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PARAMETERS FOR FUCHSIAN GROUPS II:
TOPOTOGTCAL TYPE (1,1)

Bernard Maskit

This note is an exploration of the space of Riemann surfaces of topological
type (1, 1) ; that is, the space of distinct conformal structures on a torus with one
boundary componentl similar explorations for the space of Riemann surfaces of
genus zero with four boundary components were considered in [M2]. There are
several different approaches to this space. There is a general deformation space of
a Riemann surface with boundary, marked with a basis for the fundamental group;
these have been explored by Bers and Gardiner [B-G]. Another general approach is
to look at canonical domains on closed surfacesl this was explored in [M3]. There
are also explicit constructions due to Rosenberger [R] and Keen [K], using the
known presentation of the modular group. In this paper, we give a similar explicit
parametrization of the space of standard (and normalized) generators of Fuchsian
groups representing tori with one boundary component. Our parametrization is
intrinsic in the sense that it does not depend on a choice of base point.

Our parameter space has an interior and a boundary, where the interior con-
sists of Riemann surfaces with holes (i.e., surfaces where the boundary is a deleted
disc), and the boundary consists of Riemann surfaces with punctures (i.e., those
where the boundary is a deleted point).

Our parameters have the following properties: after appropriate normaliza-
tion, the entries in the matrices of the generators are explicit polynomials in the
parameters (the matrices have positive, but not necessarily unit, determinant); the
parameter space is a product of half-planes; and one of the parameters, ), is the
multiplier of the commutator. Since the commutator is parabolic if and only if the
group represents a torus with a puncture, as opposed to a hole, we have ) ) 1,
and ,\ : 1 if and only if the group represents a torus with a puncture. These
parameters thus yield a real analytic structure on the space of marked Fuchsian
groups of type (1, 1). This real-analytic structure is equivalent to the usual one in
both the interior and on the boundary of our space. More precisely, the interior
is real analytically equivalent to the reduced Teichmöller space (see Earle [E]) of
tori with one hole, and the boundary is real analytically equivalent to the usual
Teichmiiller space of tori with one puncture.
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We also remark that if we permit these parameters to become complex, while
keeping l)l > 1, or by keeping ) : 1, we obtain a complex analytic parametriza-
tion of the corresponding space of marked quasifuchsian groups; in these cases
however, we have almost no information about the boundary of the corresponding
parameter spaces.

In order to go from the parameter space, which is essentially a deformation
space of Fuchsian groups, to the underlying space of Riemann surfaces, we need
to define a fundamental domain for the action of the Teichmiiller modular group.
We do this in several steps.

If ,s is a Riemann surface of type (1,1), then generically there is a shortest
non-dividing geodesic on ,S, call it a. There is also generically a shortest sim-
ple geodesic å crossing a exactly once. The corresponding elements A ar,d B
of the Fuchsian group generate it; we call these modular generators. They are
generically well defined up to orientation; we show below that, up to orientation,
every Riemann surface of topological type (1, 1) has at most two sets of modular
generators.

The modular generators are defined by infinitely many inequalities; we show
that they can be defined by just three. In order to state these inequalitites, we
make the following definition. If

M:(o å\
\c d)

is any element of PGL(2, R)+, the space of real 2 x 2 matrices with positive
determinant, then we define the normalized trace function f(M) by

r@): lo * dll@d - bc)1/2.

In terms of this function, the modular generators can be defined by the in-
equalities r@) < T(B), r@) < r@B), and ?(B) < T(AB-L).

These inequalities define a fundamental domain for action of the Teichmiiller
modular group that is very closely related to the usual fundamental domain for the
action of the elliptic modular group. That is, the usual fundamental domain for the
ellipticmodulargroupisdefinedbytheinequalities l"l > 1 and -| < Re(r) < |.Anequivalentsetof inequalitiesis: lrl >1, l"l <11+rl,and |rl Slt-ri;thåt
is, the shortest side has length one, and the sides of the parallelogram formed by
L and r are both shorter than both diagonals. A third equivalent definition is:
l"l > 1, and for every n, rnlZ with rn *0,|n*mrl> lrl.

In the final section, we translate these inequalities into our parameters, so as
to again define the space of Riemann surfaces of type (1,1). we write down the
identifications of the sides, and we show that the resulting space is a product of
an interval and a space homeomorphic to H2 I PSL(2, Z); this agrees with the
result in [M3].
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section we define our parameters. \Me start with any point fr
hyperbolic lines in the upper half-plane, H2, &s follows. The
at 0 and oo is called Sr i the line with endpoints at 0 and
Iine with endpoints at 1 and n is called Tr, and the line
and oo is called Sz (see Figure 1).
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and observe that for every r, L maps §1 onto fi , and B maps 52 onlo 72.
Let G: C(*): lÅ,å1, th" group generated by L and å, and let D be the
region bounded by the four lines, Sr, Tr, 52, and Tz. Observe that Å and, B
both map D onto regions that are disjoint from D . Let Bt be the open region
in H2 between ,Sr and 4, *d let 82 be the open region in H2 between 

^92

auad Tz. Then Br U 82 : H2 , and .B1 n Bz : D t0. It follows from Klein's
combination theorem [M1, p. 139] that G is discrete, G : (a),t (A) , and no-trivial
translate of D overlapr D. An easy computation also shows that the commutator
Å-'B-'ÅB : lÅ-L ,-B-r] i, p*abotic wittr fixed point at oo. Knowing this, we
can also use Poincar6's polygon theorem to reach the above conclusions, and also
to conclude that the interior of D is a fundamental polygon for G.

The general transformation mapping ,S1 onto^ 7r , md mapping D onto a
region disjoint from itself, is then of the form A : AM, where M is a hyperbolic
transformation, or the identity, with axis ,Sr . Similarly, the general transformation
mapping ,92 onto 72 , while mapping D onto a region disjoint from itself, is of the
form B : BN, where N is a hyperbolic transformation, or the identity with axis
,S2. we write

(l :), B - n1*1: (j, ;.),

!/r_(; ?) , ,^r - (; "(L;,,) ,
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where s and t are both positive. We then obtain the general transformations:

A-ÅM-

Using Klein's combination theorem again, we see that for any choice of pa-
rameters s ) 0, t ) 0, and o > 1, the group G: G(rrs,t): IA,B) is discrete,
G : lA» * (B), and no non-trivial translate of D intersects D. An easy com-
putation shows that 

"([,4-',El-'l) 
: s/t * tls; ia particular, the commutator

[A-r,3-r1 is parabolic if and only if s : f. In any case, [r4.-1,.B-1] has a fixed
point at oo; if [,4.-1, B-1] is hyperbolic, then oo is the repelling fixed point if and
only if t > s. We now set I : )s, and define the parameter space:

P: {(*,s,.\) e R, l" ) 1,s ) 0,) > i}.
If ,\ : L, then we can use Poincar6's theorem to conclude that D is a funda-

mental polygon for G; hence, in this case H2 lG is a torus with one puncture. If
) > 1, then ,4 and B are hyperbolic and freely generate the discrete group G;
the axes of .4 and B intersect; and the commutator is hyperbolic. Hence, in this
case, ffz lG is a torus with one hole.

We also note that the generators ,4 and B are oriented in the reverse of
the usual "standard" set of generators. That is, if we renormalize so that the
attracting fixed point of .4 is at oo, with the repelling fixed point at 0, then the
attracting fixed point of B will be positive, and the repelling fixed point negative.

2. Now that we have our parameters, we define the abstract space they
parametrizel we follow the development of Bers [B]. We start with some Gq cor-
responding to a point in our space P; for definiteness, we set r: 2, s:1, and
) : 1. With this choice, Gs represents the punctured square torus (see Section 8).
A deformation of Gs is a monomorphism ry': Gs --+ PSL(2, R) for which there is an
orientation preserving homeomorphism rp: H2 -- H2 , with p o g o V-rQ) : ,b(z),
for all g e Go, and for ill z e H2. Two deformations ty'1 and {s2 are equivaJent'if.
there is an element C in PSL(2, R) with ,br(d : CrbrG)C-, for all g € Go. The
set of equivalence classes is the deformation space r: F(Go); it has a natura"l
real analytic structure as a subset of Hom(Go,PSL(2,R)) modulo conjugation.

. An element rlt e F need not be type-preserving; that is, we might have that
,b([,q-',.B-t]) is hyperbolic even though [A-t,B-I1is paratofic.

In order to simultaneously normalize the groups ,lr9o), f.or tf; € F, we need
to observe that the points 0, 1, and oo are all conjugate parabolic fixed points
in Go. We simultaneously normalize by requiring that .!([A-r, B-t]) have its
(repelling) fixed point at oolthat r/([8,,4.-r]) have its (repelling) fixed point at
0, and that r/([,4,.B]) have its (repelling) fixed point at 1.

We make the observation that a deformation necessarily preserves the sense
of each parabolic or hyperbolic transformation. To make this clearer, let r/ be a

(': :), B- -6rr - (:, n(t 1,,)
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deformation, normalized as above. Since [.4-1 ,r-t1 is of the form z + Z - dt
a ) 0, then r/([A-t,B-1]) is of the same form if it is parabolic, while if it is

hyperbolic, then, since its repelling fixed point is at m, a^nd there are other fixed
points normalized at 0 and 1., its attractive fixed point is necessarily negative.

We will also need the (Teichmäller) modular group, defined as follows. A
deformation r/ is called modular if t/(Go) - Go. The group of modular defor-
mations acts on F by right multiplication; that is, if ty'1 is any deformation, then
,b@r) : ?br o ry'-I. The modular soup, M, is the effective part of this action.
The quotient F/M : R is the moduli space, or Riemann space, of conformally
distinct Riemann surfaces of genus 1, with one boundary component.

3. There is an obvious map iD: P --+ F, given by the fact that every point
in P corresponds to a pair of generators of a F\rchsian group representing a torus
with one boundary component, where the axes of these generators always intersect
with the same orientation.

If r/ is any deformation in f', as normalizeid above, then we can read off
O-'(,r) as follows: c is the (repelling) fixed poiht of hr(B),rh@)1,, : (1 -
,b@)@)lr!(Bx0), and .\ is the positive square root of the multiplier of the

commutator [d(/-t),,/(B-')], where the multiplier is chosen to be ) 1 (.\ : 1,
if the commutator is parabolic). Since ry' i§ induced by urr orientation preserving
homeomorphism of fI2, the fixed points of the elements of Ge and ry'(Gs) occur
in the same order on the circle at infinity; in particular, 0 ( ,i(BX0) < 1. It
follows that s ) 0, and r ) 1.

We note incidentally that these three parameters can be defined independent
of normalization. We already have I defined as the multiplier of the commutatorl
we carr also express c and s in terms of cross ratios of fixed points of elements
of G. More precisely,

x : (r(Efa, ,4-'l), ,(rb1,t-' ,B-'l); ,(rb1n-' ,,+)),r(El,l,, al)) ,

and

s : - (, (rblB,4-' I), r (bfA, e)) ;, (rble-', B -' I),, (E (a\a,,4-' I B-' ) ) ),
where r(X) is the (repelling) fixed point of X, and the cross ratio (0, x; 2,1) : 2 .

4. Our next goal is to find a fundamental domain for the action of the modular
group M in itb action on P. We start with a general construction.

Several facts about the topology of simple loops on a torus with one boundary
component are used in what follows. They are all easily derivable by looking either
at a fundamental domain for a torus with a puncture, such as Figure L, or by
looking at the unit square with its sides identified in the usual fashion, and a hole

cut out of its middle, as in Figure 2.

We start by defining a set of inequalities for closed geodesics that pick out
a marking on each Riemann surface of topological iype (1,1). This marking is
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Figure 2.

generically unique up to the (hyper)elliptic involution, which acts as the identity
on F. That is, for each such Riemann surface, we pick out a generically unique
point in F representing the given surface.

Let ,S be a Riemann surface of topological type (1,1), which we regard as
being endowed with the usual hyperbolic metric. Let w be the shortest closed non-
dividing geodesic on ,9; if the shortest geodesic is not unique, pick one such. Let o
be the shortest simple closed geodesic which croses to at exactly one point. Again,
if necessary, make some choice of the shortest such geodesic. It is well known, and
we will see below that tr.r and u are generically unique up to orientation. Obviously
we can not tell the difference between to and its inverse, or between t' and its
inverse. Make some choice of orientation for ur; then choose the orientation on u
so that going around the point of intersection in the positive direction, starting at
the tail of to, we first meet the head of o, then the head of u.r, then the tail of u,
and then come back to the tail of tr.,.

Let un be the point of intersection of u and tu, and let A, B,be the element
of zr1(,S,cs) representedrespectivelyby r.o, o. Then,4 and B generate n1(,S,rs),
which we norry consider to be a F\rchsian group generated by ,4. and B, where .4 and
B are normalized as above. Then, once we have made our choices, if necessar5 of
shortest geodesics, A and B are uniquely determined, except that we can replace
A by !-t and B by .B-t. As is well known, this replacement corresponds to
the (hyper)elliptic involution on ^So, which acts ineffectively on F (it is an easy
computation using our parameters to check that the element of M ta^king (A,B)
into (,4.-1, B-'), acts as the identity on P).

Two hyperbolic elements X and Y of. a Fuchsian group G, representing a
torus with one boundary component, are called standa,rd generators if they are
both primitive (i.e., neither is a non-trivial power of any other element of G),
their axes intersect, and their axes both project to simple loops on H2lG; it is
well known that any such pair of elements do indeed generate G.
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Theorem. Let A and B be sta.ndard generators for the Fhcåsiall group G
of topological type (1,1). Suppose that T(A) < 7(B), T(B) < T(AB), and
T(B) <T(A-18). Then
(i) it Z is arry element of G, where Z is not a commutator, T(Z) > T(A);
(ii) if there is a Z e G, Z + A*r, where Z is not a commutator, and T(Z) :

T(A),thenT(B):T(A); andeither Z or Z-L isconjugateto B ot AB or
AB_1;

(iii) for any Z e G, where A and Z are standa,rd generators, f@) >T(B); and
(iv) if there is an element Z e G, where A and Z are standatd generators, with

T(Z) : T(B), then either Z or Z-L is conjugate to either B or AB or
AB_1.

Before going on to the proof of this theorem, we remark that parts (iii) and
(iv) are well known; they were proven by Rosenberger [R].

Proof. Let u, t, be the projection of the axis of. A, B, respectively; by
assumption u and u intersect at exactly one point. We first prove part (iii). We

temporarily assume that the boundary component of ,S: H'lG is a puncture
so that we can use Figure 1 as a fundamental domain for G. Let L be the axis
of Z , ard let Lt be L, translated in segments so that it lies entirely in D; that
is, -t' is a union of (hyperbolic) line segments all lying in D. Since the projection
of -t crosses z exactly orrce, L' has exactly one endpoint on ^92, and exactly one

endpoint on 72. It follows that Z is conjugate to a transformation either of the
forrn A*8, or of the form A*B-t .

Since the above argument is purely topological, it also holds in the case that
H'lG has a hole.

It was first observed by Kerckhoff [Ke] that T(X"Y) is a convex function
of n. Since the result in this special case, where X and Y are hyperbolic with
intersecting axes, is quite simple, we include the proof. Normalize so that X(z) :
Yz, \ ) 0, and write Y(z) : (az+b)l@z*d), ad-bc:1. Then, since the
product of the fixed points of Y is negative, o and d have the same sign. For
purposes of calculation, we can choose o and d to be both positive. An easy

calculation now shows lhat T(X'Y) is a strictly convex function of r. Since we

know that f @B) > T(B), and ?(ä-'B) > T(B), it follows that for all n € Z
with lnl > 7, T(AB) > f@). This proves statements (iii) and (iv).

We turn now to parts (i) and (ii); we assume that there is a Z € G, with
Z 7 a+t , ard Z not a commutator, with T(Z) < T(A). Observe first that if there
is a closed geodesic, whose homotopy class is not in the commutator subgroup,
and which is shorter than u, then there is a simple closed geodesic with the same
properties. Hence we can assume that t, the projection of the axis of Z, is simple.

If we cut S:H2lG along u, we are left with a sphere with three boundary
componentsl hence either t is a power of u or Lt-t , or t is not simple, or t crosses

u. Hence we ca"n assume that t is simple and crosses u. Since we have already
taken care of the case that t and u cross exactly once, we can assume that the
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number of crossings is n ) 2. By looking at the square with a hole cut out of its
middle, it is easy to see that since t is simple, all the crossings of u occur in the
same direction. We pick one of these crossings as the base point, and label the
crossings &s o1, ... tfin, in the order they appear as we traverse t. These n points
divide t into n. arcs; call them t1 , starting at a1, t2, starting al, a2, and so on
up to f, which ends at the base point o1 .

For each successive pair of crossings om,t xm*r,let u^ be the shorter of
the two arcs of u between a* arld frm*r. Orient u,m so that it starts at u*q1
and ends at a*. If the two arcs have equal length, then choose either of them
aB un. Since crossings of t and u are either all positive or all negative, every
loop in the homotopy class of t*u* crosses u, and the shortest geodesic, u-,
freely homotopic to t*'u*t crosses u exactly once. Since t*u* is not a geodesic,

lr*l < lt^u^|, where we use lcl to denote the (hyperbolic) length of c. By part
(iii) of this theorem, lo*l ) lul. We now have

(1)

On the other hand

» lt*u,*l - » lt*l+ » lu,*l< ltl + *"1"1.

Combining (1) and (2), we obtain

We have shown that every simple geodesic which crosses the projection of the
axis of ,4. at least twice is strictly longer than u, the projection of the axis of B.
This is part (i) of our theoreml part (ii) follows at once from the strict inequality
in (3), together with the strict convexity of T(AB). o

We restate the same theorem in terms of geodesics.

Corollary. Lei S be a hyperbolic torus with one boundary component.
Suppose u a,nd o are simple geodesics on S, where u and ?, c.ross at exactly one
point. Let u1 be the shortest geodesic freely homotopic to uu, a,nd let w2 be the
shortest geodesic freely homotopic to uu-r. Suppose that lul < lrl, lrl S ltrlrl
a.nd lul < l*rl. Then
(i) no non-dividing geodesic on ,9 is shorter tha.n u;
(ii) if there is a non-dividing geodesic t on S with the same length as u,

fuf : ful , and up to base point and orientation, t:1t, or t: u)1 ot t,:
(iii) ff t is a non-dividing simple geodesic on ,S crossin g u exactly once,

Itl > lul; and
(iv) if tåere is anon-dividingsimple geodesic t on S crossing u exactly once,

flf : fol , then,uptobasepoint andorientation, t:,ut or t:w1 ot t:

(2)

(3)

then
w2.
then

with
W2.
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5. The results of the theorem above, together with our choice of A a,nd B,
can be summarized as follows. Except for the possibility of replacing A by /-r
and B by B-t, a fundamental domain for the action of the modular group M
on P can be realized by the inequalities:

r@) < T(B), r@) < T(AB), and r@) < r(AB-'),

for these inequalities guarantee that no geodesic, except perhaps for the commu-
tator, is shorter than u , the projection of the axis of .4; also that of all simple
geodesics crossing u exactly once, none is shorter than u, the projection of the
axis of B.

We can write the inequalities (a) in terms of the parameters r, s, and ,\.
This yields the following expressions, in the same order as the inequalities in (4):

(4)

(5)

and

(1 - ,\rXl + t)'*'+ (1 + s)s(3l -2 * ls), * t'(Å - 1)'
Å(Ås-1Xt+ t)'*' +,\(1 +rX1 *3s-2.\s)"*r(Å -7)'

>0,
>0.

Equality in each of these three inequalities determines a side of the fundamental
domain; call the sides in order: St, Sz, ar.d 72.

One can read off from (4) that e(.4, B) : (8,.4-r) maps .91 onto itself, and
that B(A, B) : (A,BÄ) maps ^92 onto 72. It is clear that these generate M I one
also easily sees that they satisfy the relationsi o,2 : (o0)' : 1. In terms of our
parameters, these generators are given by

a(r,s,)) - (rl@ - 1),11,\s,Ä),

0@, s, )) - ((" + År) l\t, s(n - 1) l@ * Ås), ,\) .

Equality in the first inequality of (5) says that 7(,4) : T(B); it is not hard to
see that this is equivalent to the statement that there is a (hyperbolic) reflection l?
so that conjugation by .R interchanges ,4. and B.

It was remarked by Bers [B] that the set of Beltrami differentials supported
on a disc sweeps out a neighborhood in Teichmiiller space, so every torus with
a hole can be conformally embedded in many closed tori. However, if we regard
a torus with a hole as being canonically embedded in a closed torus as a circle
domain (see Strebel [S] and [M3]), then one easily sees that every conformal (in-
cluding orientation reversing) automorphism of a torus with a hole extends to a
conformal automorphism of the corresponding closed torus, and conversely, every
automorphism of finite order of the closed torus is conjugate (in the group of all
automorphisms of the closed torus) to one that keeps invariant the embedded torus
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with a hole. It follows that we can identify the set of tori with one boundary com-
ponent, where T(A) : T(B), as being the same, under the canonical embedding,
as the set of closed tori with l"l : t.

Similarly, equaliiy for the middle inequality asserts that there is a reflection -R
so that conjugation by I interchanges .,4. ard AB. This is equivalent, again using
the canonical embedding, to the statement that Re(r): -+. Likewise, equality
in the bottom inequality corresponds to Re(r) : |.

One can also find the set corresponding to the iet Re(r) : 0. A point (r, s, ))
in P corresponds to such a r if and only if there is a reflection .R conjugating B
into itself and .4 into its inverse. If we write the fixed points of B as o and å,
then it is easy to see that the reflection (see [M2])

where s : a * ä and p: ab, conjugates B into itself; that is, the fixed point set
of .R is the axis of B. An easy computation shows that .tB conjugates A into ,4.-1
if and only if

(.\s - 1)(s * 1)r : 2s(.\ - 1).

we remark that the above reduces to the equation s : 1 on the boundary of our
space; that is, when ) : 1.

7. It was shown in [M3] that the moduli space of tori with one hole is real
analytically equivalent to the product of an interval ar.d H2 f pSL(2, Z). we can
explicitly realize this correspondence with our parameters as follows. We already
have our parameter space P written as a product, where each slice ) : constant
is kept invariant by the full modular group. Hence our representation of moduli
space already is a product. It is easy to see that we cannot have simultaneous
equality in the bottom two inequalities of (5). If we have equality in the top two
inequalities, then we can solve the first for o; this yields the following polynomial:

)4(Ä + 1)"u + 2()n +)t)rn - (Bln +2)3 -.\2)s3
- (Än +8)3 + z^\s2 - (2)t *7\2 a5))s - (t + 1)2 : o.

By Descarte's rule of signs, this has exactly one positive root for each ) ) 1.
Similarly if we have equality in the top and bottom inequalities, we solve the

top for r, write out the bottom as a polynomial, and obtain:

Å3(Å+ 1)'ru +(5.\4 + 7^3 +z\2)s4 +(z)3 *8)2 a );rs

- ()' - 2^2 -B))s2 - 2(\, +))s - () * 1) : 0,

which also has exactly one positive root for each ,\ > 1. It is now clear that this
representation of the moduli space of tori with one boundary component is a (real
analytic) product of ahalf-openinterval (1< f < m)and H2/PSL(2,2).

R-(; 3) ,
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8. The inequalities in (5) are somewhat unpleasant. However, they become
significantly nicer in the special case of groups representing tori with puncturesl
that is, when ) : 1. In this case, they reduce to:

(6) n)2, s lrl@ -1), s > (r -7)l*.

We can now easily read offfrom these that r :2 corresponds to lrl : 1; s :
*l@-l)conespondsio Re(r) : -i s: (a-1,)lo correspondsto Re(r) : |; the
square r: i isgivenby (c,s): (2,1);the rhombus r: (1 +\fB)12 corresponds
to (r, s) : (2, å) . W" have already remarked that the line Re(r) : 0 corresponds
to the line s : L.
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