Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 14, 1989, 41–46

EMBEDDING OF ORLIZ-SOBOLEV SPACES IN HÖLDER SPACES

Vesa Lappalainen and Ari Lehtonen

1. Introduction

For a smooth domain Ω in \mathbb{R}^n , e.g. a bounded Lipschitz domain, each function u which belongs to the Sobolev space $W^{1,p}(\Omega)$ is in fact Hölder-continuous in $\overline{\Omega}$ if p is greater than n (cf. Adams [1], Kufner et al [6] or Necăs [14]). A similar embedding property holds also for Orlicz-Sobolev spaces (cf. [1] or [6]).

Typically, the boundary behaviour of u is handled by straightening the boundary to a half space using local coordinate maps and deriving estimates for the Hölder norm of u in terms of the (Orlicz-) Sobolev norm (cf. [14, Chapter 2.3.5.]). Instead of using estimates on the boundary we first show that if p > n the Sobolev spaces $W^{1,p}(\Omega)$ can be embedded in a certain local Hölder class loc $\operatorname{Lip}_{\alpha}(\Omega)$, $\alpha = 1 - n/p$ for any domain Ω . The embedding to $C^{\alpha}(\overline{\Omega})$ is then derived for a large class of domains via the embedding of loc $\operatorname{Lip}_{\alpha}(\Omega)$ to $C^{\alpha}(\overline{\Omega})$. The following result is obtained as a corollary:

Theorem. If Ω is a bounded uniform domain and p > n, then $W^{1,p}(\Omega)$ is continuously embedded in $C^{\alpha}(\overline{\Omega})$.

Note that by a result of P. Jones [5] there exists an extension operator $W^{1,p}(\Omega) \to W^{1,p}(\mathbf{R}^n)$ for uniform domains, and the theorem hence follows from the wellknown embedding $W^{1,p}(\mathbf{R}^n) \to C^{\alpha}(\mathbf{R}^n)$. However, for the theorem no extension result is needed, and our approach is based on classical Hölder continuity estimates together with Gehring and Martio's [3] and Lappalainen's [7] results on Lip_h extension domains. Therefore our method applies to a larger class of domains than uniform domains.

2. Preliminaries

An Orlicz function is any continuous map $A: \mathbf{R} \to \mathbf{R}$ which is strictly increasing, even, convex and satisfies

$$\lim_{\xi \to 0} A(\xi)\xi^{-1} = 0, \quad \lim_{\xi \to \infty} A(\xi)\xi^{-1} = \infty.$$

We let Ω denote a domain in \mathbb{R}^n . The Orlicz class $K_A(\Omega)$ is the set of all measurable functions u such that

$$\int_{\Omega} A(u(x)) \, dx < \infty,$$

doi:10.5186/aasfm.1989.1417

and the Orlicz space $L_A(\Omega)$ is the linear hull of $K_A(\Omega)$. As norm in the Orlicz space we use the Luxemburg norm

$$\|u\|_{A,\Omega}:=\inf\Bigl\{r>0:\int_\Omega A\bigl(u(x)/r\bigr)\,dx\leq 1\Bigr\}.$$

The Orlicz-Sobolev space $W^1L_A(\Omega)$ is the set of functions u such that u and its first order distributional derivatives lie in $L_A(\Omega)$. In the case where $A(\xi) = \xi^p$ we obtain the standard Sobolev space $W^{1,p}(\Omega)$. For a more detailed discussion of Orlicz spaces we refer to [1] and [6].

A domain Ω in \mathbb{R}^n is called *c*-uniform if each pair of points $x, y \in \Omega$ can be joined by a rectifiable curve γ in Ω such that $l(\gamma) \leq c |x - y|$ and

dist
$$(\gamma(t), \partial \Omega) \ge c^{-1} \min(t, l(\gamma) - t).$$

A modulus of continuity is any concave positive increasing function $h: [0, \infty[$ $\rightarrow \mathbf{R}, h(0) = 0$. A function $u: \Omega \rightarrow \mathbf{R}$ belongs to the local Lipschitz class loc Lip_h(Ω) if there exist constants $b \in [0, 1[$ and $M = m_b$ such that for each $x \in \Omega$ and $y \in B_b(x) := B(x, b \operatorname{dist}(x, \partial \Omega))$

(2.1)
$$|u(x) - u(y)| \le Mh(x,y);$$

here and hereafter h(x, y) := h(|x-y|). As a matter of fact, it is shown in [7] that it is equivalent to require the condition to hold for b = 1/2; the smallest $m_{1/2}$ defines a seminorm of u. It should be remarked that this definition differs from the standard definitions of local Hölder spaces. In fact, the class loc $\operatorname{Lip}_h(\Omega)$ is not a local space but semiglobal in a sense. A function u belongs to the Lipschitz class $\operatorname{Lip}_h(\Omega)$ if there exists a constant $M < \infty$ such that (2.1) holds for all $x, y \in \Omega$. For bounded domains $\operatorname{Lip}_h(\Omega) = C^h(\overline{\Omega})$, where $C^h(\overline{\Omega})$ is as in [1, 8.37].

Let h and g be two moduli of continuity. A domain Ω is a $\operatorname{Lip}_{h,g}$ -extension domain if $\operatorname{loc}\operatorname{Lip}_h(\Omega)$ is continuously embedded in $\operatorname{Lip}_g(\Omega)$. For short $\operatorname{Lip}_{h,h} =:$ Lip_h and, for $h(t) = t^{\alpha}$, $\operatorname{Lip}_h =:$ $\operatorname{Lip}_{\alpha}$. The following result due to McShane [13] justifies the name extension domain (see also Stein [15], [3] and [7]).

2.1. Theorem. If Ω is a Lip_h-extension domain and $u \in \text{loc Lip}_h(\Omega)$, there exists a Lip_h-extension $u^*: \mathbb{R}^n \to \mathbb{R}$.

We can characterize $\operatorname{Lip}_h\text{-}\mathrm{extension}$ domains by using the following metric in Ω :

$$h_{\Omega}(x,y) := \inf_{\gamma(x,y)} \int_{\gamma} rac{hig(\mathrm{dist}(z,\partial\Omega) ig)}{\mathrm{dist}(z,\partial\Omega)} \, ds(z),$$

where the infimum is taken over all rectifiable curves γ in Ω joining x to y.

2.2. Theorem. A domain $\Omega \subset \mathbf{R}^n$ is a $\operatorname{Lip}_{h,g}$ -extension domain if and only if there is a constant $1 \leq K(\Omega, h, g) < \infty$ such that

$$h_{\Omega}(x,y) \le K g(x,y)$$

holds in Ω .

For a proof see e.g. [3] or [7].

3. Embedding of Orlicz-Sobolev spaces

Let A denote an Orlicz function. If
(3.1)
$$h(t) := \int_{t^{-n}}^{\infty} \frac{A^{-1}(r)}{r^{1+1/n}} dr$$

is finite at $t = \varepsilon$, then h defines a modulus of continuity on the interval $[0, \varepsilon]$. It is easily seen that the derivative $h'(t) = n A^{-1}(t^{-n})$ is decreasing.

3.1. Proposition. If $h(1) < \infty$, then $W^1L_A(\Omega)$ is continuously embedded in loc Lip_h(Ω) for any domain $\Omega \subset \mathbf{R}^n$.

Proof. It follows from [1, Theorem 5.35] applied to balls contained in Ω that each function $u \in W^1L_A(\Omega)$ is continuous. Now let $B_b(x_0)$ be a ball contained in Ω and $x_1 \in B_b(x_0)$. Let $t := |x_0 - x_1|$ and choose a ball B of radius t such that $x_0, x_1 \in B \subset B_b(x_0)$. We denote by |B| the Lebesgue measure of B and by

$$u_B := \frac{1}{|B|} \int_B u(z) \, dz$$

the mean value of u in B. As in [1] we obtain the following estimate for $x \in B$:

$$\left|u(x)-u_{B}\right| \leq \frac{2t}{|B|} \int_{0}^{1} r^{-n} \int_{B_{r}} \left|\nabla u(z)\right| dz,$$

where B_r denotes a ball of radius rt contained in B. Since

$$\int_{B_r} |\nabla u(y)| \, dy \le 2 \, r^n \, |B| \, \|\nabla u\|_{A, B_r} \, A^{-1} \big(r^{-n} / |B| \big),$$

we obtain

$$|u(x) - u_B| \le \frac{4}{n \,\Omega_n^{1/n}} \, \|\nabla u\|_{A,\Omega} \, \int_{1/|B|}^{\infty} \frac{A^{-1}(r)}{r^{1+1/n}} \, dr,$$

where $\Omega_n := |B(0,1)|$. Since h is increasing and concave, we have $h(st) \leq h((1+s)t) \leq (1+s)h(t)$ for s, t > 0, and therefore

$$\begin{aligned} \left| u(x_0) - u(x_1) \right| &\leq \frac{8}{n \,\Omega_n^{1/n}} \, \| \nabla u \|_{A,\Omega} \, h(t \,\Omega_n^{1/n}) \\ &\leq \frac{8(1 + \Omega_n^{1/n})}{n \,\Omega_n^{1/n}} \, \| \nabla u \|_{A,\Omega} \, h(x_0, x_1) \end{aligned}$$

which yields the desired result. \Box

The following theorem is an immediate consequence of Proposition 3.1.

3.2. Theorem. Let A be an Orlicz function and h defined by (3.1). Assume $h(1) < \infty$, g to be a modulus of continuity and Ω to be a $\operatorname{Lip}_{h,g}$ -extension domain. Then $W^1L_A(\Omega)$ is continuously embedded in $\operatorname{Lip}_q(\Omega)$.

However, $\operatorname{Lip}_{h,g}$ -extension domains do not necessarily exist. In order to apply Theorem 3.2 we need to know that they do exist.

3.3. Theorem. Let h be a modulus of continuity. Then the following conditions are equivalent:

(1) There are constants $K < \infty$ and $t_K > 0$ such that for every $0 < t \le t_K$

$$\int_0^t \frac{h(s)}{s} \, ds \le K \, h(t).$$

(2) All bounded uniform domains are Lip_h -extension domains.

(3) The unit ball in \mathbf{R}^n is a Lip_h-extension domain.

(4) There exists at least one Lip_h -extension domain.

For a proof see [7, p. 27].

Note that if Condition 3.3.(1) holds for all t > 0, then all uniform domains are Lip_h-extension domains.

3.4. Corollary. Assume A to be an Orlicz function with

(3.2)
$$\frac{A'(\xi)}{A(\xi)} \ge \frac{p}{\xi} \quad \text{for a.e. } \xi \ge \xi_0.$$

for some p > n and $\xi_0 > 0$ and Ω to be a bounded uniform domain.

Then $W^1L_A(\Omega)$ is continuously embedded in $C^h(\overline{\Omega})$, where h is defined by (3.1).

Proof. We just combine Theorem 3.2 with g := h and Theorem 3.3 with the following lemma.

3.5. Lemma. Let $t_K := A(\xi_0)^{-1/n}$ and K := p/(p-n). Then, for $0 < t \le t_K$, h(t) is finite and

$$\int_0^t \frac{h(s)}{s} \, ds \le Kh(t).$$

Proof. Integrating the inequality (3.2) we obtain $A(\xi) \ge (A(\eta)/\eta^p) \xi^p$ for $\xi \ge \eta \ge \xi_0$ by the absolute continuity of A, and hence $A^{-1}(r) \le (\eta A(\eta)^{-1/p}) r^{1/p}$ for $r \ge A(\eta)$. Now for $\eta = A^{-1}(t^{-n})$ the definition (3.1) of h yields

$$h(t) \le \frac{\eta}{A(\eta)^{1/p}} \int_{t^{-n}}^{\infty} \frac{r^{1/p}}{r^{1+1/n}} \, dr = \frac{\eta}{A(\eta)^{1/p}} \, Knt^{1-n/p}.$$

Since $h'(t) = nA^{-1}(t^{-n})$ and $\eta/A(\eta)^{1/p} = A^{-1}(t^{-n})t^{n/p}$, we have $h(t) \le Kh'(t)t$.

44

4. Examples

Let Ω be a bounded uniform domain in \mathbb{R}^n .

4.1. Let p > n and $\alpha := 1 - n/p$. Then $W^{1,p}(\Omega)$ is continuously embedded in $C^{\alpha}(\overline{\Omega})$. This follows immediately from Corollary 3.4 since for $A(\xi) := \xi^p$ we have $A'(\xi)/A(\xi) = p/\xi$.

4.2. Let $A(\xi) := e^{\xi}$. Then the modulus of continuity defined by (3.1) is given by $h(t) = n^2 (\ln(1/t) + 1) t$. For any $\alpha \in]0, 1[$ the Orlicz–Sobolev space $W^1 L_A(\Omega)$ is compactly embedded in $C^{\alpha}(\overline{\Omega})$. By Corollary 3.4, $W^1 L_A(\Omega)$ is continuously embedded in $C^h(\overline{\Omega})$. Since $h(t)/t^{\alpha} \to 0$ as $t \to 0$, the result follows from the Ascoli–Arzela theorem.

4.3. Let $A(\xi) := \xi^n (\ln(\xi))^q$ and assume q > n. Then $h(t) = n(\ln(\eta))^{-q/n} \times (n/(q-n)\ln(\eta)+1)$, where $\eta := A^{-1}(t^{-n})$. Then, if Ω has the strong local Lipschitz property in \mathbf{R}^n , the Orlicz-Sobolev space $W^1L_A(\Omega)$ is continuously embedded in $C^h(\overline{\Omega})$. This follows from [1, Theorem 8.36]. However, the modulus of continuity h does not satisfy Condition 3.3.(1) and therefore there does not exist any Lip_h-extension domains.

The snowflake or the Koch curve described in Mandelbrot [10, p. 42] bounds a uniform domain whose boundary is very irregular. Examples of domains which are $\operatorname{Lip}_{\alpha}$ -extension domains but not uniform can be found in [7] and [3]. Also, in [7] there are examples of $\operatorname{Lip}_{\beta}$ -extension domains which are not $\operatorname{Lip}_{\alpha}$ -extension domains for any $\alpha < \beta$.

References

[1]	ADAMS, R.A.: Sobolev spaces Pure and Applied Mathematics 65. Academic Press, New York-San Francisco-London, 1975.
[2]	GEHRING, F.W., and O. MARTIO: Quasidisks and the Hardy-Littlewood property Complex Variables Theory Appl. 2, 1983, 67-78.
[3]	GEHRING, F.W., and O. MARTIO: Lipschitz classes and quasiconformal mappings Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 1985, 203–219.
[4]	GEHRING, F.W., and B.S. OSGOOD: Uniform domains and the quasihyperbolic metric J. Analyse Math. 36, 1979, 50–74.
[5]	JONES, P.: Quasiconformal mappings and extendability of functions in Sobolev spaces Acta Math. 147, 1981, 71–88.
[6]	KUFNER, A., O. JOHN and S. FUČIK: Function spaces Noordhoff International Pub- lishing Leyden; Academia, Prague, 1977.
[7]	LAPPALAINEN, V.: Lip _h -extension domains Ann. Acad. Sci. Fenn. Ser. A I Math. Dis- sertationes 56, 1985.
[8]	LAPPALAINEN, V.: Local and global Lipschitz classes Seminar on Deformations, Lódź- Lublin. To appear.
[9]	LEHTONEN, A.: Embedding of Sobolev spaces into Lipschitz spaces Seminar on Defor- mations, Lódź-Lublin. To appear.
[10]	MANDELBROT, B.: The fractal geometry of nature W.H. Freeman and Company, San Francisco, 1982.
[11]	MARTIO, O.: Definitions for uniform domains Ann. Acad. Sci. Fenn. Ser. A I Math. 5, 1980, 179–205.
[12]	MARTIO, O., and J. SARVAS: Injectivity theorems in plane and space Ann. Acad. Sci. Fenn. Ser. A I Math. 4, 1978/79, 383-401.
[13]	MCSHANE, E.J.: Extensions of range of functions Bull. Amer. Math. Soc. 40, 1934, 837-842.
[14]	NEČAS, J.: Les méthodes directes en théorie des équations elliptiques Masson et C ^{ie} Editeurs, Paris; Academia, Editeurs, Prague, 1967.
[15]	STEIN, E.M.: Singular integrals and differentiability properties of functions Princeton University Press, Princeton, New Jersey, 1970.

University of Jyväskylä Department of Mathematics Seminaarinkatu 15 SF-40100 Jyväskylä Finland

Received 7 October 1987