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SOME RESULTS CONCERNING THE EIGENVALUE
PROBLEM FOR THE q-LLPLACIAN

Let CI be
problem

(1.1)

Tilak Bhattacharya

1. Introduction

Lpu + Ål"l'-2u - 0 in f)

u€W;''(Cr))u,*0, )€ R and 1<p<oo,

where Lpu: div(lVulr-2Vu) is the p-Laplacian. We say u is a solution of (1.1)
if there exists a ) such that (1.1) holds in the sense of distributions, i.e.

f . ,_r- f ,(1.2) 
Jnlv"lr-'vu.Yrb: ^ JnlulP-2u,b 

V rb ewi'o(o).

It is well known that there is a minimization problem related to (1.1), namely

(1.3) inf .I(u), u IW;'P(A) and J(u):1,

where f(u) : (t/p) Ia lVule and J(u) : (tld fialulp. Then the following result
holds [11].

Theorem O. There exists a smaJlest lr ) 0 a.nd an associated solution
uÅ1 > 0 that solves (1.1). firftermorq )1 is tåe infimum in (1.3).

We will refer to (1.1) as the eigenvalue problem for the p-Laplacian. The
smallest eigenvalue )1 will be referred to as the first eigenvalue. Thelin in [11]
shows that if C) is a ball then ulr, the spherically decreasing rearrangement of
a solution u1r, is also a solution. Furthermore, all radial solutions are unique
up to scalar multiples. He then raises the question as to whether or not the first
eigenfunction on the ball is radially symmetric. We showed in [2] that the answer
is indeed yes, and the method was based on an idea due to P6lya and Szegö [8].
Let $ : u,^t, where u1, is as in Theorem 0, by the Hopf maximum principle
ö > 0. Let u be any other eigenfunction, define f by u: f ö. One then shows
that / is a constant. We have been able to extend this idea to prove a similar
result on C2 domains. The main difficulty here lies in showing that / € r-(O).
This is achieved by the use of appropriate barriers. More preciselg we prove
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Theorem 1. Let f, be a
(1.1), then )r is simple.

Corollary 2.L. If O is a
metric.

Tilak Bhattacharya

ball, then the first eigenfunction is radially sym-

Corollary 2.2. Let O be a C2 domain and O' astrict subdomain of O,
tåen Å1(O') > )r(O).

Corollary 2.3. Let O be as in CoroLlary2.2, and u aa eigenfunctionin (1.1)
for some )o } 0. If u ) 0 tåen )o : )r , i.e., eigenfunctions correspondingto
higher eigenvalues must cåange sign in O.

The second part of this paper is a study of the radial problem, when O is a
ball of radius .R. It is known that the eigenfunctions in (1.1) are C,r.j [3, 12] and
thus the radial eigenfunction u(r) satisfies

( 1.4) li,lo-'{@- 1)il + +r\+ )lulo-zu- 0,

"(0)-u(E)-0,

0<-r (fi,

where u and {i represent differentiations with respect to r. Our study primarily
focuses on the distribution of higher eigenvalues in (1.a) [a]. In our work, instead
of solving the problem on bounded domains, we consider the problem on all of
-8" with ) : 1. we deduce that the solution, which we denote by {(r), has
countably many zeros and is globally unique. The zeros of / can be related to the
eigenvalues in (1.a) via a scaling argument, namely

r**, - (?)' , rrl,:0, 1r2r...,

where 2,,. is the mthzero of / and )-a1 is the (rn*1)th eigenvalue in (1.4). This
shows that the radial problem has countably many eigenvalues and the uniqueness
of / proves that these are the only ones. Thus, we have

Theorem 2. For L <p< x,thereis aunique öeCr[0,-) that solves

lölr-r{(p- t)ö ++ö} +lölo-rö=0, r ) 0, d(o): r, d(0):0

and

(i) / åas countablyma;ryzeros {z*}fi=r,orderedas zo < 21 <-22 <...< zm <
"', and zn I @ as n'L ---1 6,9r

(ii) lim,*oold(r)l : 0, and
(iii) lim**azm*r - z*:T(p),
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where T(p) -Z(p- 1)'/, #f1 - P)-t/pdt. For p) 2,
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r(p) -
2n(p - 1 )'/,

p cos ((p - 2)r lze)

For p:2, ö(r) i" ,@-n)/21r,-z1p(r), where J6-2112(r) is the Bessel function
of order (n-2)/2. It is interestingto note that for p:2, T(2):7tt &result well
known about Bessel's functions.

While this work was being completed, the author was informed of several
parallel works. Sa"kaguchi in [9] proves Theorem 1 for convex smooth domainsl he
also proves that if u is the first eigenfunction then log lul is a concave function.
Anane also proves Theorem 7 for C2,o domains [1]. The author thanks Professor
Sakaguchi for pointing out the work of Anane. The author also thanks the referee
for informing him of the work of Guedda-Veron [15] that contains results similar
to Theorem L. More recently Azorero and Peral [5] have proven a general result
regarding the asymptotic behaviour of the higher eigenvalues in (1.1). FinallS the
author has learned that in a recent work Peter Lindqvist has a version of Theorem
1 valid in any domain.

2. Proof of Theorem 1

Let O be a bounded C2 domain in .8", n ) 2, with 0O connected. Then
äO satisfies both an exterior and a^n interior sphere condition. Furthermore, one
can find the largest ball that works for both cases. Let .R be the radius of such a
ball. We introduce the following notation:

Then dist @An, ACI) - h.
Let u be a solution "f ( 1.1) in f) .

suchthat 1<p{n
It follows from [10; p. 264), for every p

ll'll- < *,
andfor p>nt u e C0,a10) with o:1 -("/p) [Z; p. 168]. Again u e L*(e).
Thus by the regularity results in [3, 12], " e Cl;!1a) for some 0 e (0,1). By
Hopf's maximum principle [f3; p. 801], it follows that u1r, in the statement of
Theorem 0, is strictly positive in O.

Set / : utrr, and let u be any other eigenfunction corresponding to Å : lt
and satisfying (1.1). Define f by ": fö, then / e C1(A) and l/l is locally
Lipschitz in O.

Lemma 2.L. Let ö > 0, u be eigenfunctions satisfying (1.1) witå l : )r.
Let f be defined by the equation u: f ö, then f € r-(O).
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Proof. We divide the proof into three parts. Part (a) sets up an estimate for
u nea.r OO, using barrierfunctions. The construction of these functions is made
possible by the exterior ball condition. Part (b) sets up a lower bound on the
growth of { near 0O. The proof follows the proof of Hopf's maximum principle,
a,nd uses the interior ball condition. Part (c) finishes the proof using the results
of part (a) and part (b).

(a) We prove that

(2.1)

where r € O is such that dist(r,A0) < ä, and åe depends on n, p, E and

ll"ll"".
Let c6 € AO, then there is a ys € O" such that the ball Bp(y6) lies outside

Q and dBa(yo) fl0O: {os}. Define

w(x):^(#_ #_F) ,

where o : (n-t)l@-1), (we may choose o ) (n-t)l(p-1)), r € O and .4 a
positive constant to be determined later. Then,

r -.. (p - t)(oA)e-rLpa: - tn@-t)+p ,

where r : lo - yol. Let ,Sp : Bza(Ao) O Q, choose ,4 such that,

(2.2) ),llrll5' .(p-t)("A).e-t. and llrll- < A(!- +).(2B1"tn-r1ar ' \W-@ry,1 '

Then to(c) > "(c) on ä^96 aad Low l Lru in ,Sa. By the weak comparison
principle [12], it follows that ur(r) > u(*) in ^9p. Replacing w by -w, we get
that lu(c)l <.(*). Hence,

lu(r)l s ^(#-E+;;) vr€,ea

Set r : l, -- yol , then by an application of the mean value theorem,

1-- 1 ."(i-,!) in R<r<2R.w - V: E'+1

Thus for some frs ) 0,

l"(r)l < r'o(1" - yol - R).
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Let o e O be such that dist(c,Af,}) < R; then there is a os € äO such that
dist(c,ro) : dist(r,Of,}). There is a corresponding Uo € Oc and a ball Bp(ys)
that satisfies the exterior ball condition at cs. Then it follows that dist(r, AO) :
l, - yol - E, and hence

l"(r)l < frsdist(o,Ao).

(b) We now prove a lower bound for the growth of { near äO. We show that

(2.3)

where o e O and dist(c, AO) < Rl2, h depends only on n, P, R arrd d.
We start by presenting the proof of Hopf's maximum principle. Fhom (2.1),

it is clear that every eigenfunction is continuous up to the boundary. Thus { is

zero on 0O in the classical sense. Let os € AO, and Bp(zs) C O be such that
084(zs)o äO : {os}. Let S -- Bp(zs)\ Bp72(zs); take

uro(x) - "-ola-zol' - "-o*", 
V r € 

^g.

Thus for every o € ,5,

L nu,o(a) )_ Q s- a(p -r, t' 
{ (, - l)az Rz - 2o(p * n - 2)},

where

C

Choosit g a large enough,
and ö > 0, it follows that

J';o'o'
Thus, there is an e ) 0 such that euro < d ot 08a12(zs), for all zo e ?Aa'
Note that u,o vanishes on }Bp(zs). Therefore, by the weak comparison principle,

ö(r) 2 euro(a) in ^9. Again, by * application of the mean value theorem,

ö(*) >- r, (R - l, - ,ol) V r e 
^S.

Let c € O\Oa/r, then there is an os € 0O such that dist(o,ro): dist(r,äQ)'
There is a zs such that a : tso*(L-t)zg for some t € [0, 1], and the ball Ba(ro)
lies in O and 1Bp(zs) OöQ: {ca}. Thus,

ö(*) 2 /c1 dist(c, äO).

(c) To finish the proof, we note that in Qa/r,

l/l : E1
ö

From (2.1) and (2.3), it follows that

Hence f e L@(C)). o

I @n)o-', if 2 < p

\ 1z"n)o-', if 1 I p

it follows that Lpu ro > 0

( oo,

<2.
) Lod, ir ,.S. Since ö e C'(CI)

infg *1, ö

in C, \ Q*/r,
ks dist(r, äQ)
,b1 dist(r, äCl)

( oo.
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Rernark 2.1. Estimates (2.1) and (2.8) hold for equations Lpu* F(a,u) : g
in O with u eW]'e1A), .F,6.L- and u > 0.

Lemma 2.2. We have that lflrö e W:"(O).
Proof. we note that l/l is Lipschitz continuous in o. Furthermore, lv/l :

lvtf tl.l."..F"1,".^- 1,2,3,..., let hn: h/n and Eo : h,/2, and 0 I {tn I I be
a function in CJ(O) such that

and_lvt/"1 < cnlh, where c is a universal constant and in general would. depend
on O. From (2.1), ö(") < J( dist(r, äO) imptying then ö(") 1 Kh/n in O \ O7,, .
The rest of the proof is now the same as in Lemma B in [2].

Lemma 2.3. Let f , ö b. Cl functions, 1 (p < oo, then

lv I ölo 2 ly ölp-rv ö . v (fp ö) + K öp lv flp,

where 0 < I{ I ! and K : 0 if a,nd only if öY f : 0.

Proof. See Proposition2 and Theorem 1 in [B].
Proof of rheorem 7. Let $ ) 0, u be eigenfunctions satisfying (1.1) with) : )r . Let f be defined by u - f$. Theproof that / is a constant and thus

)1 is simple is exactly the same as the proof of rheorem 1 in [2]. It is clear that
u does not change sign in O. o

Proof of Corollary 2.1. Immediate.
Proof of Corollary 2.2. It is clear that

holds. Let u € W;,r(fr,) be the nonnegative
by f)' . Extend u by zero to rest of O. This

(1.1) with ,\ - )r in f). By Theorem 1, u
contradiction.

Proof of Corollary
eigenfunction in ( 1.1).
that fou is a legitimate

?h,(r): {å il 8Tn*,

minimizer of (1.3) with C) replaced
modified u is in W;,o(0) and is a
and by the results in [11], u solves

Define f by ö - f u. Then from Lemma 2.2, it follows
test function. Proceeding as in Theorem 1 in [2),

l.tv öt' - ^, lnöp 
,

l.lv, lr-'Yu.v(fo ö) : 
^, /nuu)o-

and
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Comparing,

t lvdl, - I I v,V-rvu. y(fru).
Ja )s I r'

Using Lemma 2.3,

t Kuplvllo < o.
JA

Thus, / is a constant and )o - )1 . tr

3. Proof of Theorem 2
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We will obtain the proof of Theorem 2 through several lemmas. Let / satisfy

(3.1)

where ö
arbitrary.
(3.1);

(3.2)

and

(3.3)

frfrn-tlölo-'ö)+r,,-'lölo-'ö:0, o < r ( @,

d(0)-1 and d(0)-0 and1<-p(oo,

represents differentiation with respect to r. The choice d(0) : 1 is
The function { defined through the following integral equations satisfies

where SO):lrln-'r, -oo ( r < oo and g-r(f) :ltlc-2t with (1/p) +(Llil:
1. We note that the first zero of /(r) as defined in (3.3), is the radius of the
ball for which .\ : 1 is the first eigenvalue. For p: 2, the function /(r) is
,(2-n)121rn-2)/2, where J6-2112 is the Bessel function of order (n -2)12-

Lemma 3.1. The function ö(r), * defr.ned in (3.3), has countably many
zeros in r ) 0.

Proof. We change the problem in (3.1) in order to attain more generality. Let
us specify the conditions in (3.L) at an arbitrary point r: et with o ) 0, i.e. we

take /(a) : 1 and ö(") :0. The corresponding integral equations for { become

ö(,) - s-L (-{* 1," 
tn-, lo(t) lo-d(r)d,}) ,

ö(,)- r * l,' n-' (-{* 
lo' 

,n-! ld(, )to-'ö(,)r,}) dt

(3.4) ö(,): - { * l,' tn-' 
l o(t) l'-' ö(t) "}t 

/ (P-",
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and

(3.5)
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ö(,)- 1 - l,' {# l,' sn-, ld(, )lo-,ö(,)d,}''*-" or,

in r ) o. We show that /(r) as defined in (8.5) changes sign. Near r : a, ö
is positive .rrd d is negative. It follows that / i. de"rreasirri urrd (3.4) may be
rewritten as

löu)lo 
-' : ;- { I ̂

b 

r' -' 
1 ött)lo 

-' 
41t1 at * I u' 

r' -' 
1 6 1t1y' 

-' 
61t1 at}

= #{r+(d("))o-'(fi_å")},
where å > o is close to a, and A: I:*-tlö(t)le-2ö(t)dt. using the inequality
(r + yltt<n-r), C(*r/(p-r) + Vrl@-i\, a ) 0, U ) 0 and C an appropriate
constant depending on p, we have

ld(,)l > s,(r-n)/(n-,t 
{a,r<o-,t 

+ ö?)(ry)t/tr-tr1.
Let F> å be such that (r" -b)/n) rnf2n, for r ) r. lf $(r) is zero for some
r 1 F, we a;re done. otherwise continue { past r : f . with new constants B
and C, the above inequality for / becomes

ld(')l > a'G-n)/(n-r) + crt/(p-') ö(r), in r > F.

Noting that $ ( 0, an integration yields with new constants D and, E,

ö(r) a "-o'ot{'-t { E - 
fr ?'Dftb-t)'l. t J. v;troa dt j

Since the integral on the right side of the inequality is divergent, ö(r) changes
sign at some r in (a, oo). For o : 0, call this point z6 . Thus z6 is the first zJro
of $(r) that solves (3.3). From (9.2), it is clear that g(zs) ( 0. continue / past
, : 10, using (3.3). In order to prove the next statement we may take without
any loss of generalitq, zo:1 and öQO: -6, where 6 is any positive number.
We now show that there is, r, S (1,*) such that öO) -- 0 as r ---+ rt.

It is clear that near r :7, / is negative, thus { is decreasing and is negative.
In a small righthand neighborhood of r : l, ö satisfies

ö(t)"j

'ö(t) or]! ,
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where e ) 0, is a small positive number. Noting that /(1*.) < 0, we obtain

lo(')lo-'s #

Let br*+t € lhr"+r, zrn*tl be such
(,M < ö(r) < M in lh*+r,bt*+rf ,

that Ö(bm+r) - l,M. Since ö is decreasing,
thus

Thusthereisa 11 e (1,m) suchthat ö(r)- 0 as r --+11. Againcontinue { past
11 using (3.3). By repeating the foregoing arguments, it can be shown that { has

reIativeextremawhere{vanishes.Labeltheseaslro(ht1hz<..'<
where äo : 0, and ä- < zm < hm*,. o

To prove that the zeros march to infinity we need the following lemma.

Lemrna 3.2 . The distance between fwo successi ve zeros is bounded uniformly
from below.

Proof. For a fixed m ) 0, consider the interval lz*, z*+r). Without any
loss of generality, we may take / to be positive in this interval. The function
{ is increasing in lz*,h*+tf and decreasing in lh^+r,z*+Lf. We show that
zm*r - å-..1 is bounded from below, the proof for ä*-p1 - z* follows in a similar
fashion. Let $(h*a1): M, I *ry number in (0,1]; noting t]gidf ö(h*+r):0
and /(r) ( 0 in lh*+r,zm*r7, we have

ö(,)- M-l^",,_*,{ * lu",*,
sn-, ld(, )lo-' ö(r) dr1 

trtr-tr

f btrn+t
u 

Jo,-*,
LM>M-

Using the inequality,
we have

Thus,

(3.6) bt*+t - h*+r ) I(l,p),

where l(l,p) is an appropriate constant depending on / and p, and independent
of. M. a

Proof of part (i) of Tåeorem 2. fuorn Lemmas 3.1 and 3.2, it follows that
Zm -'+ @ aS l.n --+ OO. tr

'We now prove results needed for discussing the asymptotics of /.
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Lemma 3.3. The distance between two successive zeros is bounded from
above.

Proof. For afixed rn, consider the interval lz^,2^+r). We will assumethat
{ is positive in this interval. As before, { increases in lz^,ä-+r] and decreases in
lh*+r,,2**t). In part (a) we prove the assertion for the subinterval lz*rh*+rl,
and in part (b) we treat the subinterrral [ä*41, zm+rl. The proof of the latter
is more involved and we need to treat the cases 1 < p < flt p : n and p ) n,
separately. Let $(h*a1): M > 0.

(a) Consider lr*,,h*+tl, noting that $(z*) : ö(h*+r) : 0, ö > 0 and / > 0
in this interval, it follows

(d("))'-' : # {{,-)"-' 
(öe*Do-' - l"'^t"-'(ö(t))o-'rr} ,

for z^ ( r ( hm+r. Thus / is decreasing apd { is concave in this subinterval.
For the proof, we use the following form for /.

(3.7)

Integrating (3.7) once ftom z* to å*.'1 , andnotingthat t ) r, wefind

Setting T : hm+t - z* aad using that ö(r) 2 (M(, - ,*DIT (this follows from
the concavity), the above integral inequality for / yields

After a few simplifications,

Thus,

(3.8)

ö(h*+1 ) > 
l,u***' {1,^-*'(r(r))o-'dt} 

"*-" or.

ff)r/(P-' lr'(, - ,p)t/(p-L)d'r 
=1.

T < c(p),



(3.e)
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where c(p) is an appropriate constant depending only on p. Thus h*q1 - zo, is
bounded from above uniformly.

(b) Now consider the interval lh*+t, z*+r). We note that $(z*a) : $1h**r1: 0, ö ) 0 and ö < 0 in this interval. By differentiating (3.3) twice, it can be
shown that / has a point of inflection. For 1 < p < oo, let

r-!r@-")/(P-r), p*n
" - \l.rr, p:n.

Set to(t) : ö(r) for r ) 0. The differential equation in (3.1) is thus transformed
to

(p-,\#l,,,lu-,ö+t@_t)p/(p-n)WV_2w-0)p*n,

and

(3.10) (n - 1)ltul"-2ö + e"tlwln-Znt :0, p : ft,

where now the differentiations are with respect to t. It is clear lhat w is concave
whenever tu ) 0. Wenowconsiderthe threecases 1 <p<n, p) n and p:Dt
separately.

case 1. consider 1,S p.< n. Equatio" (B.g) holds in the interval [Tr,Tr),
lvhere T, : (r*+r1(o-")l(;,-r) and T2 : (h^+t)b-n)/(p-t). Note that t;t(q) :
ö(h^+r,):0, sign(tir): -sign(i) and ur is increasing. Integrating (3.9)'twice,
we get

") 
a,) "'n-" o*,A l, I, " l-\"''l u\ 

)

where o: l@-")/(p-qln/@-rl. Let 0 < 6 < L, and ra e [Tt,T2] besuch that
w(Te): (1 - 6)M,where w(Tz): ö(h^+) - tu!. Taking t:Te in (8.11) and
simplifying, we obtain

nT, ( ,7, rr/(P-r)

lr, U,' "n@-r)/(n-")l.,(')l'-2 w(qdsj d'x : A6M'

By concavity, u,(s) > M(1* (, - f»61(76)) where Ta : Tz - ?6; and thus from
the aforementioned integral equality we get

l;: U,- '(n-,)t/@-n'('* *t)'-' o"\"'o-" o* ' oo
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Since s ( ?2 and p < n, s@-t)nl(w-n) >- 7@-r)p/(p-"\. Thus the above inequality
a,fter an integration yields,

1Tr1@-r)n/(p-n)(p-r)f &\ 
r/(p-r) 

f i- {, * " 
='r\ofr/(p-r) 

da < A6.' \tt/ Jr, L'- \'- -T; l l -
Setting r:1* @ -72)61(70), we obtain

/a ^(n-r)l(p-r)\ 
pl@-r) rl

(s.12) (::li:....%-) Jr_r(, -,t1r/(p-t)d,r l Apt/(t-r)6.

For6)1.

lr'_oU 
- re)t/(p-t) a, ,- ll f, - ,n1r/(e-r) d,r : c,

where C is an appropriate constant O"O"**, only on p. For 6 < l ran applica-
tion of the mean value theorem yields

1 - rP > p(l - 6)e-1(1 - r), Vr € [1 - 6,1].

Hence,

Ir'_rU - rn1tl*-t) > or11p-r1(1- 6) 
lr'_rU - 7)r/(n-t1or: D(i - 616n/b-r),

where D is an appropriate constant that depends only on p. Thus (3.12) yields

(s.18) Try@-t)t<n-") < 
{qg;6<n-r>to. liå: :;;,

where d is a constant that depends only on n and p. Let 15 in [ä-..1 ,z*11f be
such that ö(rd): (1- 6)M. Then,

ra - hm+r : (To1iw-r) ltu-") - (72)@-\/b-"1 < p - lT o7["-r> /1p-"1.
n-p

Therefore, from (3.13) it follows that by choosing 7z small enough, i.e. hm+r
largeenough,wemaymake 75 S*Tr. Since Te :Tz-Ta,wehave Ta2LTr.
Thus' 

rd - hm+r 3 oTor[*-t)/(P-n) 
'
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where again C is a constant that de

is a new constant. We have then shown that for all tn, :0, 1 ,2, . . . ,

11\C$o-t)ip; o<6< *.
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dtr.

and setting

Here C is a constant that depends only on n allrd p.
The analyses in the remaining cases are very much similar to Case 1. Hence

we only present details at places where the analyses differ.
Case 2. .Let.p. ).n, then (3.9) holds in the interval [T,Tzl where now

T : (h*+1)b-")/(J-r) and T : (Z*+r)b-*)/@-r). In tlis case, ur(fi) :
ö(h*+r): 0, sign(to) : sigt(d), and to is decreasing. Upon integrating twice,
(3.9) yields

(3.14) *(t) - ut(rr) - ,^ 
l;,{l;,s(n-t)p/(p-n) l.(, )lr-'*(

With 6 and To as before, and noting that u is concave in
T a - To - Tr, (3 .L4) gives

l:: V;,s('-'l)ptb-n) {, 
* 5=6}'-' d,]'l 

t@-'l)

It follows then

,) rr)

lTr,Tol

/(p-t)

dr < A6.

(3.14') if+<6<1
-t)/p; if o aa J +,L'

on n and p. Defining 15 as before,

16 - hn+r: (TiQ-t/(p-n) - (rS@-r)/(r-a 3fiT6(To1@-tt/@-,).

Since ?6 : Tr *Te ,by choosing I sufficiently large and using (5.14,), T6 can
be majorized by say 3T12. Thus, it follows, for all m :0,1,2,. . .,

ra - hm+r t {Z'0,-r,r, å :f : ;
Case 3. Take p: n. Then (3.10) holds in lTr,Tz) where Tr : ln(h^+r)

ard T2 - l,n(z*a1). We note that in this case ö@r) : ö(h*+r): 0, sign(.ur) :
sign(./), and tu is decreasing. Thus

{z'u,,
pends

*(t) - w(r,) - !;,{l;,en1,(,)l" 
,*(,)d,} "'n-,) o*.
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With 6, To, T6 and 16 as before, we can show that

where C depends only on n. Thus, it follows, for all m :0, 1 ,2r. . .,

We may sum up the conclusions as follows. For 1 ( p < oo, and for all
rn :0r!r2r. . .,

(3. 15)

Here C is an appropriate constant that depends only on n and p.
Hence the distance between successive zeros is bounded uniformly from above. o

The next lemma shows that ld(ä-)l d""r".r"r as rn increases. It also sets up
an inequality that will be used to prove that lö(h*)l actually decays to zero and

lr**, - r-l .pp.o.ches asymptotically a number 
"(p) 

that depends only on p.

Lemma 3.4. The vaJues lö(h*)l are decreasing.

Proof. For a fixed rn, consider the interval lh^,h*+t7. Without any loss
of generality? we may assume lhat $(h*) ) 0 and ö(h^+r) ( 0. We note the
following
(i) {<0in[å-,h*+r),
(ii) d(h-) : ö(h*+r): 0, and
(iii) /(z-) : s.

Multiplying the differential equation in (3.1) by / and simplifying, it follows

(3.16) (p - r)ldl'-'fitat++löY + töto-'frw: o,

it (h*rh*+r). Integrating the above, from h* to hn*tt we obtain

nh^+r I )t ^tlP
1o{n;lo : lö(h*+r)lo + p(" -, J^^ 

tvY)t dr.

This shows that lö(h*) | is decreasing. By iterating the above relation, we find

lö(h*)l': ld(o)l' - p(n - D [u* löQ)l' 6,' ^'J, r *')
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and hence

(s.12) /- ld(')l'a,5 Jd(0I1. o
Jo r -p(n-l)

Proposition 3.I-. For a>0[a.rge, 1<p( oo and n)2,considerthe
integraJ

.I(c) : l,'*' *t<o-"{, - (?)"}''"-" or.

Then there are constants C ande depending on n and p such that

1 ='at =*
Proof- For any c ) 0,

r(,) < (a + t1r/(n_,,{, _ (+)"1r/o-r).
Applying the mean value theorem, we obtain

r(r)<ry
To obtain a lower bound for .I(r), we notice that

/(,) > at/b_r) 
1,,*, {r_ (;)"}n,ro_,, or.

Since (c/f)" <(r/t) (1and x(-t(-a*1, theaboveyields

I(*) >{--::}tl@-r) rx+r

-t(r+t)nJ J, Q-a1o/(*-rt*l"'

Simplifying,

This finishes the proof. o
Proof of pa.rt (ii) of Theorem 2. We prove that 10{n)l --+ 0 as rn, + oo j

thereby proving that lim"--lO{r)l :0. In (3.17), take /(0) : 1. We proceed
by contradiction. Suppose there is an q. ) 0 such that lö(h*)l , Zq , for all
m : 0,1,2,.... Then ld(r)l > liO(n*)l > ? in [ä*, b*,/r], where b*p is as
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defined in Lemma 3.2. Furthermore, it follows from (3.6) that there is a 6 > 0
such that for every rn, bmlz - h* ) 6. Recalling that ö(h*): ö(z*): 0, an
integration of (3.1) over lh*,r] yields

lö0)lo-' öu) : - # | u',**-'lö(t)lo-' ö@ at.

It follows, regardless of the sign of $ ia lh^,2*), that

lö@l'-') r,n-r (#) in [ä-, b*/z).

Thus,

(s.18) lo(,)1, > s,c/..-t) {, - (+) 
n1n/@-t) 

in [rz-, b*/z),L \'/ )

where C : qn 1ryn/r-l , for all m : O)"J,,2r. . .. Now,

r lö@l'd, > i 1n^+e v(il,,' or.Jo t - t'^Jo^ t -

Using (3.18),

l,* ry" = _å " l^^:*' it",-,) {, - (?)"\o"o-" o,

The integral on the right side may be estimated using Proposition 3.1, and hence
for large values of m, say rn ) rns for some rng large,

1* löttll'r, , i A(n,p,6,n) 
.

Jo t ---L^ h^

Fhom Lemma 3.3, h^ I mL for some L > 0. Thus the integral on the left hand
side is divergent, contradicting (3.17). Hence 10ln;l -+ 0 as rn + oo. tr

We now prove part (iii) of Theorem 2 which describes the asymptotic behavior
of the zeros.

Proof of pa,rt (iii) of Theorem 2. We show that lim-*oo zm*L - ,^ : T(p),
where 7(p) is an appropriate constant that depends only on p. Fix rn, without
any loss of generality take ö(h*+r): L, thereby choosing ö > 0 in lz*,2*+t).
In (3.7), majorizing ö bv l and applying Lemma 3.3, we obtain that ld(")l < M,
z* 1r S z*+t. Here M depends on n and p. We now divide the proof into two
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pa,rts. In part (a) we prove that hm+r - z- has an asymptotic limit, and in part
(b) we show that zmir - ä*41 has the same limit.

{ > 0 and thus { is increasing. Integrating (3.16) from r to h*t,1, yields

(e- 1)lä(r);'+ ld{,)l' : r * " [u^*' Wor,J, t

where C : p(n - L). Using that l/l I M, we obtain with a new constant d,

(3.1e) 1< (p-rlld(r)lp+ lO{r)lo < 1+ e tnhv+L < 1*e(rn).
-n

Since ä*-"1 - z* 3 -L, for some .t independnt of rn, it follows that e(rn) --+ 0 as

rn + @. Integrating the first inequality in (3.19) from z* to h*a1, we find that

(n _ q,roo l,' €:fu , l,u:.' d,t: h*+t _ z*.

Thus,

(3.20) hm+r - z* 1 (p - 7)1lc P1rr,

where P(p): "6t, - tp)-|lp&. Let e ) 0, and rn be sufficiently large so that
e(-) < e. By integrating the second inequality in (3.19), again from z^ to hrn*1,
we get

(3.21)

We estim

(p-

the

(1

on

\'/o l,
integral

dt

dö f hrn*t

the left side of the inequality. It

f(L/(1*e))rtp d,s

-Jo @
[' ds 11: 

Jo @- Jrt/(t*e))rte

> P(p) - , (-#) 
(p-"'o 

,

ate

t; (1 + e-tp)l/p

is clear that

ds

@

where C is an appropriate constant that depends only on p. The estimate on the
second integral has been gotten by using the substitution t, : sP, and majorizing
u by 1. Fhom (3.20) and (3.21), we get

/ ^ r (p-r)/p
(p-t)r/np(p) r, l c \ <hrn+t-z*1(p-l.)t/np1or.' " \r+e)
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. (b) Consider now

to r) we find

1e - i)ld(,);' + ld(')l' : t - c [' löQ)lo or,
J h^*, t

where once again C : p(n- 1). Using tt"t ldl < M, itfollows that
(s.22) L_e(m) < (p_ r)ld(,)le + ld(")|, < r,
w.hele e(m):e lnz*rtfåp.r-1 and d is an appropriate constant. As before,
e(m) -'+ 0 as rn + oo. Integrating the second inequality in (8.22) from h-..1 to
zm*t s we obtain
(3.23) zm*L - h*+t ) (n - \tto rror.
Let q )0 besuchthat 1-(1 - rir/o < t. Choose rn solarge that e(m) <r7.
Define F, in [Iz-artzm*1f to be the value of r for which ö(Fr) : (t - rlltln. h
the first inequality in (3.22), replace e(rn) by ? and integrate from F, to z*q1
to obtain

dö ) z*+t -frt.(1 -q-öo)'/o
Therefore,

zm*t-r, A@-1)t/nPror.
From (3.15), with 6 : 1 - (t - q)tle,

frr-h^+r<cqb-r)lc,
where C is an appropriate constant. It follows that

Zmit - h,n+r I (n - tltto r(p) + Cnb-r)/e .

FYom (3.23) and the foregoing inequality

@ - 9'tn r(p) < ,*+, - hm+r S (p - t)'/o p(p) * Crlb-r)lc.
Combining the results of part (a) and part (b) we see that

)i*"**, - zm :2(p - \tln P61.

Thus,
T(p) :2(p - \t/a P61.

we now prove that / is unique. By corollary 2.8 the function / is the first
eigenfunction, with )t : L, on the ball of radius ze. By Corollary 2.2, zs is
unique. By Theorem 1, / is unique on [0,2s]. Now suppose that for some rn ) 0,
the zeros zotztt..'rzrn arrd d on [0, z*) are unique. It is clear thai { ir trr"
first eigenfunction on the annulus formed by ,^ and z-..1 , with År : 1. Again
uniqueness of z*q1 and / oa lz*,2-a1] follow from Corollary 2.2 and Theoreå 1.
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the interval lhr"+tt zm*Lf . In this case ö(rr.+r) - 0,
and thus ö is decreasing. Integrating (8.10) from hm*7

(p - t)t/o 
lru-'»'to
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