
{o } 0,7 <t <T + H} where 10 < ä ( ? and 7 (which may be related to ä)
tends to infinity and.F(s) admits an analytic continuation into these rectangles
and the maximum or lr(s)l taken over R(T,T+H) does not exceed expr(H 1g0.4).

Remark. It suffi.ces for all our purposes to assume that l.F'(§)l is continuous
in ,B(?, f + 4 and that F(s) is analytic in {a > 0,7 1t <'T + iI} besides the
other properties.

Theorem A,. We have

L Ilrr"llat>caII JL
where Ce> 0 depends only on A a,nd L is the side {o:0,? <t <T * H} of
R(T,T + Ir).

Theorem B. We have

I I lrr*ll'a,, co D to,P(r- g + --1-\H J t,- r, (X "'' \^ log ä ' logr H )'
where X:2*DaH, and Ca)0, Da)0 dependonlyon A.

Remark. If )" - n then it was shown in [3] that x can be taken to be
H 1290. The essential point in that paper was that the tapering factor multiplying
la,l2 was improved. The bound on lf(s)l was relaxed to expr(Hf80,4). (Thi;
was known to the author for quite some time.) However, for our applications
Theorem B is enough and the improvement in the tapering factor does not seem
to have any extra advantage for the purposes of the present paper.

From Theorem B we deduce (in the rest of this section) our main theorem.

Main Theorem. Let I be an interval contained in lT,2Tl and of length H
and let the maximum of lC@ * it)l taken over the rectangle {o } 1, t e i} not
exceed exp2(H 11,00). Then

(4) ffil(tr+ir)l > e1(tosrff-log3 H - d,
where 1 is Euler's constant and p is a certain real constant.
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We do this in a series of lemmas. The deduction can be done in a somewhat

similar fashion as in [2] or [10] although we follow the latter. First of all we

take .F(s) : (((1 + r))o and set k equal to the greatest integer not exceeding

logälSlogrH. We verify that .F'(s) is a Titchmarsh series with ), : n and
or : 1. Now

o. : do(n).. $ ry : nGe))o I nHn -'?- n

since & < log If and ((2) ( e. Under the conditions of the main theorem, the max-
imum"f l.F,(r)l inthe relevant rectangle does not exceed exp{(l"gII)exp(ä/t0O)}
< expr(H 180), provided that log If ( exp(ä/aO0) which is certainly true if
(H1400)2 > 2H, i.e., if If > 320000. Hence we can take A: 1. Thus we

have the following

Lemma L. [Jnder the hypothesis of the main theorem, with lc ehosen as the
greatest integer not exceeding log H l5log2 H , we have

1,f
* J,r,lrt'+tt)l2kat'", ,8^,(#)'(' - #. *r")

a,nd so

(b) Tårl((1 + i,)l > (#)'''o ,,
where Q:rnaxn<H/2oo(d,k(n)ln)'/o and C5)0 is aconstant.

Lemma 2. We have

f c' ) 
ttzk 

_r * o (1"{, å) 
.

\log2Hl - -\ k /'

Proof. The lemma follows from the definition of ft.

Lemma 3. The qua.ntity dp(n)ln, which is defrned on prime powers by

d*(1) :, unl 
d*(p*) _ k(k +1)....(k + m - 1) 

.1 - ^ *'* P* mlP*

is a multiplicative function of n.

Proof. The lemma follows from the definition of. dp(n) as the coefficient of

n-" in (((r))ft u.rrd the Euler product for ((s).
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Lemma 4. For m ) 0 we have

provided 4k * 4m < \mp a 3p, i.e., m > (4k - 3fi I (3e - \ .

Proof. This follows directly from Lemma 3.

Lemma 5. The inequality (6) holds if p < k and m ) [*o | 1.), where
ms: (4k - }p)lQp - 4). We aJso have

(7) mo*l.nk.
p

Prcof. We have

m,.L! ::r -+. : nr=- n, < 4k - 4 <4k' 3p-4 p*2p-4 - p p

and hence the lemma follows.

Lemma 6. We have

(8) f, - i) 
-o .(*o+5)-SI* ,(W)

Proof. Lel u : l*o * 1]. Then the LHS equals

$ ao(p-) _, S d*(p*)
LD*-TLD""'
m:O ' m:u+l

Here the first sum does not exceed (*o+ 2) times the maximum in question. The
second sum is by (6) less than ((Slq + Ql4)2 + @14)3 * . . .) times the maximum
in question. This proves the lemma.

Lemma 7. Let p < k. If m denotes the integer (to avoid a complicated no-
tation) not exceedin7 rno*7 for which the maximum of (d1,(p*))p-^ is attained,
we have

(e) dr(t) 
> * (r- 1) 

--
p* -8k\- p)

Proof. This lemma follows from (7) and (8) since 4 + (4k ld < Gk) lp.
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Proof . Since rrl I mo + 1 < ak lp it suffices to check that

llnnrro = #, i.e., 
E tr 

< logä - log(200).

The Iast statement follows since (by prime number theorem) DpS*logplp is

asymptotic to log lc as lc tends to infinity.

Lemma 9. We have, for Q defined in Lemma 1., the lower bound given by

Proof. By (9) it suffi.ces to check that

(11) (g l*1"-) ,U 
(, - ;) 

-r , ,z(,os,r + o(1))

It is well-known that the second product in (11) is ) er(log lc+ O(t)) (see (3.15.2)
of [11] for a weaker result which is not hard to improvel see also p. 81 of Prachar's
Primzahlverteilung, Springer-Verlag, 1959). The logarithm of the first product is

31

II
p1k

i»(los p-los k-1og8) - o(#)
* plk

on using the prime number theorem in the forms

»Ios p- k+o(#) and »rogk- k+,(#)
p1k\(r/psk

Hence (11) follows. This completes the proof of Lemma 9.

Lemmas 2 and I complete the proof of the main theorem.
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3. First application of the main theorem
Theorem L. Let I be an interval of length H contained in lT,2Tl. Let

T> H ) Crloe.,T. Then

Tglett + it)l > e1(togrf/ - log, H - p),

where 1 is Euler's constant and p is a certain real constant.

We prove this by a series of lemmas.

Lemma L. Divide I into three equal parts each of length H f 3. Denote the
middle interval by 12 and the others by 11 and \. Then we have either

(12) %Tlett+ir)l > e1(logrä-log, H -o(t)),
or

(13) 
"Spr,l((o 

+ ir)l > exp2(ä/Boo).

Proof. The lemma follows from the main theorem.

Lemma 2. If the maximum in (13) occurs for 7 < o 1 7 | 6, where
6 : (expr(frl400)) -t , th", (72) holds.

Proof. In this case we have for some t6 in .I2 the inequality

le(t +;to)l > l((" +;ro)l - d,<TgI*ol('(u + ao)l

> expr(H 1300) - 6(C6 log2 ts) > | expr(I//300),

provided expr(ä/400) > C6(logrs)2. Hence the lemma is proved.

Lemma 3. For any complex number z with In"1r;l < ll4, we have the
inequality

(14) lexp((sin ,)')l << exp (- expltm(z)l)

where the constant implied by the Vinogradov symbol (( is absolute.

Proof.Let z:a*iy where o and y arerealand i:r/IJ. No*

Re(sin ,)') : ne (|(t - iG'n" + "-'o'))) 
: iQ - e-2v cos(2r) - e2v cos(2r)).

Note that in lcl < Ll!, cos(2r) is positive and is greater than or equal to
cos(712) ) cosQrf 6: \/312. Hence

Re(sin ,)') < -*ru" + ezv) + l,
and the lemma follows.
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Lemma 4. Let B be a,rry positive constant. Then for any complex number

z with lnelzl l < B 14 , we have the inequality

where the constant implied by the Vinograd symbol << is absolute.

Proof. This is a corollary to Lemma 3 obtained by replacing z by zlB.

Lemma 5. Let the maximum in (13) be attained for o : os ) 1 * 6 attd

t : to where ts is in Iz. Then the assertion of Theorem L holds.

Proof. Put s6 : oo *il . We can certainly assume that oo <2- 0'01 ' Let
B be the rectangle formed by the vertical line segments o : 7, o : 2 and t in
.I and the horizontal line segments connecting the upper and lower extremities

of these vertical line segments. Let D be the boundary of this rectangle in the

anti-clockwise direction. Then by Cauchy's theorem we get

( 15)

( 16)

1"., ((,'" ;)')

o (,".o 2(H tBB)) 
- ' (l ,,1((, )l 

do * lr,l((,) I ,") )

o (ft"* 
")(1og 

r)-'

*[ #* exp ({.i"ts - so) I B)') d's- (('o)

Here B is any positive constant. We can fix B :4 for our pulpose. The integral
along o:2,t e .Iis O(1). Theintegralalong a:7,t €f is O(Mlog6-L),
where M : rnaximum "f le(t + it)l as t varies over f. The horizontal line

segments ä1 and ä2 contribute

We have fixed B:4. Since ((r): O(tl@ - 1)) and also ((s): O(log?), the

integrals over ä1 arrd H2 are

* 
l,'*(,os r)-'*) - o(1og' q

Thus

expz @ 1300) - o (*los | * (los 2r) ("*pr(

From this and our choice of 6 our assertion is proved

greater than log zT. This proves the lemma and hence

proved.

H lr2)) -')

if we make
Theorem 1 is

exp 2@ 112)
completely
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4. Second application of the main theorem

In Section 3 we saw that the proof worked because

,§1];rl((" + it)l: o(tosT) and ,frprl('(" + ?r)l : o((log")'?).

By the Riemann hypothesis the corresponding estimates are O(1og2 7) and
O((Iogrf)2). The method of proving these estimates are via log((s). An ex-
amination of the proof of these results shows that it is enough to assume that
0 < 1,. Hence we record:

Theorem 2. Let I be an interval of length H contained in lT,2T). Let
T>H)CzlogsT.Then

Tårl((1 + ir)l > e1(rosrä - log, H - p),

where 1 is Euler's constant and Q is a certain real constant.

5. Third application of the main theorem

Theorem 3. Let H I CrlognT. Consider disjoint intervals I , contained
in lT,2T), all of length H . Put X : expq,(aH) where a is a certain positive
constant satisfying a < Crt12. Then, except possibly for O(TX-|/2) intervals
f , we have

Tåil((1 + ir)l > e1(losrff - log, H - p),

where 1 is Euler's constant a,nd g is a certain rcaJ constant.

We prove this theorem by a few lemmas.

Lemma L. Let a:0.1,, s:o*it whereT <t <2T artd 7la>. o ) 1-a.
Then

7f(17) * J*o-r:rei + *)x* exp(w214: 
å " (;) "-',

wherefor u>0 wehave

( 18) A(r) - * l*.(ut)-zu* 
exp(*')*

The proof is trivial.
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Lemma 2. We have

( 1e)

and

(20)

Proof. To prove (19) we move the line of integration in (18) to Re(tr) : 5
and to prove (20) we move it to Re(ur) : -§.

Lemma 3. Let

(21)

Then we have

(22)

Proof. In th
13 l2A-oandn

we complete the

Lernrna 4.

(23)

where

((,)- i^ (#) n-s + E(-,x)
n:l

n7* a n2T

J, , J, lars,x)l'd" d,t - ogx-t/z).

e left hand side of ( 17) we move the line of integration to Re(to) -
ote that exp r(") < X < T. Using

ff,''1,(* +i,) 
l' 

o, - o(r),

proof of the lemma.

We have

n:l \ / nlX

(24) G(,,x): 
å (^ (#) -,) n-s*,ä^ (f) T,-s

(2b) - ifr'-o).

Proof. Follows from Lemma 2.
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The number of intervals I for whichLemma 5.

(26)

is

(27)

Proof .

with centre

o(Tx-t/\.

The quantity lAfr,X)l is not greater than its mean value over a disc
s and radius o,12. The lemma now follows from (22).

Lemma 6. In the region defined Uy (t - (logX)-l I o ,--2,t e I) we have

(28)

and also in (1 S o { 2,t € I)

(2e)

((r) - o(los x)

('(r) _ o ((1og x)') ,

except possibly for O(TX-r/2) intervals I.
Proof. The equation (28) follows from Lemma 4 and 5 on noting (21). To

prove (29) we may apply Cauchy's theorem to ((s)(s - ,o)-' where zs lies in
(o ) 7,t e I). We integrate over a circle with centre zs ar.:d radius (logX)-l.
Rough estimates now give (29). Another proof consists in differentiating (21), (23)
ard (24) partially with respect to s . (In the second proof we have also to establish
(22) with E(s,X) replaced by 0.8(s, X)10s.) Thus Lemma 6 is proved.

From Lemma 6, Theorem 3 follows in the sarne way as Theorem 1 was derived
in Section 3 from the estimates ((s): O(logt) and ('(r): O((logt)'?) in (o )
7,t > 2). Thus Theorem 3 is completely proved, and by choosing a smaller
constant B in place of o our third assertion in the introduction follows.

6. Fourth application of the main theorem

Theorem 4. Let H l CzloguT. Consider disjoint intervals I, contained
in lT,2Tl, all of length H. Put Y : exps(o'H) where a' is a certain positive
constant satisfying a' < C;l12. Then except possibly for O(TY-|/3) intervals
I, we have

Tffleft + ir)l > e1(tosrr/ - log3 s - o),

where 1 is Euler's constant *rd p is a certain rcal constant.

We prove this theorem by a series of lemmas. Note that expr(e) < Y < T .
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Lemma 1. Let a - 0.1. The number of intervals I for which

is O(TY-1/21. Here the consta,rfi implied by the Vinogradov symbol >> is a
certain positive constant. Let I' denote the intervals I (above) with intervals of
length logY annexed at each end. Then the total length of the interva)s I' is

O(rV-tlz tog Y).

Proof. The proof is similar to that of Lemmas 1 to 5 of the previous section.

We have only to replace X by Y.

Lemrna 2. Let us consider the zeros 8o : 0o*i1s of ((s) witå T I % < 2T

*d 0o > 1- a:0.9. Let e be a small positive consta.rfi. With each such zero

go, we associate the rcctangl" R(po) consisting of complex numbers z : r *it
satisfying 1 2 r ) 7 - a a'nd do - tl < 7" . If H(ps) denotes the height of ,t(ps)
then

» H(po) - o(n@lto,2T)"")

where I\I(9/10,27) denotes tåe nurnber of zeros of ((s) with a real patt > 9/10
a,nd imaginary pa,rt lying between 0 and 27.

The proof is trivial.

Lemma 3. Flom the interval lT,2Tl we omit the intervals I' of Lemma 7

of total length O(fV-r/z logY) a,nd aJso the t-intervaJs counted in Lemma 2 of
total length O(N(9/10, 2r)r") . Then the maximum number of intervaJs I whieh

have at least one point in common with these t-intetvals is

ogy -1/2 H -', log )r) + o (rr @ lto,,zT)H -'r") .

Proof. We have only to annex on either side of the excluded intervals l-
intervals of length If . We then exclude the maximum possible number of f-
intervals .I which are wholly contained in the union of extended intervals'

Lemma 4. We have

lr(9/ 70,27^)- O(ftl3(Iog T)'oooo)

maximum possib le number of intervals I (which are excluded) is

OgY-7 12 H-'log Y).

Proof. Using only the mean square result regarding le\lZ+n11we can prove

the result N(o,T) : O(T^O-o)1log?)50000) where ),: 4lQ - 2"). (See [6] and

the references therein.) This is the simplest non-trivial density result.
(The method of obtaining such results can be traced to many authors. See

[11] and [a].) This result gives the lemma. We can choose e:114.

37
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(31)

(32)

(33)

and so the

(34)
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Lemma 5. Let I be a t-interval which is not excluded by Lemmas 3 and
a. (We will prove the expected lower bound for the maximum of l((t + it)l taken
over such intervals.) Then for any point t1 belonging to I, the rectangle .9(t1)
defined by

(35) S(tr) - {" + itl}.e <
is free from zeros of ((s) and also l((r)l

Proof. Follows from Lemmas 1 to 4.

Lemma 6. Let Co be a large positi
defined by

U(tr)_ {o * it J 
O.Of 1o <2, lt - rrl ( Iog y - C6}

we have log ((s) : O(loS Y).
Proof. The lemma follows by a suitable application of the Borel*Caratheodory

theorem (see p. 282 of [11]).

Lemma 7. Let s by any point of the rectangle V(t1) defined by

(37) V(t): {o +it I o.ozs 1o <-2, lt - trl S åtogr - C6}.
Let V : (log Y)too and let

(38)

in Re(u)

(3e)

The proof is trivial.

Lemma 8. We have uniformly for all s in V (tr)

o 12,lt - trl ( log Yj
< Y there.

ve constant. Then in the rectangle U(tr)

(36)

los((.)_ i anTt-*

* l*"(u:)-2los((, 
* us)v*exp (*')#- 

å" (f) anrl-',,

(40)
å^ (f) a,fr-' - los((,) +,(1)

Proof. Let us consider the integral in (3g). The contribution from lt*1t ;l 2
(IogY)la is o(1) since lexp(to')l .. exp(-llm(u,;l') *t"r" the constant imptied
by the vinogradov symbol is absolute ir lnelur;l does not exceed an absolute
constant. We deform the rest of the contour as follows. Im(u) : -(logy)lain the direction of Re(u.,) decreasing from 2 to 0.95 - o; then the vertical line
Re(ur) : 0.95-o in the direction of Im(ur) increasing and then hn(tr) : (logy)la
in the direction of Re(tr) increasing from 0.95 - o to 2. Using Lemma 6 it is
easily seen that the iniegrals along the deformed contour contribute o(1). The
pole to : 0 contributes log ((s). Thus the lemma is completely proved.
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Lemma 9. For s in V*(t1), defined by

(41) V.(tr): {o* ttlt- (logY)-r 1o12, lt-trlSilogY-C6},
we have the estimates ((s) : O(togV) attd, in the part o ) 1 of Y.(rr), ('(r) :
O((log V)2) with Y : (logY)too.

Proof. Lel, o* : I - (log I/)-r . Then in the region V*(tr) we have

lrog((s)l =i^fI) dnTt-o +o(1)=?" (i)r- +o(1)' v -\ 
=7r:: io(1) < r r-' + o(1) ( ros2 v + o(t).

pSV P1V

Here the first three inequalities follow as in Lemma 4 of. the previous section.

The fourth follows since for p <V, p-o' : p-r tO(p-' logp/log7) and since

D,.r\o\plp: O(logV) bV prime number theorem. The last inequality fol-
lorirJ by prime number theorem. The first estimate of the lemma follows since

togl6(s)l I ltog((s)1. The second follows from the first by applying Cauchy's

theorem. Thus Lemma 9 is completely proved.
Theorem 4 follows from Lemma 9 (just as we derived Theorem 1 from the

main theorem). Our fourth assertion in the introduction follows from Theorem 4.

Concluding remarks

The arguments of the previous section resemble to some extent the definition
and treatment of ihe Huxley-Hooley contour in [5]. We can work out the results
corresponding to the previous sections for 1,/2 < o < 1 and also for o :112.
Thus

Tåf le(, + it)l , "*r(
Ct(log H)t-o

Iog2 H

holds with the exception of at most O("(expr(B"H))-') irt"rr.ls where B" is a
positive constant, provided Cq, < H I Cslog2T (C, being any positive constant
and B" is allowed to depend "t C3 ).

On o : 1,f2 we gel

(i)

(ii )

(some positive constant in place of. 314 comes out by [2], but 3/4 comes out by
using a result in [1]) with exceptions nearly the same as before but with an extra
restriction H ) IogsT.

The improvement of these results
functions used in the present paper see

the reference number 3.)

seems to be difficult. (For some kernel

t9] and the reference list there, especially



40 K. Ramachandra

References

11] B.q.LA,susRA,r4ANrAN, R.: on the frequency of ritchmarsh's phenomenon for ((s)-IV. -
Hardy-Ramanujan J. 9, 1986,1-10.

t2] BAL.q,sunR.q.il4ANrAN, R., and K. Re,u.e,cul,rnRa,: on the frequency of ritchmarsh's phe-
nomenon for ((s)-III. - Proc. Indian Acad. Sci. Math. Sci. 86, 1972, A41-3b1.

13] B.a.r,AsuaRA,rvrANIAN, R., and K. Rl,Nr.c,cHA,NoRA: Progress towards a conjecture on the
mean-value of Titchmarsh series, III. - Acta Arith. XLV, 1986, B0g-818.

t4] Ivlc, A.: The Riema.nn zeta-function. - John Wiley and Sons, New York-Chichester-
Brisbane-Toronto-Singapore, 1 985.

15] R.l,r,I.l,cnnNpR.L, K.: some problems of analytic number theory, I. - Acta Arith. XXXI,
t976,3L3-324.

t6] Rn'nrncu.q,NoRa., K.: Riemann zeta-function. - Publications of the Ramanujan Institute
4, University of Madras, 1979.

17) Reulcu.e,NoRa., K.: Progress towards a conjecture on the mean-value of Titchmarsh
series, I. - Recent progress in analytic number theory (edited by H. Halberstam and
C. Hooley), I. Academic Press, London-New York-Toronto-Sydney-San Francisco,
1981, 303-318.

t8] Reu.o,cnaNoRl, K.: A brief summary of some results in the analytic theory of numbers,
II. - Addendum. Number theory, Proceedings of a conference held in Mysore in 1g81
(edited by K. Alladi). Lecture Notes in Mathematics 938. Springer-Verlag, Berlin-
Ileidelberg-New York, 1,982, 106-122.

t9] RaNa,{cH.q.NoRA, K.: Mean-value of the Riemann zeta-function and other remarks, III. -
Hardy-Ramanujan J. 6, 1983, 1-21.

[10] R.a.NracH,q,NoRA, K., and A. seNr,q.RÄ,NARAyANAN: omega-theorems for the Hurwitz
zeta-function. - Ark. Mat. (to appear).

[11] TlrcnNt.q.nsH. E.C.: The theory of the Riemann zeta-function. - Clarendon Press, Oxford,
1951.

Tata Institute of Fundamental Research
School of Mathematics
Homi Bhabha Road
Bombay 400 005
india

Received 6 October 1987


