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ON THE JULIA SET OF THE POLYNOMIAL
f(z) =pz+2z™ WITH p REAL

Jiu-Yi Cheng

1. Introduction

Let f(z) be a rational function of a complex variable z with deg(f) >2 and

f°(z)=z, f"+l(z)=f(f"(z)), n=20,1,2,....
According to Blanchard [3], the Julia set J(f) for f(z) is the set of those points
z € C = CU{oco} where {f"(z)} is not a normal family in the sense of Montel.
The following general properties are classical [5]:

1. J(f) is a nonempty perfect set.

2. J(f™) = J(f) for any integer n > 1.

3. J(f) is completely invariant under the mapping z — f(2), i.e., fI(f) =
F7HIW) = 7).

Certainly, the structure of J(f) depends on the function f(z). If f(z) is
a polynomial, J(f) depends on the coefficients of f(z) in a very complicated
manner. Myrberg [6-10], Brolin [4], and Bhattacharyya and Arumaraj [1-2] have
considered the cases where f(z) is a polynomial of deg(f) = 2,3 and 4 with real
coeflicients.

In this note we investigate the structure of J(f) where f(z) = pz+ 2™ with
p real.

We need the following definitions.

Definition 1. If the equation f"(z) — ¢ = 0 has a multiple root, then c is
called a critical point of the inverse function f~"(z).

Definition 2. a € C is afixpoint of f(z) if f(a) = a, and « is an attractive
fixpoint if lf’(a)| < 1. The immediate attractive set A*(a) of an attractive
fixpoint « is the maximal domain of normality of {f™(2)} which contains a.
The attractive set A(a) of a is defined by

Ala) = {z| nh_rg)f"(z) = a}.

Definition 3. Two polynomials f(z) and g(z) are conjugate if there exist
constants a,b € C such that f(az +b) = ag(z) +b.

Clearly, 2o € A(a) if and only if limp_.e0 g™(a20 +b) = ac+b (i-e., azo+b €
A'(aa +b) if A'(B) denotes the attractive set of 8 for g(z) ).

We shall refer the reader to [3] and [4] for the results needed for our proofs.
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2. Results and their proofs
Let f(z) = pz + z™, where p is real, m > 2 being a positive integer. Then
f(2) has m finite fixpoints

01=0, ¢2=(1=p)"/™ V| g3 = qow, g4 = gaw?, ..., ¢m = gow™ 2

and f~'(z) has m — 1 finite critical points

2

m—1 1/(m—1 _
= (————)2(——2) /(m ), c2 =cClw, €3 = w2, ... emoy = clw™ 2

m m

C1
where w is one of the complex (m — 1)th roots of unity.

From now on k, p means a positive integer and a real number, respectively.

Lemma 1. If |p| < 1, then ¢; € A*(0), : =1,2,...,m— 1.

This can be proved in the same way as Lemma 1 of [2].

Lemma 2. The polynomial equation
(1) g(t) = t**F 121 _ o)l 4 (28 — 1) Y2kt — 2k +1) =0
has only one negative real root.

Proof. Since g(0) = —(2k — 1)2F < 0 and g(—o0) = 400, there is at least
one negative real root. If there are more than one negative roots, ¢''(t) = 0 must
have at least one negative root. But

g"(t) = 4k?(2k — 1)t*F 34241 — 1)(¢2%=1 — 2k)2F =3 ((2k + 1)¢2F 1 — 8k +2) > 0
for ¢t < 0. Thus the lemma is proved.
Lemma 3. 1) The polynomial equation

(2) ha(t) = t2* 4+ 2kt — (2k —1) =0

has only one negative real root. Furthermore, if we denote the only negative real
root of (1), (2) by —6y, —61 (6o > 0, 6; > 0), respectively, then 8; > 6, ; thus
hl(t) S 0 for —'90 S t S 0.

2) The polynomial equation

ho(t) = t**+1 — 2k + 1)t + 2k =0

has only one negative real root. Furthermore, if we denote this root by —6,
(82 > 0), then hy(t) < 0 if and only if t < —6,.
3) 6, is the only positive real root of the polynomial equation

ha(t) = t2*+1 — (2k + 1)t — 2k = 0.

Furthermore, h3(t) > 0 if and only if t > 6;.
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Proof. 1) As in the proof of Lemma 2, by h;(0) = —(2k — 1) < 0 and
hi(—o0) = +oo and h'(t) = 2k(2k — 1)t2¥=1 > 0 for t < 0, (2) has only one
negative real root. Furthermore, note that 6; > 1 (since hy(—1) = —4k +2 < 0),
and we have

g(—8y) = g2F=1(02F 1 1 ok)2k=1 _ (2k — 1)%*1(2k6, + 2k — 1)

= 625 (hy(—6y) + 4k6; + 2k — 1)** 7 — (2k — 1)1 (2k6; + 2k — 1)

> (4k0; + 2k — 1)2F71 — (2k — 1)2F71(2k6, + 2k — 1)

> (2k — 1)(2k)**2(2k0; + 2k — 1) — (2k — 1)2F~1(2k6, + 2k — 1) > 0.
Hence —6; < —#6,, that is, 61 > 6.

2) Since hy(—1) = 4k > 0 and hy(—o00) = —oo and A'(t) = (2k+1)(t2F-1) >

0 for ¢t < —1, there is only one root —8; € (—oco0,—1) (62 > 0) and ho(t) < 0
for t < —65. On the other hand, the minimum value of hy(t) on [—63,+00) is
ha(1) = 0. So we have ha(t) > 0 when —f; <t < 4o00. Hence the conclusion

follows.
3) This proof is similar to the proof of 2).

Lemma 4. 1) Let f(2) = pz + 2281 —(2k +1)02/2k < p < 0. Then
|f@)|<eu=0-pY* i |¢|<q.
2) Let f(z) =pz — 221 0 < p < (2k +1)85/2k. Then
[f@l<@+p)"* i el < (14p)"
Proof. 1) If 0 < z < ¢y, then by 22 <1 —p,
f@) =gz =2( ~1+p)+2 -2 0.
So we have f(z) < g2. On the other hand, by —(2k + 1)82/(2k) < p < 0 and
2) of Lemma 3, f((—p/(2k +1))/2*) > —qz. But f((—p/(2k + 1))*/2*) is the
minimum value of f(z) on [0,400). Hence f(z) > —gy for 0 < z < ¢2. So we
obtain ‘f(m)| < gqs.
If —g2 <z <0, then

f@)+g=c(@*-14+p)+a+g >0

So we have f(z) > —g2. On the other hand, analogously, f(—(—p/(2k+1))!/?¥) <
g2 But f(—(—p/(2k+1))!/%*) is the maximum value of f(z) on (—o0,0]. Hence
f(z) < gg for —ga <z < 0. We also obtain |f(:1:)| <qs.

2) By 3) of Lemma 3, we can prove this in the same way as 1).
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Lemma 5. Let f(z) = pz + 2%k, If —2k6,/(2k — 1) < p <0, then

(3) |f(e1)| < @2 = (1 —p)/+D
and
(4) |F2(z)| <q2  if |f(z)] < g2

Proof. We first consider (3). Now

_(2k2—k 1)p (_&) 1/(2k—1).

C =

2k

So, by p < 0, we have f(c1) > 0. On the other hand, by Lemma 2, ¢g(¢) < 0
for -0y <t < 0. Hence g((2k - 1)p/2k) <0 if —2k6y/(2k—1) < p <0, ie.
f(e1) < g9 if —2k60/(2k — 1) < p £ 0. Thus (3) is proved.

Next we prove (4). If 0 < f(z) < g2, then

i) =g = f@)(f(z)* = 1+p) + f(z) — g2 0,

and we have f2(z) < g5. On the other hand, by —2k6,/(2k —1) < p <0 and 1)

of Lemma 3,
1/(2k-1)
f (‘ ('2%) ) 2 q2.

, p\1/(2k=1)
f (" (2k>
is the minimum value of f(z) on [0,g;]. Hence f%(z) > —gy. So we obtain

|F2(2)] < g2
If —g2 < f(z) <0, then

@)+ a2 =pf(z) + f(2)**  + q2 > 0,

and we have f%(z) > —gy. On the other hand, ¢; is the minimum value of f(z);
thus f(z) > ¢; for any z € (—o0,+00). Hence, by —¢; < ¢; < 0 and (3) and
f'(z) <0 when —g2 <z <0, we have

fA(z) < fler) < g2

We also obtain |f?(z)| < go. Thus Lemma 5 is proved.

Lemma 6. Let f(z) = pz +22%*!. Then ¢; € A(o0) (i = 1,2,...,2k) if and
only if |p| < (2k + 1)82/2k.
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B 2k‘p _ p 1/(2k)
AT ok+1\ 2%k +1 '

Suppose first that p < 0. Then |f(z)| > |z| for |z| > ¢2 = (1 — p)Y/?%. Thus
z € A(oo) for |z| > g2. By 2) of Lemma 3, |c1| > g2 when p < —(2k + 1)6,/2k.
So we have ¢; € A(00). Since

|f(er)| = |fM(c2)| =+ = | F™(car)|

Proof. Now

for any positive integer n, it follows that ¢; € A(o0) (i = 1,2,...,2k) when
p < —(2k+1)82/2k. If —(2k+1)82/2k < p <0, then |¢;| < g2. By 1) of Lemma 4,
|f"(c1)! < g9 for any positive integer n. Thus ¢; € A(c0) (i =1,2,...,2k) when
—(2k +1)02/2k < p < 0.

Suppose now that p > 0. Since f(z) and f.(2) = pz — 2%**! are conjugate
(since af(z) = fi(az) where a = exp(—ni/2k)), and

3 2kp p 1/(2k) ﬁ
ATk F1\2k+1 XP\3g )

we consider the behavior of ¢! = exp(—7i/2k)-¢; (i = 1,2,...,2k) under the
iterates of fy(z) = pz—22¥*1. Since | f.(z)| > |z| for |z > (1+p)/?*, fP(z) — oo
as n — +oo for |z| > (14 p)}/?*. But, by (3) of Lemma 3,

*| _ 2kp p 1/ 1/2k
Icll_2k+1(2k+1> >(1+p)

when p > (2k + 1)8,/2k. So we have fl(c}) = oo (n — 400) and fl(c}) — o©
(n = +00) (1 = 1,2,...,2k). Hence ¢; € A(o) (¢ =1,2,...,2k) when p >
(2k +1)62/2k. If 0 < p < (2k + 1)62/2k, then |ci| < (1 + p)}/?F. By (2) of
Lemma 4, |f7(c})| < (1+ p)!/2* for any positive integer n. Thus fI(c}) /4 oo
(n — 400) (i =1,2,...,2k). Hence ¢; € A(oo) when 0 < p < (2k 4 1)6,/2k.
Thus the proof of Lemma 6 is completed.

Lemma 7. Let f(z) = pz + 22%. Then ¢; ¢ A(c0) (i =1,2,...,2k = 1) if
and only if —2k8,/(2k — 1) < p < (2k/(2k — 1))(2k)1/(2k-1),

Proof. By Lemma 2 and Lemma 5, we can prove this lemma in the same way
as Lemma 3 of [2].

Theorem 1. Let f(z) = pz + 22¥T!, where p is real and k is a positive
integer. If |p| < (2k+1)602/2k, then J(f) is connected. Otherwise J(f) is totally
disconnected, myJ = 0 (where myJ denotes the planar measure of J(f)) and j|;
is isomorphic to the one-sided shift on 2k + 1 symbols (cf. [3, pp. 124]).
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Theorem 2. Let f(z) = pz+ 22*, where p is real and k is a positive integer.
If —2k6o/(2k — 1) < p < (2k/(2k — 1))(2k)}/@* =D then J(f) is connected.
Otherwise J(f) is totally disconnected, maJ = 0 and f|; is isomorphic to the
one-sided shift on 2k symbols.

By Lemmas 6 and 7, Theorems 1 and 2 immediately follow from Theo-
rems 11.2 and 11.4 of [4] and Theorem 9.9 of [3].

Theorem 3. Let f(z) = pz + z™, where p is real and m > 3 is a positive
integer. Then
1) J(f) is a Jordan curve if and only if |p| < 1.

2) J(f) € {z | lel < (1 + ) /™).

Proof. 1) As in [2], sufficiency immediately follows from Lemma 1 and Theo-
rem 11.3 of [4].

Considering the rays z = r-exp a,, where a, = (2s7i)/(m—1), 0 <r < +oc0
(s =0,1,2,...,m —2) when p > 1, and the rays z = r - exp 3,, where 3, =
((23+ Dri)/(m—1), 0<r < +00 (s=0,1,2,...,m—2) when p < —1, we can
prove the necessity in the same way as ii) of Theorem 1 of [2].

2) This proof is similar to the proof of iii) of Theorem 1 of [2].

Since f(z) and P(z) = z2—3p(p—2) are conjugate when k = 1 in Theorem 2,
we have the following known result (cf. [4, Theorem 12.1]).

Corollary. Let P(z) = z* —r, where r isreal. If -1 <r <2, then J(P) is
connected. Otherwise J(P) is totally disconnected and myJ = 0.
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