Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 14, 1989, 129–131

ON THE INFINITY OF THE LONERGAN-HOSACK PRESENTATION

Markku Niemenmaa and Gerhard Rosenberger

Introduction

In 1984 F.D. Lonergan and J. Hosack [3] introduced the following group presentation:

$$G = \langle x, z : z^3 x z^3 x^{-1} = z^5 x^2 z^2 x^2 = 1 \rangle.$$

According to the authors there was good reason to believe that the presentation is that of a finite group. However, they reported that attempts to prove finiteness by using the Todd–Coxeter algorithm were unsuccessful.

By using the computer algebra system CAYLEY M. Slattery [5] managed to show in 1985 that G is infinite. To be precise, Slattery showed that G has a factor group which is infinite.

In this short note we wish to point out that a lot more can be said about the structure of G. In fact, we shall consider the presentation

$$G(n) = \langle x, z : z^n x z^n x^{-1} = z^{n+2} x^2 z^2 x^2 = 1 \rangle$$

with $n \ge 2$. In particular, our results hold for G = G(3). For the background material of this note the reader is advised to consult [7].

Main theorem

Consider the presentation G(n) given in the introduction with $n \ge 1$. If n = 1, then $zx^2 = x^2z$ and $z^5 = z^{-5} = x^4$. Consequently G(1) is a finite group of order 40. Now we shall establish the

Theorem. Let $n \ge 2$ and consider the presentation G(n). Now

(1) G(n) is a nontrivial free product with amalgamation,

(2) G(n) has a subgroup of finite index mapping onto a free group of rank 2 and G(n) has a free subgroup of rank 2,

(3) G(n) has a generating pair $\{u, v\}$ such that the subgroup $\langle u^k, v^k \rangle$ is free of rank 2 for a sufficiently large integer k,

(4) G(n) is SQ-universal (i.e. every countable group is embeddable in some factor group of G(n)).

Proof. (1) If n is even, then the free product $Z_4 * Z_2 = \langle x, z : x^4 = z^2 = 1 \rangle$ is an epimorphic image of G(n). If n is odd (then $n \geq 3$), we have $D = \langle x, z : z^n = (z^2x^2)^2 = 1 \rangle$ as an epimorphic image of G(n). Now D is a nontrivial free product of H_1 and H_2 with the amalgamated subgroup H, where $H_1 = \langle x \rangle \cong Z$, $H_2 = \langle y, z : z^n = (z^2y)^2 = 1 \rangle$ and $H = \langle x^2 \rangle \cong \langle y \rangle$. By Lemma 3.2 of [6] we conclude that G(n) is a nontrivial free product with amalgamation for every $n \geq 2$.

(2) The free product $Z_4 * Z_2$ has the triangle-group

$$T(2,4,5) = \langle a,b:a^2 = b^4 = (ab)^5 = 1 \rangle$$

as an epimorphic image and clearly G(n) has T(2,4,5) as an epimorphic image provided n is even. Next consider D (the free product with amalgamation) introduced in the first part of the proof. Now D has the triangle-group

$$T(n,7,2) = \langle a,b:a^n = b^7 = (ab)^2 = 1 \rangle$$

as an epimorphic image and naturally G(n) has T(n,7,2) as an epimorphic image for odd $n \ (n \geq 3)$.

Thus G(n) has as an epimorphic image a triangle-group

$$T(p,q,r) = \langle a,b : a^p = b^q = (ab)^r = 1 \rangle$$

with $2 \le p, q, r$ and (1/p) + (1/q) + (1/r) < 1. Now T(p,q,r) has a surface group F(g) of genus $g \ge 2$ as a subgroup of finite index (see [7]). Since F(g) $(g \ge 2)$ has a free group of rank 2 as an epimorphic image, it follows by considering the pre-image of F(g) in G(n) that G(n) has a subgroup of finite index which maps onto a free group of rank 2 and consequently G(n) has a free subgroup of rank 2.

(3) Since T(p,q,r) can be regarded as a subgroup of PSL(2,R) (see [7]), our assertion follows from [4].

(4) By [1] we know that a free group of rank 2 is SQ-universal. Clearly, a pre-image of an SQ-universal group is SQ-universal. Finally, by [2] it follows that a group which has an SQ-universal subgroup of finite index is also SQ-universal. The proof is complete.

Remarks. As indicated in the beginning of this paper G(1) is a finite group of order 40 and consequently it has elements of finite order ≥ 2 . If we consider G(2), then $z^2xz^2x^{-1} = z^4x^2z^2x^2 = 1$ implies $x^2z^2 = z^2x^2$. Furthermore, $z^6 = x^{-4}$ and $z^{-6} = x^{-4}$, hence $z^{12} = 1$ and $x^8 = 1$. Now we state

Problem 1. Is it true that G(n) has elements of finite order ≥ 2 for $n \geq 3$? We also state

Problem 2. Is it true that G(n) has a torsion-free normal subgroup of finite index for $n \ge 2$?

References

- HIGMAN, G., B.H. NEUMANN, and H. NEUMANN: Embedding theorems for groups. J. London Math. Soc. 24, 1949, 247–254.
- [2] NEUMANN, P.M.: The SQ-universality of some finitely generated groups. J. Austral. Math. Soc. 16, 1973, 1-6.
- [3] LONERGAN, F.D., and J. HOSACK: Problem 308.- Notices Amer. Math. Soc. 31, 5, 1984.
- [4] ROSENBERGER, G.: On discrete free subgroups of linear groups.- J. London Math. Soc.
 (2) 17, 1978, 79-85.
- [5] SLATTERY, M.: Solution to AMS Notices query No. 308. Cayley Bulletin 2, 1985, 37-39.
- [6] ZIESCHANG, H.: On decompositions of discontinuous groups of the plane. Math. Z. 151, 1976, 165–188.
- ZIESCHANG, H., E. VOGT, and H.D. COLDEWEY: Surfaces and planar discontinuous groups. - Lecture Notes in Mathematics 835. Springer-Verlag, Berlin-Heidelberg-New York, 1980.

University of Oulu Department of Mathematics SF-90570 Oulu Finland University of Dortmund Department of Mathematics D-4600 Dortmund 50 Federal Republic of Germany

Received 8 February 1988