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SETS OF ZERO ELLIPTIC HARMONIC MEASURES

O. Martio

1. Introduction
An elliptic partial differential equation Y . A(r,Vu(r)) : 0 in a domain G

with 1,4(r, h)l x lhlo-r produces a solution ar called an A-harmonic measure. For
p # 2, c,., is non-additive and hence does not define a measure in the Borel sets of
0G as the classical harmonic measure induced by the Laplace operator A(x,h) : h
does. The most interesting problem associated with o is to determine the class of
subsets E of. 0G such that a(E):0. This class depends on .4. For example, in
the plane unit disk B there is a linear elliptic operator A(r,h) c lz which induces
c.r such that w(E) ) 0 for some compact set E C 0B whose linear measure is
zero. Such an operator A can be constructed using quasiconformal mappings, see

IGLM 2] and [CFK]. Hence c*r essentially differs from the ordinary plane harmonic
measure induced by the Laplace operator. Contrary to this example we show in
this paper that there exists a reasonable class ofsubsets E of 0G such that u(O1 :
0 for all operators ,4. Clearly äG must be sufficiently thick for this purpose. For
compact subsets E of. 0G our main result, Theorem 3.1, is formulated in terms
of certain metric conditions of E with respect to 0G. Here the quasihyperbolic
distance [GP] is useful. Surprisingly,for G: B, the unit ball of R, Theorem 3.1

shows that there are compact sets E C 0B whose Hausdorff dimension is arbitrary
rLear n - L and u(E):0 for all A.By the above example this condition cannot
be replaced by the condition that the (n - 1)-dimensional Hausdorff measure of
.E is :0.

For p - n these problems were first studied in [GLM 2] and [HM]. Conditions
for ut(E) ) 0 were given in [GLM 2,4.10] and [M]. ff AG is "thick", then these
results can be used to prove the counterpart of B. Oksendal's theorem for the
.A.-harmonic measures (r, see [HM, Theorem 4.1] and [H, Theorem A]. Our main
theorem, Theorem 3.1, can also be used to study sets E in 0G which cannot
be seen easily from G. We say that such sets E are buried h 0G and prove
that ar(E) : 0 for all A; this result slightly generalizes [H, Theorem A]. Using
stochastic methods Oksendal [O] has also studied the corresponding problems for
p : 2 and for linear operators ,4..

Suppose that G is a bounded domain in R and that 1 < p ( n. We shall
study partial differential operators A: G x Rn ---+ rB" which satisfy the following
assumptions:
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(1.3)

if u belongs to the

(1.4)
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a) Foreach e>0 thereexistsacompact subset F of.G suchthat AlFxR" is
continuous and m(G \ .t') < t.
b) There exist positive constants 7r and J2 such that for a.e. x € G

(1.1) l.t1a,n1l l ylhln-t,

( 1.2)

forall h e Rn.
c) Fbr a.e. r € G

A(*,,h) . h > ^t2lhlP

(at r,h1) - A(*,hr)) . (h, - hz) > o, ht + h2.

d) For a.e. n e G
A(*, )ä) - l) l'-2 

^A(n 
, h)

for,\€E\{0} and he Rn.
A continuous function u: G -> R is a solution of the equation

V . A(*, Vr(r)) - 0

Sobolev space loc W;(G) , i.e., ?..t, is ACLp, and if

l_^(r,Yu(r)) 
. v ö(*) d,m(r)- o

for all ö e Cf;(G). We call solutions of (1.3) .4.-harmonic. A lower semicontinuous
function u: G --+ .R U {oo} is .A-superharmonic if it satisfies the A-comparison
principle, i.e., if for every domain D CC G and every ä-harmonic function å €
C1D; in D, h 1u h 0D implies h 1u in D. These functions form a similar, but
in general non-Iinear, potential theory as ordinary harmonic and superharmonic
functions do, see [GLM 1] and [HK].

Finally, let E be a subset of. 0G. The upper class /,/ consists of all L-
superharmonic functions u: G --+ rB U {oo} such that

liminf u(r) > xo(v)

for each y e öG. Here yB is the characteristic function of .8. It can be shown
that

o(E,G;.A)(c) : itL"@), a €G,

defines an .d-harmonic functio\ u) : r'.t(E,G;-4), called the ,4.-harmonic measure
of .E with respect to G. For this construction see [HK] and [GLM 2]. The set
E has zero A-harmonic measure, if o(r) : 0 for some ,r € G, or equivalently
u:(r) : 0 for a1l r e G. The last assertation follows from Harnack's inequality,
see Lemma 3.3 below. In this case we simply write ar : 0.
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2. Sets of ,4.-harmonic measure zero

Let G be a bounded domain in .B". We assume that G is .A-Dirichlet regular,
i.e., for each $ e C(OG) there is a (unique) function u e C(G) such that u is
.A.-harmonic in G and lhat ul)G:,ry'. The fuaction u is called the A-harmonic
function with boundary values ry'. The following lemma is a generalization of

IGLM 2,4.91.

2.L. Lernrna. ,Srppose that E is

,(8, G; A) . Then e - 0 if and onlY if
neighborhoods Ut, i - 7r2, . . ., of E sucå

Here

(2.2)

(2.3)

Thus in both cases

a compact subset of 0G . Let Q

there is c € [0, 1) and a sequence
that

:
of

(")

and

(b)

)unnG : o

,(*)<c for eacha eGfi0U* i:7,2,....
Proof. For the only if part choose c : 0 and U; : E + B(Lli), i : 7,2,.. -.
B(r) denotes the open baJl of radius r > 0 centered at 0.

For the converse part we o*, 'TäiT:
for each r e G. Fix r e G. By (a) there is /,/; such that c /Ui. lt x e 0U;,
then ('ri) follows from (b). Assume that r e G\Ut. Let V be the r-component
of G\tlt.Letye 0V.If y€ G,then ye0% andhence r(y)< cby(b)' If
y/G,thenlet the C(1G) besuchthat$(y):0,thlE:1and 0<4, (1. Let
u be the .A-harmonic function with boundary values /. Then u(y) :0 and since

u belongs to the upper class U, ut 1u in G. Hence we obtain

lim a(z) : 0.
z*y

Iim sup a(z) < c
z*y

and this holds for every y e AV . Now constants are A-harmonic functions, hence

the ,A-comparison principle yields w I c in V and we have shown u.,(z) ( c as

required.
Next we complete the

required. If c>0 and a*
(2.4)

On the other hand , a lc <
for u) ) then

(2 5)

Lo aafc in G.

1 in G by (2.2) and if u belongs to the upper class U

afcau
by the ,4.-comparison principle. Note that limr*yr("):0 for every y e 0G\E;
this can be proved as (2.3). By (2.5), ,,t lc < c.r and hence we obtain a contradiction
from (2.4). This completes the proof.
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3. Quasihyperbolic distance and .A-harmonic measure

Let E be a closed set in E" and D: R\8. If *1, a2 € D, then the
quasihyperbolic distance kp(u1,12) of ol and tr2 is

lro(*t,02) : irf I O@, E)-t ds. t Jt \ / /

where the infirnum is taken over all rectifiable curves 7 joining 11 and u2 it D.
Here d(rr-E) denotes the distance from r to E.If no such curves exist, i.e., if 11
arad a2 belong to different components of D, then we set ko(*rroz): q.

Let, G be a domain in .rt". We say that G satisfies a p-capacity density
condition if for some co ) 0 and rs > 0

cap o(B (x, r) n CG, B (r,2r)) ) corn-P

for all x e 0G and 0 ( r ( rs. Here cap, refers to the variational p-capacity of
the condenser E : (B(x,r) nCG, B(x,2r)) , i.e.,

where the infimum is taken over all functions u e Cf (B(r,2r)) such that u ) 1

ia B(a,r) nCG.

3.L. Theorern. Let G be a bounded domain satisfying a p-capacity density
condition. Suppose that E is a compact subset of 0G such that there exist a
sequenceof neighborhoodsU;, i:7,2,..., of E a,nd M <a with
(") fiu;i G :0 a,nd

(b) for each i : 1,2,... and x € 1U;iG there is y e 0G with ko(*,y) I M,
D : R\8.

Then a(E,G; A) : g.

The proof is based on two lemmas. The first is essentially due to V.G. Maz'ya
[M*]. We shall employ the short argument due to Heinonen [H, Lemma 5.2].

3.2. Lernrna. Let F beaclosedsetinabill B(rs,2r).If u isacontinuous
function in B(as,2r) such that u ltr': 1 , 0 1u 11, and u is a solution of (1.3)
in B(rs,2r)\ F, then

u(*) > crr@-")/b-1) capr(tr, tr B(rs,r), B(rs,2r1)1/(t-rl

for each r e B(xs,r). Here the constant c1 depends only on ^lrt 12, p artd n.

capp E - inf t lv, lo d*
J B (r ,2r)
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BV [H, LemmaProof. Let e -
5.2)

gn(ro 
, r), B (*0,2r)) 1/(r-t)

for each r e B(xs,t) \ f and c1 > 0 depends only on 7r t'lzt P and n. Next
fix r € B(*o,r) \ .F and let V be the o-component of B(rs,2r) \ -F'. Now
Iiminf u(r) > limsupur(z) as z approaches y e 0V in V; note that 0 ( qr ( 1

and that lim,*, w(z) : 0 for all y e )B(ao,2r) because balls are always l'-
Dirichlet regular. Hence by the .A.-comparison principle u ) u in I/ and thus the
required inequality follows from the corresponding inequality for o.

The next lemma is the well known Harnack inequality, see e.g. [S, pp. 264-
26e1.

3.3. Lemma. Let u be a non-negative soJution of (1.3) in B(xs,2r). Then

sup u(r) < c2 _itf . "(r)xe B(is ,r) xQ,B(cs,r)

where the constant c2 depends only on ^lr, ^12, p and n.

Proof for Theorem 3.7. Since G is bounded, we may assume that the in-
equality in the p-capacity density condition holds for all r € (0,diamG). Write
us:w(E,G;A).We shall show that there is c e [0,1) such that

w(r) < c

for all r e \U;aG, i:7,2,.... Lemma 2.1 then completes the proof. Observe
that since G satisfies a p-capacity density condition, G is A-Dirichlet regular,
see [Maz]. This implies that lim,r, w(x):0 for all y e AG\8.

Fix i : !,2,... and let r € 1Utt-l G. Choose y € 0G with lro(r,y) < M.
Let 1 be a rectifiable curve in D joining r to y with

,(F.B(r, ,r),, B(*0,2r)\ (r, .8"(*otr)); a)

(3.4)
l^,

Nextchoosepoints ztt...tzi atdradii 11 ,...rr j inductivelyasfollows. Set z1 : a.

and 11 : d(zr,E)| . Assume that 21,..., zi have been chosen and let 7; denote
the part of 7 from zi to y. If lciB(zi,2rt) * 0, then we set J: i and end
the process. If AGnB(z;,2r;):0, then choose z;11 to be the last point where

7i meets 0B(z;,r;) and put r;..,.1 - d(z;ar,E)l4.Since y € AG\8, this process

ends after a finite number of steps.
Next weobtain an upper boundfor j in terms of. M. Fix i:7,...,j -!

and let 76 be the part of 7 from z; to z;q1. Pick z' € E such that

4r; - d(rr, E)- lr, - ,'|1.
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Then for z e ^l; n B( zi,ri) j

and thus

Hence

and we obtain from (3.4)

(3.5) j<5M+6.

By the above construction 0G n B(zi,zr) * 0, hence there is xo e 0G f)
Bn(zi,2r). Set u : L -c,;. Then u is a solution of (1.3) in G, 0 ( u ( 1 and
if we set u(a): L for r e CGnB(zi,4r1), then u is continuous in B(21,4r).
Consequently, u is a continuous function in B(rs,Zr) and a solution of (1.3) in
B(*0,2.i) \ CG. Let F : CG n B(us,r;). Thus Lemma 3.2 and the p-capacity
density condition yield for z € B(rs,ri)

u(z) 2 crr\n - ") / tc -' ) 
".ro 

(f,, B (* o, 2r r1)t 
/ (n - rl

> cLr\p-")/@-r)"or@-p)/(p-r) : crco ) 0.

Hence for z e B(zi,ri) we have

(3.6) u(z) ) c1cs.

Set B; : B(r;,rr), i:1,...,i, and u - 1 - c.r. Then (3.6) and Lemma 3.3
yield

clcs I t1f u <;f, " S ", Åi!,u 
I ... < crr-t inf. u.

Hence we obtain

ut(x):7 - u(t) < 1 -'ål u 17 - "r,,o.,l-i

and (3.5) implies ,(") < c ( L where

c: l - clcsclsM-5.

This shows that ar(r) ( c and the proof is complete.
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3.7. Remark. In the case p : n it was shown in [GLM 2,4.L8 and 4.L9] that
if E is a compcat set in the boundary of the unit ball B and if the domain -8" \ E
is a uniform domain in the sense of [MS], then o : ,,;(E, B; A) :0. Note that B
satisfies a p-capacity density condition for all p,7<-p < n. Now Theorem 3.1

implies tfus resulä for all ,4.. Hence it is easy to construct compact sets .E c äB
whose Hausdorff-dimension is arbitrary close to n - L and yet w(E,B;A) : g 1ot
all,4..

On the other hand, since the neighborhoods U; of. Theorem 3.1 are at our
disposal, it is easy to construct a compact set E in äB which satisfies (a) and (b)
of 3.1 and yet .R" \ E is not a uniform domain.

4. Buried sets

cc(r): (C + B(r)) n c

andforc>0put

C.(r) : {r e C : d(a,0C6(r) n c) > (1 + c)r}.

Then C"(r) is a compact subset of 0G.
A subset E of. 0G is said to be buried in 0G if there is a number c ) 0 and

a sequence of positive numbers rl --+ 0 such that

(4 1) E c );C 
"("r).

It is easy to see that if 0G is a Cl-manifold, then no subset E of 0G is buried
h 0G. Roughly speaking, a set .E is buried in 0G if there are numbers r; \ 0
with the following property: If one stands at the distance r; from 0G in G, then
the set .E is slightly further away than äG.

The following theorem generalizes [H, Theorem A].

4.2. Theorem. Suppose that G is a bounded domain which satisfies a
p-capacity density condition. If a set E is buried in 0G , then u(E,G; A) : g.

Proof. We may assume that .E is compact. Let c ) 0 and (r;) be such
that (a.1) holds. For each i : 7,2,.. . write U; : 0G + B(r;). Then U6 is a
neighborhood of äG and hence of E. Moreover, )U;t-l G : 0. It remains to show
that the condition (b) of Theorem 3.1 is satisfied.

To this end let x € 0U; O G. Then there exists y e 0G such that

l* - vl - d(r, AG) : ,r.
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Ittrow

(4.3)

because in the opposite case

O. Martio

(t + c)r; ) d(*, E) > d(r,C.(rn)) > (1 + c)r;,

a contradiction. Let 1(t) : (ty+(r;-t)r) , f € [0, 16], be the straight line segment
from r to y. If we let D : R' \ .8, then

because by (4.3) for each t e [0, r1]

d(t(t),E) > (t -t c)r; - t.

Hence the condition (b) of Theorem 3.1 is satisfied and u(E,G;/) : O follows
from Theorem 3.1.

4.4. Remark. Simple examples show that there are bounded domains G and
sets E buried in 0G such that 0G\E is countable. Hence the p-capacity density
condition in Theorem 4.2 cannot be completely removed. Slight modifications of
the above example show that this condition cannot by replaced by the condition
that G is .A-Dirichlet regular.
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