A SUFFICIENT CONDITION FOR THE WOLD-CRAMÉR CONCORDANCE OF BANACH-SPACE-VALUED STATIONARY PROCESSES

Grażyna Hajduk-Chmielewska

Abstract. A recent result of Makagon and Salehi [7] is applied to obtain a sufficient condition for the concordance of the Wold decomposition and the spectral measure decomposition of Banachspace-valued stationary processes.

A sufficient condition for the Wold-Cramér concordance of Banach-spacevalued stationary processes based on the isomorphism theorem (cf. [8, Theorem 3.3]) is presented in [4]. But for a given stationary process no algorithm for the determination of its isomorphism image is known. The concordance theorem for a stationary process with multiplicity one is given (cf. Proposition 7 below) in a recent paper of Makagon and Salehi [7]. If we connect the technics applied in [4] with the result of [7], we get the sufficient condition for the Wold-Cramér concordance, but for initial Banach-space-valued stationary process is formulated below.

In this paper, N, Z and K stand for positive integers, all integers and the unit circle of the complex plane, respectively. By $\mathcal{B}(K)$ we denote the family of Borel subsets of K and by m the normed Lebesgue measure on K. Let B be a complex Banach space with the dual space B^* and H be a complex Hilbert space with the inner product (\cdot, \cdot) and the norm $\|\cdot\|$. We denote by L(B, H) the space of all continuous linear operators from B into H and by $\overline{L}^+(B, B^*)$ the space of all continuous antilinear and nonnegative operators from B into B^* .

By a second order stochastic process with values in B we mean a mapping $X: Z \to L(B, H)$. X is stationary if its correlation function $R(l, k) = X^*(k)X(l)$ depends only on l - k. In that case R has the spectral representation

$$X^*(k)X(l) = R(l-k) = \int_K z^{l-k} F(dz),$$

where F is a weakly countably additive measure on $\mathcal{B}(K)$ with values in $\overline{L}^+(B, B^*)$. F is called the spectral measure of the process X.

We denote $M(X) = \overline{sp} \{ X(l)b: l \in Z, b \in B \},\$

$$M_k(X) = \overline{\operatorname{sp}} \{ X(l)b: \ l \le k, b \in B \}, \quad M_{-\infty}(X) = \bigcap_{k \in Z} M_k(X).$$

doi:10.5186/aasfm.1989.1408

We say that a stationary process X is separable if M(X) is a separable subspace in H. X is regular if $M_{-\infty}(X) = \{0\}$ and it is singular if $M_{-\infty}(X) = M(X)$.

A second order process X is stationary if and only if X has the unitary shift operator, i.e, if there exists a unitary operator $U: M(X) \to M(X)$ such that

$$UX(k) = X(k+1), \qquad k \in \mathbb{Z}.$$

If E is the spectral measure of the operator U, then E and F are related by the formula

(a)
$$F(\Delta) = X^*(0)E(\Delta)X(0), \quad \Delta \in \mathcal{B}(K).$$

Now we recall the Wold decomposition theorem (cf. [2, Theorem 8.6]).

1. Proposition. Let $X: Z \to L(B, H)$ be a stationary process with the shift operator U. Then there exist two processes X^r and X^s with the same shift operator U such that

- (i) $X(k) = X^{r}(k) + X^{s}(k), \ k \in \mathbb{Z},$
- (ii) $M(X^r)$ and $M(X^s)$ are orthogonal,
- (iii) for each $k \in \mathbb{Z}$, $M_k(X^r)$ and $M_k(X^s)$ are contained in $M_k(X)$,

(iv) X^r is regular and X^s is singular.

The above decomposition is unique. Namely, $X^{s}(k) = P_{-\infty}X(k)$ and $X^{r}(k) = X(k) - X^{s}(k)$, where $P_{-\infty}$ is the orthogonal projection onto $M_{-\infty}(X)$.

In particular, it follows that $M(X^s) = M_{-\infty}(X)$ and $M(X^r) = M(X) \oplus M_{-\infty}(X)$.

The following definition of multiplicity of a stationary process is given in [7].

2. Definition. Let $X: \mathbb{Z} \to L(B, H)$ be a separable stationary process. The smallest number $n \in \mathbb{N} \cup \{\infty\}$ such that there exists a sequence $\{x_i\}_{i=1}^n \subseteq M(X)$ with the property

$$M(X) = \overline{\operatorname{sp}} \{ U^k x_i \colon 1 \le i < n+1, \ k \in Z \}$$

is called the multiplicity of the process X and denoted by m(X). The inequality i < n+1 means $i \le n$ if $n < \infty$ and $i < \infty$ if $n = \infty$.

We will say that the spectral measure F of a stationary process X is absolutely continuous (or singular) with respect to a nonnegative scalar measure μ if $(F(\cdot)b)(b)$ is absolutely continuous (or singular) with respect to μ for all $b \in B$. We will use the notations $F \ll \mu$, $F \perp \mu$, respectively. Note that, for fixed $\Delta \in \mathcal{B}(K)$, $(F(\Delta)b)(b) = 0$ for each $b \in B$ if and only if $F(\Delta) = 0$. Hence $F \ll \mu$ is equivalent to the implication that if $\mu(\Delta) = 0$, then $F(\Delta) = 0$, $\Delta \in \mathcal{B}(K)$.

The following fact is proved in [1, Section 95] and [5, Section 66].

3. Proposition. Let E be a spectral measure (on $\mathcal{B}(K)$) in a Hilbert space H and $H^a = \{h \in H: (E(\cdot)h, h) << m\}, H^s = \{h \in H: (E(\cdot)h, h) \perp m\}$. Then H^a and H^s are closed linear subspaces of H, $H = H^a \oplus H^s$, H^a and H^s reducing the spectral measure E.

In the case where E is the spectral measure of the shift operator U of a stationary process X and H = M(X), we shall denote $M^{a}(X) = H^{a}$, $M^{s}(X) = H^{s}$.

4. Lemma. Suppose $X, Y: Z \to L(B, H)$ are stationary processes with the same shift operator U and $M(Y) \subseteq M(X)$. Denote by F_Y the spectral measure of the process Y. Then

- (i) $F_Y \ll m$ if and only if, for each $b \in B$, $Y(0)b \in M^a(X)$ (equivalently $M(Y) \subseteq M^a(X)$);
- (ii) $F_Y \perp m$ if and only if, for each $b \in B$, $Y(0)b \in M^s(X)$ (equivalently $M(Y) \subseteq M^s(X)$).

Proof. In (α) , $F_Y(\Delta) = Y^*(0)E(\Delta)Y(0)$; hence $(F_Y(\Delta)b)(b) = (E(\Delta)Y(0)b, Y(0)b)$. Thus, by Proposition 3, $(F_Y(\cdot)b)(b) << m$ if and only if $Y(0)b \in M^a(X)$. Furthermore, $Y(0)b \in M^a(X)$ for each $b \in B$ implies $M(Y) \subseteq M^a(X)$ because $M^a(X)$ reduces the shift operator U and $Y(k)b = U^kY(0)b \in M^a(X)$. We prove (ii) in the same way.

5. Lemma. Let F be the spectral measure of a stationary process X. Then there exists a unique decomposition $F = F^a + F^s$, where F^a and F^s are measures with values in $\overline{L}^+(B, B^*)$ such that $F^a \ll m$, $F^s \perp m$.

Proof. We denote $X^1(k) = P_a X(k)$, $X^2(k) = P_s X(k)$, where P_a , P_s are the orthogonal projections on $M^a(X)$, $M^s(X)$, respectively. Since $M^a(X)$, $M^s(X)$ reduce the shift operator U, both X^1 and X^2 are stationary processes with the same shift operator U. Let F^a be a spectral measure of X^1 and F^s the spectral measure of X^2 . By Lemma 4, $F^a << m$, $F^s \perp m$. Moreover,

$$(F(\Delta)b)(b) = ||E(\Delta)X(0)b||^{2} = ||E(\Delta)(X^{1}(0)b + X^{2}(0)b)||^{2}$$

= $||E(\Delta)X^{1}(0)b||^{2} + ||E(\Delta)X^{2}(0)b||^{2} = (F^{a}(\Delta)b)(b) + (F^{s}(\Delta)b)(b)$

for each $b \in B$; thus $F = F^a + F^s$. Next, for each $b \in B$, $(F^a(\cdot)b)(b)$ is the absolutely continuous and $(F^s(\cdot)b)(b)$ the singular part of the measure $(F(\cdot)b)(b)$ with respect to m. The uniqueness of such decomposition implies the uniqueness of the decomposition of $F = F^a + F^s$.

By [6, Theorem 21.13], it follows that in M(X) there exists a subset $\{x_{\gamma}\}_{\gamma \in \Gamma}$ (Γ is an index set) such that

(
$$\beta$$
) $M(X) = \bigoplus_{\gamma \in \Gamma} \overline{\operatorname{sp}} \{ U^k x_\gamma : k \in Z \},$

where U is the shift operator of a stationary process X. Now fix such decomposition (β) and denote by P_{γ} the orthogonal projection on $\overline{sp}\{U^{k}x_{\gamma}: k \in Z\}$. Let $X_{\gamma}(k) = P_{\gamma}X(k)$. We claim that $X_{\gamma}: Z \to L(B, \overline{sp}\{U^{k}x_{\gamma}: k \in Z\})$ is a stationary process with the shift operator U. Indeed, $\overline{sp}\{U^{k}x_{\gamma}: k \in Z\}$) reduces U, whence P_{γ} and U commute. Then

$$X_{\gamma}(k+1) = P_{\gamma}X(k+1) = P_{\gamma}UX(k) = UP_{\gamma}X(k) = UX_{\gamma}(k)$$

The following lemma gives a connection between the process X and the family of processes X_{γ} .

6. Lemma.

- (i) $\overline{\operatorname{sp}}\{U^k x_{\gamma} : k \in Z\} = M(X_{\gamma}).$
- (ii) $\overline{P_{\gamma}M_k(X)} = M_k(X_{\gamma}).$
- (iii) $P_{\gamma}M_{-\infty}(X) \subseteq M_{-\infty}(X_{\gamma}).$
- (iv) If X is singular, X_{γ} is singular for each $\gamma \in \Gamma$.
- (v) If for each $\gamma \in \Gamma$ X_{γ} is regular, X is regular.

Proof. (i) From the definition of P_{γ} it follows that $\overline{\operatorname{sp}}\{U^{k}x_{\gamma} : k \in Z\} = P_{\gamma}M(X)$. We prove that $P_{\gamma}M(X) = M(X_{\gamma})$. In fact,

$$P_{\gamma}M(X) \subseteq \overline{\operatorname{sp}}\{P_{\gamma}X(l)b : l \in Z, b \in B\} = \overline{\operatorname{sp}}\{X_{\gamma}(l)b : l \in Z, b \in B\} = M(X_{\gamma}).$$

On the other hand, $X_{\gamma}(l)b = P_{\gamma}X(l)b \in P_{\gamma}M(X)$ for each $b \in B$ and $P_{\gamma}M(X)$ is a closed linear subspace. Hence $M(X_{\gamma}) \subseteq P_{\gamma}M(X)$.

(ii) As in (i) we show that $\overline{P_{\gamma}M_k(X)} = M_k(P_{\gamma}X) = M_k(X_{\gamma})$. (iii) $P_{\gamma}M_{-\infty}(X) = P_{\gamma}(\bigcap_{k \in \mathbb{Z}} M_k(X)) \subseteq (\bigcap_{k \in \mathbb{Z}} P_{\gamma}M_k(X))$

$$\subseteq \bigcap_{k \in \mathbb{Z}} \overline{P_{\gamma} M_k(X)} = \bigcap_{k \in \mathbb{Z}} M_k(X_{\gamma}) = M_{-\infty}(X_{\gamma}).$$

(iv) By the assumption $M(X) = M_{-\infty}(X)$. From (iii)

$$M(X_{\gamma}) = P_{\gamma}M(X) = P_{\gamma}M_{-\infty}(X) \subseteq M_{-\infty}(X_{\gamma}).$$

Hence $M(X_{\gamma}) = M_{-\infty}(X_{\gamma})$ and each process X_{γ} is singular. (v) Since $M(X) = \bigoplus_{\gamma \in \Gamma} P_{\gamma}M(X)$,

$$M_{-\infty}(X) \subseteq \bigoplus_{\gamma \in \Gamma} P_{\gamma} M_{-\infty}(X) \subseteq \bigoplus_{\gamma \in \Gamma} M_{-\infty}(X_{\gamma}) = \{0\},$$

because every process X_{γ} is regular by assumption.

By Lemma 6(i) it follows that every process X_{γ} has multiplicity one.

Let now $X = X^r + X^s$ be the Wold decomposition of a process X as in Theorem 1. We denote by $F_X r$ the spectral measure of the process X^r and by $F_X s$ the spectral measure of X^s . Since $M(X^r)$ and $M(X^s)$ are orthogonal subspaces and reduce the shift operator U, we get $F = F_X r + F_X s$ as in the proof of Lemma 5.

The following fact is proved in [7, as Corollary 3.8].

260

7. Proposition. If X is a nonsingular stationary process with multiplicity one, F^a is the spectral measure of X^r and F^s is the spectral measure of X^s .

Now we state the main result of this paper.

8. Theorem. Let $X: Z \to L(B, H)$ be a stationary process with the shift operator U and the spectral measure F. If there exists a decomposition

$$M(X) = \bigoplus_{\gamma \in \Gamma} \overline{\operatorname{sp}} \{ U^k x_\gamma : k \in Z \}$$

such that for each $\gamma \in \Gamma$ the orthogonal projection $P_{\gamma}X$ of the process X on $\overline{sp}\{U^k x_{\gamma} : k \in Z\}$ is nonsingular, then $F_X r = F^a$, $F_X s = F^s$.

Proof. By virtue of Lemma 4 it suffices to show that $M(X^r) \subseteq M^a(X)$ and $M(X^s) \subseteq M^s(X)$. The first of these inclusions follows from Lemma 4 because the spectral measure of a regular process is absolutely continuous with respect to m (cf. [2, Theorem 10.2]). We prove that $X^s(0)b \in M^s(X)$ for each $b \in B$. In fact,

$$X^{s}(0)b = \sum_{\gamma \in \Gamma} P_{\gamma} X^{s}(0)b, \qquad b \in B$$

and $P_{\gamma}X^{s}(0)b \in P_{\gamma}M(X^{s}) = P_{\gamma}M_{-\infty}(X) \subseteq M_{-\infty}(X_{\gamma}) = M(X_{\gamma}^{s})$, where the above inclusion follows from Lemma 6(iii). Since, for each $\gamma \in \Gamma$, X_{γ} has multiplicity one, Proposition 7 implies that the spectral measure of X_{γ}^{s} is singular with respect to m. Moreover, U is the shift operator of X_{γ} and X_{γ}^{s} and $M(X_{\gamma}^{s}) \subseteq M(X_{\gamma}) \subseteq M(X)$ for every $\gamma \in \Gamma$. Thus $X^{s}(0)b \in M^{s}(X)$ for each $b \in B$, which gives $M(X^{s}) \subseteq M^{s}(X)$.

9. Corollary. If the assumptions of Theorem 8 hold and the spectral measure of X is absolutely continuous with respect to m, then X is regular.

10. Remarks. (a) If X is a separable stationary process with multiplicity m(X) there exists in M(X) a sequence $\{x_i\}_{i=1}^{m(X)}$ realizing the decomposition (β) (cf. [3, p. 914–918] or [7, Lemma 2.2]). In that case the power of this decomposition is minimal. In a general case the power of the set Γ depends on the choice of a subset realizing (β) .

(b) If a Hilbert space H is separable, Proposition 3 obtains a stronger form. Namely, for a spectral measure E in H, there exists in this case the unique decomposition $E = E^a + E^s$, where E^a is a spectral measure in a subspace $H^a \subseteq H$, E^s is a spectral measure in a subspace $H^s \subseteq H$, $H^a \oplus H^s = H$ and $E^a << m$, E^s is concentrated on a set of m-zero measure (then E^a and E^s are supported on disjoint Borel subsets of K). Indeed, if for some orthonormal base $\{e_i\}_{i=1}^{\infty}$ in H we define

$$\mu(\Delta) = \sum_{i=1}^{\infty} (E(\Delta)e_i, e_i) \cdot 2^{-i}, \qquad \Delta \in \mathcal{B}(K),$$

then μ is a nonnegative finite measure and $E << \mu$. Consider the Lebesgue decomposition of μ with respect to $m: \mu = \mu_a + \mu_s$. Let $\Delta_a \in \mathcal{B}(K)$ be a set such that $m(\Delta_a^C) = 0$ and μ_s is concentrated on Δ_a^C . If we put $E^a(\Delta) = E(\Delta_a \cap \Delta)$, $E^s(\Delta) = E(\Delta_a^C \cap \Delta)$, $H^a = E(\Delta_a)H$, $H^s = E(\Delta_a^C)H$, we get the desired decomposition. It is easy to verify that the subspaces H^a and H^s are the same as in Proposition 3.

(c) Suppose that X is a separable stationary process with the shift operator U and the spectral measure F. By (b) it follows that there exists the unique decomposition $F = F^a + F^s$ where $F^a << m$, F^s is concentrated on a set of m-zero measure. In fact, let E be the spectral measure of U. The measures $F^a(\Delta) = X^*(0)E^a(\Delta)X(0), \ F^s(\Delta) = X^*(0)E^s(\Delta)X(0), \ \Delta \in \mathcal{B}(K)$, satisfy the above condition.

11. Corollary. Let $X: Z \to L(B, H)$ be a separable stationary process with multiplicity m(X). Let F be the spectral measure of X and U its shift operator. Then

(a) There exists a unique decomposition $F = F^a + F^s$, where F^a and F^s are measures with values in $\overline{L}^+(B, B^*)$ such that $F^a << m$, F^s is concentrated on set of *m*-zero measure;

(b) if there exists in M(X) a sequence $\{x_i\}_{i=1}^{m(X)}$ such that

$$M(X) = \bigoplus_{i=1}^{m(X)} \overline{\operatorname{sp}}\{U^k x_i : k \in Z\}$$

and every process P_iX $(1 \le i < m(X) + 1)$ is nonsingular, F^a is the spectral measure of X^r and F^s is the spectral measure of X^s . (P_i denotes the orthogonal projection on $\overline{sp}\{U^kx_i: k \in Z\}, 1 \le i < m(X) + 1$.)

References

[1]	ACHIEZER, N.I., and I.M. GLAZMAN: Theory of linear operators in Hilbert space Pub-
	lications of Kharkov University, Kharkov, 1978 (Russian).

- CHOBANYAN, S.A., and A. WERON: Banach-space-valued stationary processes and their linear prediction. - Dissertationes Math. 125, 1975, 1-45.
- [3] DUNFORD, N., and J.T. SCHWARTZ: Linear operators, Part II. Spectral Theory, Interscience, New York, 1963.
- [4] HAJDUK-CHMIELEWSKA, G.: The Wold-Cramér concordance problem for Banach-spacevalued stationary processes. - Studia Math. 91, 1988, 31-43.
- [5] HALMOS, P.: Introduction to Hilbert space and the theory of spectral multiplicity. -Chelsea Publishing Company, New York, 1951.
- [6] HEWITT, E., and K.A. Ross: Abstract harmonic analysis, Part I. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [7] MAKAGON, A., and H. SALEHI: Infinite dimensional stationary sequence with multiplicity one. - Ann. Acad. Sci. Fenn. Ser. A I Math. 12, 1987, 135–150.
- [8] WERON, A.: Second order stochastic processes and the dilatation theory in Banach space.
 Ann. Inst. H. Poincaré 16, 1980, 29–38.

Szczecin Technical University Institute of Mathematics Al. Piastów 17 PL-70-310 Szczecin Poland

Received 15 January 1988