ON THE JULIA SET OF THE POLYNOMIAL $f(z) = pz + z^m$ WITH p REAL

Jiu-Yi Cheng

1. Introduction

Let f(z) be a rational function of a complex variable z with $\deg(f) \geq 2$ and $f^0(z) = z$, $f^{n+1}(z) = f(f^n(z))$, $n = 0, 1, 2, \ldots$

According to Blanchard [3], the Julia set J(f) for f(z) is the set of those points $z \in \overline{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$ where $\{f^n(z)\}$ is not a normal family in the sense of Montel. The following general properties are classical [5]:

- 1. J(f) is a nonempty perfect set.
- 2. $J(f^n) = J(f)$ for any integer $n \ge 1$.
- 3. J(f) is completely invariant under the mapping $z \mapsto f(z)$, i.e., $f(J(f)) = f^{-1}(J(f)) = J(f)$.

Certainly, the structure of J(f) depends on the function f(z). If f(z) is a polynomial, J(f) depends on the coefficients of f(z) in a very complicated manner. Myrberg [6–10], Brolin [4], and Bhattacharyya and Arumaraj [1–2] have considered the cases where f(z) is a polynomial of $\deg(f) = 2,3$ and 4 with real coefficients.

In this note we investigate the structure of J(f) where $f(z) = pz + z^m$ with p real.

We need the following definitions.

Definition 1. If the equation $f^n(z) - c = 0$ has a multiple root, then c is called a critical point of the inverse function $f^{-n}(z)$.

Definition 2. $\alpha \in \overline{\mathbf{C}}$ is a fixpoint of f(z) if $f(\alpha) = \alpha$, and α is an attractive fixpoint if $|f'(\alpha)| < 1$. The immediate attractive set $A^*(\alpha)$ of an attractive fixpoint α is the maximal domain of normality of $\{f^n(z)\}$ which contains α . The attractive set $A(\alpha)$ of α is defined by

$$A(\alpha) = \big\{ z \bigm| \lim_{n \to \infty} f^n(z) = \alpha \big\}.$$

Definition 3. Two polynomials f(z) and g(z) are conjugate if there exist constants $a, b \in \mathbb{C}$ such that f(az + b) = ag(z) + b.

Clearly, $z_0 \in A(\alpha)$ if and only if $\lim_{n\to\infty} g^n(az_0+b) = a\alpha+b$ (i.e., $az_0+b \in A'(a\alpha+b)$ if $A'(\beta)$ denotes the attractive set of β for g(z)).

We shall refer the reader to [3] and [4] for the results needed for our proofs.

2. Results and their proofs

Let $f(z) = pz + z^m$, where p is real, $m \ge 2$ being a positive integer. Then f(z) has m finite fixpoints

$$q_1 = 0, \ q_2 = (1-p)^{1/(m-1)}, \ q_3 = q_2\omega, \ q_4 = q_2\omega^2, \ \dots, q_m = q_2\omega^{m-2}$$

and $f^{-1}(z)$ has m-1 finite critical points

$$c_1 = \frac{(m-1)p}{m} \left(-\frac{p}{m}\right)^{1/(m-1)}, \ c_2 = c_1\omega, \ c_3 = c_1\omega^2, \ \dots, c_{m-1} = c_1\omega^{m-2},$$

where ω is one of the complex (m-1)th roots of unity.

From now on k, p means a positive integer and a real number, respectively.

Lemma 1. If
$$|p| < 1$$
, then $c_i \in A^*(0)$, $i = 1, 2, ..., m - 1$.

This can be proved in the same way as Lemma 1 of [2].

Lemma 2. The polynomial equation

(1)
$$g(t) = t^{4k-1}(t^{2k-1} - 2k)^{2k-1} + (2k-1)^{2k-1}(2kt - 2k + 1) = 0$$

has only one negative real root.

Proof. Since $g(0) = -(2k-1)^{2k} < 0$ and $g(-\infty) = +\infty$, there is at least one negative real root. If there are more than one negative roots, g''(t) = 0 must have at least one negative root. But

$$g''(t) = 4k^2(2k-1)t^{4k-3}(t^{2k-1}-1)(t^{2k-1}-2k)^{2k-3}\big((2k+1)t^{2k-1}-8k+2\big) > 0$$

for t < 0. Thus the lemma is proved.

Lemma 3. 1) The polynomial equation

(2)
$$h_1(t) = t^{2k} + 2kt - (2k - 1) = 0$$

has only one negative real root. Furthermore, if we denote the only negative real root of (1), (2) by $-\theta_0$, $-\theta_1$ ($\theta_0 > 0$, $\theta_1 > 0$), respectively, then $\theta_1 > \theta_0$; thus $h_1(t) \leq 0$ for $-\theta_0 \leq t \leq 0$.

2) The polynomial equation

$$h_2(t) = t^{2k+1} - (2k+1)t + 2k = 0$$

has only one negative real root. Furthermore, if we denote this root by $-\theta_2$ $(\theta_2 > 0)$, then $h_2(t) < 0$ if and only if $t < -\theta_2$.

3) θ_2 is the only positive real root of the polynomial equation

$$h_3(t) = t^{2k+1} - (2k+1)t - 2k = 0.$$

Furthermore, $h_3(t) > 0$ if and only if $t > \theta_2$.

Proof. 1) As in the proof of Lemma 2, by $h_1(0)=-(2k-1)<0$ and $h_1(-\infty)=+\infty$ and $h''(t)=2k(2k-1)t^{2k-1}>0$ for t<0, (2) has only one negative real root. Furthermore, note that $\theta_1>1$ (since $h_1(-1)=-4k+2<0$), and we have

$$\begin{split} g(-\theta_1) &= \theta_1^{4k-1}(\theta_1^{2k-1} + 2k)^{2k-1} - (2k-1)^{2k-1}(2k\theta_1 + 2k-1) \\ &= \theta_1^{2k} \left(h_1(-\theta_1) + 4k\theta_1 + 2k-1 \right)^{2k-1} - (2k-1)^{2k-1}(2k\theta_1 + 2k-1) \\ &> (4k\theta_1 + 2k-1)^{2k-1} - (2k-1)^{2k-1}(2k\theta_1 + 2k-1) \\ &> (2k-1)(2k)^{2k-2}(2k\theta_1 + 2k-1) - (2k-1)^{2k-1}(2k\theta_1 + 2k-1) > 0. \end{split}$$

Hence $-\theta_1 < -\theta_0$, that is, $\theta_1 > \theta_0$.

- 2) Since $h_2(-1) = 4k > 0$ and $h_2(-\infty) = -\infty$ and $h'(t) = (2k+1)(t^{2k}-1) > 0$ for t < -1, there is only one root $-\theta_2 \in (-\infty, -1)$ ($\theta_2 > 0$) and $h_2(t) < 0$ for $t < -\theta_2$. On the other hand, the minimum value of $h_2(t)$ on $[-\theta_2, +\infty)$ is $h_2(1) = 0$. So we have $h_2(t) \geq 0$ when $-\theta_2 \leq t \leq +\infty$. Hence the conclusion follows.
 - 3) This proof is similar to the proof of 2).

Lemma 4. 1) Let
$$f(z) = pz + z^{2k+1}$$
, $-(2k+1)\theta_2/2k \le p \le 0$. Then $|f(x)| \le q_2 = (1-p)^{1/2k}$ if $|x| \le q_2$.

2) Let
$$f(z) = pz - z^{2k+1}$$
, $0 \le p \le (2k+1)\theta_2/2k$. Then
$$|f(x)| \le (1+p)^{1/2k} \quad \text{if} \quad |x| \le (1+p)^{1/2k}.$$

Proof. 1) If $0 \le x \le q_2$, then by $x^{2k} \le 1 - p$,

$$f(x) - q_2 = x(x^{2k} - 1 + p) + x - q_2 \le 0.$$

So we have $f(x) \leq q_2$. On the other hand, by $-(2k+1)\theta_2/(2k) \leq p \leq 0$ and 2) of Lemma 3, $f\left((-p/(2k+1))^{1/2k}\right) \geq -q_2$. But $f\left((-p/(2k+1))^{1/2k}\right)$ is the minimum value of f(x) on $[0,+\infty)$. Hence $f(x) \geq -q_2$ for $0 \leq x \leq q_2$. So we obtain $|f(x)| \leq q_2$.

If $-q_2 \leq x \leq 0$, then

$$f(x) + q_2 = x(x^{2k} - 1 + p) + x + q_2 \ge 0.$$

So we have $f(x) \ge -q_2$. On the other hand, analogously, $f(-(-p/(2k+1))^{1/2k}) \le q_2$. But $f(-(-p/(2k+1))^{1/2k})$ is the maximum value of f(x) on $(-\infty, 0]$. Hence $f(x) \le q_2$ for $-q_2 \le x \le 0$. We also obtain $|f(x)| \le q_2$.

2) By 3) of Lemma 3, we can prove this in the same way as 1).

Lemma 5. Let $f(z) = pz + z^{2k}$. If $-2k\theta_0/(2k-1) \le p \le 0$, then

(3)
$$|f(c_1)| \le q_2 = (1-p)^{1/(2k-1)}$$

and

$$|f^2(x)| \le q_2 \quad \text{if} \quad |f(x)| \le q_2.$$

Proof. We first consider (3). Now

$$c_1 = -\frac{(2k-1)p}{2k} \left(\frac{p}{2k}\right)^{1/(2k-1)}.$$

So, by $p \leq 0$, we have $f(c_1) \geq 0$. On the other hand, by Lemma 2, $g(t) \leq 0$ for $-\theta_0 \leq t \leq 0$. Hence $g((2k-1)p/2k) \leq 0$ if $-2k\theta_0/(2k-1) \leq p \leq 0$, i.e. $f(c_1) \leq q_2$ if $-2k\theta_0/(2k-1) \leq p \leq 0$. Thus (3) is proved.

Next we prove (4). If $0 \le f(x) \le q_2$, then

$$f^{2}(x) - q_{2} = f(x)(f(x)^{2k-1} - 1 + p) + f(x) - q_{2} \le 0,$$

and we have $f^2(x) \le q_2$. On the other hand, by $-2k\theta_0/(2k-1) \le p \le 0$ and 1) of Lemma 3,

$$f\left(-\left(\frac{p}{2k}\right)^{1/(2k-1)}\right) \ge q_2.$$

But

$$f\left(-\left(\frac{p}{2k}\right)^{1/(2k-1)}\right)$$

is the minimum value of f(x) on $[0,q_2]$. Hence $f^2(x) \geq -q_2$. So we obtain $|f^2(x)| \leq q_2$.

If $-q_2 \leq f(x) \leq 0$, then

$$f^{2}(x) + q_{2} = pf(x) + f(x)^{2k} + q_{2} \ge 0,$$

and we have $f^2(x) \ge -q_2$. On the other hand, c_1 is the minimum value of f(x); thus $f(x) \ge c_1$ for any $x \in (-\infty, +\infty)$. Hence, by $-q_2 < c_1 < 0$ and (3) and f'(x) < 0 when $-q_2 \le x \le 0$, we have

$$f^2(x) < f(c_1) < q_2$$

We also obtain $|f^2(x)| \leq q_2$. Thus Lemma 5 is proved.

Lemma 6. Let $f(z) = pz + z^{2k+1}$. Then $c_i \notin A(\infty)$ (i = 1, 2, ..., 2k) if and only if $|p| \le (2k+1)\theta_2/2k$.

Proof. Now

$$c_1 = \frac{2kp}{2k+1} \left(-\frac{p}{2k+1} \right)^{1/(2k)}.$$

Suppose first that $p \leq 0$. Then |f(x)| > |x| for $|x| > q_2 = (1-p)^{1/2k}$. Thus $x \in A(\infty)$ for $|x| > q_2$. By 2) of Lemma 3, $|c_1| > q_2$ when $p < -(2k+1)\theta_2/2k$. So we have $c_1 \in A(\infty)$. Since

$$|f^n(c_1)| = |f^n(c_2)| = \cdots = |f^n(c_{2k})|$$

for any positive integer n, it follows that $c_i \in A(\infty)$ $(i=1,2,\ldots,2k)$ when $p<-(2k+1)\theta_2/2k$. If $-(2k+1)\theta_2/2k \le p \le 0$, then $|c_1|\le q_2$. By 1) of Lemma 4, $|f^n(c_1)|\le q_2$ for any positive integer n. Thus $c_i \notin A(\infty)$ $(i=1,2,\ldots,2k)$ when $-(2k+1)\theta_2/2k \le p \le 0$.

Suppose now that p > 0. Since f(z) and $f_*(z) = pz - z^{2k+1}$ are conjugate (since $af(z) = f_*(az)$ where $a = \exp(-\pi i/2k)$), and

$$c_1 = \frac{2kp}{2k+1} \left(\frac{p}{2k+1}\right)^{1/(2k)} \exp\left(\frac{\pi i}{2k}\right),$$

we consider the behavior of $c_i^* = \exp(-\pi i/2k) \cdot c_i$ (i = 1, 2, ..., 2k) under the iterates of $f_*(z) = pz - z^{2k+1}$. Since $|f_*(x)| > |x|$ for $|x| > (1+p)^{1/2k}$, $f_*^n(x) \to \infty$ as $n \to +\infty$ for $|x| > (1+p)^{1/2k}$. But, by (3) of Lemma 3,

$$|c_1^*| = \frac{2kp}{2k+1} \left(\frac{p}{2k+1}\right)^{1/(2k)} > (1+p)^{1/2k}$$

when $p > (2k+1)\theta_2/2k$. So we have $f_*^n(c_1^*) \to \infty$ $(n \to +\infty)$ and $f_*^n(c_i^*) \to \infty$ $(n \to +\infty)$ (i = 1, 2, ..., 2k). Hence $c_i \in A(\infty)$ (i = 1, 2, ..., 2k) when $p > (2k+1)\theta_2/2k$. If $0 \le p \le (2k+1)\theta_2/2k$, then $|c_1^*| \le (1+p)^{1/2k}$. By (2) of Lemma 4, $|f_*^n(c_1^*)| \le (1+p)^{1/2k}$ for any positive integer n. Thus $f_*^n(c_i^*) \neq \infty$ $(n \to +\infty)$ (i = 1, 2, ..., 2k). Hence $c_i \notin A(\infty)$ when $0 \le p \le (2k+1)\theta_2/2k$. Thus the proof of Lemma 6 is completed.

Lemma 7. Let $f(z) = pz + z^{2k}$. Then $c_i \notin A(\infty)$ (i = 1, 2, ..., 2k - 1) if and only if $-2k\theta_0/(2k-1) \le p \le (2k/(2k-1))(2k)^{1/(2k-1)}$.

Proof. By Lemma 2 and Lemma 5, we can prove this lemma in the same way as Lemma 3 of [2].

Theorem 1. Let $f(z) = pz + z^{2k+1}$, where p is real and k is a positive integer. If $|p| \le (2k+1)\theta_2/2k$, then J(f) is connected. Otherwise J(f) is totally disconnected, $m_2J = 0$ (where m_2J denotes the planar measure of J(f)) and $j|_J$ is isomorphic to the one-sided shift on 2k+1 symbols (cf. [3, pp. 124]).

Theorem 2. Let $f(z) = pz + z^{2k}$, where p is real and k is a positive integer. If $-2k\theta_0/(2k-1) \le p \le (2k/(2k-1))(2k)^{1/(2k-1)}$, then J(f) is connected. Otherwise J(f) is totally disconnected, $m_2J = 0$ and $f|_J$ is isomorphic to the one-sided shift on 2k symbols.

By Lemmas 6 and 7, Theorems 1 and 2 immediately follow from Theorems 11.2 and 11.4 of [4] and Theorem 9.9 of [3].

Theorem 3. Let $f(z) = pz + z^m$, where p is real and $m \ge 3$ is a positive integer. Then

- 1) J(f) is a Jordan curve if and only if |p| < 1.
- 2) $J(f) \subset \{z \mid |z| \le (1+|p|)^{1/(m-1)}\}.$

Proof. 1) As in [2], sufficiency immediately follows from Lemma 1 and Theorem 11.3 of [4].

Considering the rays $z = r \cdot \exp \alpha_s$, where $\alpha_s = (2s\pi i)/(m-1)$, $0 < r < +\infty$ (s = 0, 1, 2, ..., m-2) when $p \ge 1$, and the rays $z = r \cdot \exp \beta_s$, where $\beta_s = ((2s+1)\pi i)/(m-1)$, $0 < r < +\infty$ (s = 0, 1, 2, ..., m-2) when $p \le -1$, we can prove the necessity in the same way as ii) of Theorem 1 of [2].

2) This proof is similar to the proof of iii) of Theorem 1 of [2].

Since f(z) and $P(z) = z^2 - \frac{1}{4}p(p-2)$ are conjugate when k = 1 in Theorem 2, we have the following known result (cf. [4, Theorem 12.1]).

Corollary. Let $P(z) = z^2 - r$, where r is real. If $-\frac{1}{4} \le r \le 2$, then J(P) is connected. Otherwise J(P) is totally disconnected and $m_2J = 0$.

References

- [1] Bhattacharyya, P., and Y.E. Arumaraj: On the structure of the Fatou set for the polynomial $z^3 + pz$, p < -3. Math. Rep. Toyama Univ. 1:3, 1980, 123-141.
- [2] Bhattacharyya, P., and Y.E. Arumaraj: On the iteration of polynomials of degree 4 with real coefficients. Ann. Acad. Sci. Fenn. Ser. A I Math. 6, 1981, 197–203.
- [3] Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Amer. Math. Soc. 11, 1984, 85–141.
- [4] Brolin, H.: Invariant sets under iteration of rational functions. Ark. Mat. 6, 1965-67, 104-144.
- [5] FATOU, M.P.: Sur les équations fonctionelles. Bull. Soc. Math. France 47, 1919, 161–271; 48, 1920, 33–94.
- [6] MYRBERG, P.J.: Iteration der reellen Polynome zweiten Grades. Ann. Acad. Sci. Fenn. Ser. A I Math. 256, 1958, 1-10.
- [7] MYRBERG, P.J.: Iteration der reellen Polynome zweiten Grades II. Ann. Acad. Sci. Fenn. Ser. A I Math. 268, 1959, 1–13.
- [8] MYRBERG, P.J.: Sur l'iteration des polynomes réels quadratiques. J. Math. Pures Appl. (9) 41, 1962, 339-351.
- [9] MYRBERG, P.J.: Iteration der reellen Polynome zweiten Grades III. Ann. Acad. Sci. Fenn. Ser. A I Math. 336, 1963, 1-18.
- [10] MYRBERG, P.J.: Iteration der Binome beliebigen Grades. Ann. Acad. Sci. Fenn. Ser. A I Math. 348, 1964, 1–14.

Shanghai Institute of Education Department of Mathematics 593 Yan An Road (W) Shanghai 200050 China

Received 19 May 1988