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A REGURAL CURVE THAT CANNOT BE COVERED
WITH FINITELY MANY CHORD.ARC CURVES

Lauri Kahanpää

1. Introduction

Generalizing a theorem by Hayman and Wu [HW], Fernandez and Hamilton
in [FH] prove that every chord-arc curve in the plane has finite conformal length.
Finite conformal length is a property inherited by subcurves and by finite unions
of curves. In particular every finite union of chord-arc curves will have finite
conformal length. A partial converse to this is the trivial observation that finite
conformal length of a curve implies regularity in the sense of Alhfors [A1] and
David [D2]. We give an example of a curve that is regular, yet not a subset of any
finite union of chord-arc curves, not even of quasicircles.

Let 1 be a rectifiable, closed curve in the plane R? : C. We will use the
letter 7 to denote both an arc length parametrization 7: [o, ö] -* C, and the
image set 7 : Z([o,å]). The. arc length distance between two points on 7 is

und.erstood as the shorter distance between them along 'y, i.e. l(l(t),2(")) :
min{ li - 61, å - a - lt- "l } 

. The corresponding arc length measure is also called /.
A curve 7 satisfies the chord-arc condition with constant .t, if the arc length

distance between points on 7 never'exceeds -L times their ordinary distance:

l(a, z2) < Llzl - z2l for all zr) zz on 'y.

Chord-arc curves are also called Lavrentiev curves. A chord-arc curve is Jordan.
Evidently it also satisfies the Ahlfors [42] tåree points conditionz "at least one of
the arcs between any two points 21 and z2 on the curve has diameter at most
a constant C times lrr- rrl", characterizing quasicircles among (not necessarily
rectifiable) Jordan loops. For details see [G].

A regular curve is a curve whose total length inside any circle B(zs,r) : {z €
Cllz-rol< r) n"rrerexceedsaconstant D timestheradius r of thecircle:

forall zs€C, r >0.

The chord-arc curves are precisely the regular quasicircles, but not all regular
curves are such. A regular curve may well contain cusps or multiple points. The
following example is intended to refute the conjecture that every regular curve is
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Figure 1.

at least contained in the union of finitely many quasicircles. Two variants of the
example will be presented, the first being easier to handle, the second having the
additional property of being a Jordan loop.

Instead of writing down a formal definition of the curves in question we prefer
to describe them using Figure 1, and a few explanatory words.

2. The simpler example

The set 7 consists of the boundary of the unit square and of vertical lines,
one for each dyadic rational point on the base interval ofour square. These should
become shorter with increasing order of the corresponding dyadic rational. We
choose height 2-2* at pl2m, p odd, as indicated in Figure 1. There is a natural
parametrization of 7 as a closed rectifiable curve passing twice through every point
on these lines and once through the remaining points on the boundary of the unit
square. The interesting part of 7 is the arc consisting of the base interval of the
square and of the vertical lines, call it the basic arc. Any subarc of it between two
distinct real points (r,0), and (r',0) contains aminiaturized and dilaied copy of
the basic arc. This is now used to demonstrate that 7, obviously regular, cannot
be covered using finitely many chord-arc curves. Assume the contrary. Without
loss of generality we may think of 7 as being covered with as few as possible such

curves 'yr, 12, ...,'Yn. As the same is true with respect to the miniaturized and
dilated copies of the basic arc no subarc of 7 between two distinct real points
can be covered using less than n of the curves lt, ^lz, . . . , ^ln, i.e. all of them.
In particular every 1k is dense on the unit interval of the real line and so by
compactness each 7r, contains the unit interval. On the other hand the union
of the curves 7p does also cover the vertical lines used in the construction of 7.
Therefore, by finiteness at least one of the curves 77, contains a sequence of points
outside the real line converging to (1,12,0), say. But it is easy to see and will follow
from the lemma in Section 3 that no quasicircle can contain both an interval and
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F:[0,1] \ u ur*,0,

where the open intervals E*,6 d.eletea ;;" ;,h stage have length l*: l(E*3)
- 2-3m-3. The curve I will now consist of the boundary of the unit square with
the real unit interval replaced by the graph of the continuous function

/: [0,1] --+ l0,tl4l: " 
-- 

{f-2- 
dist(r 'F)lrt^' il:Z":'r'

Obviously I is regular. To prove that f cannot be covered with finitely ma.ny
quasicircles we have to modify the proof given for the first version of the example,
since now I does not contain any subinterval of the real line the real points of I
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a sequence of points outside that interval converging to any internal point of the
interval.

3. The Jordan loop example

We start the construction with a Cantor set

forming a Cantor set.

Lemma. If o is a quasicircle in the plane C passing through an imaginary

points constant C of o is at least equaJto rnir,{bldr-asf2b,a^l2b}, where d, is
the norm of the partition e1t...,an), i.e. d: rnax{ai - qj-rl j :1,...,n} .

Proof. By the three points property for every z on one ofthe two arcs between
ai-t arrd ai:

llmzl < Clai-r-ail<Cd.
Hence either b< Cd-in which case we are done-or o cannot pass through åi,
not even leave the strip llmzl < ä on one of its arcs between any points ai-r
and ay, i :7r,..)n. The union of such arcs is an arc of a joining as ar.d an
without ever leaving the strip llmzl < Cd. We assume os ( 0 l dnt since the
alternative case is trivial. Thus our arc passes through some imaginary point ci
with lcl < Cd < ä. On the other hand the complementary arc of o passes through
bi. Now one of the arcs between åi and ci contains ae and the other a, so they
have diameters at least -as ar,d an, respectively. But lbi - cil < å + lcl ( 2å, so

min{-oe, a,} 12Cb,

which completes the proof of the lemma.
Let us now continue our examination of the Jordan loop l. Assume that f

is covered with minimally many chord-arc curves 'yr, ^lz, . . .t 'f n. By minimality
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of n and compactness of 77. every 7rc contains the Cantor set F, in particular
every 7e contains the endpoints of all the deleted intervals E*,i. Choose some

E*,j, call its midpoint u*,i ar,.d assume rn is large enough, m ) 1,0 say. The
distance dist(r-,y, E*, ,j,) for mt I m, (m, j) # (*' ,, j'), will then be larger than
2-* 15. Thus thä set {r e [0, tl I * /.F, dist(c, n*,j 3 2-* ll}] does not contain
any interval of length more than l* < 2-3*. At least one 7& passes through the
point (r*,y,2-'^). Translatin1 o*; to the origin we may apply the lemma to

71 choosing b - 2-2* , d 3 2-3* and both -os and a* ) 2-* f20. We find
C > 2* l4A which may be made arbitrarily large in contradiction to the finite
number of possible choices of 77,. o

We finally point out that replacing successively all intervals on 7 with copies

of the basic arc will in the limit lead to a curve, no proper subarc of which can be
embedded in the union of finitely many quasicircles.

4. Another property of the curves 7 and f
In a preprint to appear ([L]) V. Lappalainen proves that the bounded domain

D with boundary 7 (or f ) is a John domain which cannot be expressed as the
union of finitely many quasiconvex domains. (In fact, it was through this work of
Lappalainen's that the author's interest was directed to these curves.)
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