MÖGLICHST KONFORME SPIEGELUNG AN EINEM JORDANBOGEN AUF DER ZAHLENEBENE

Reiner Kühnau

1. Einleitung

Es sei \mathfrak{c} ein abgeschlossener Jordanbogen mit Endpunkten z_1 und z_2 in der z-Ebene. Unter einer Q-quasikonformen Spiegelung an \mathfrak{c} auf der Zahlenebene verstehen wir in dieser Mitteilung eine orientierungsumkehrende Q-quasikonforme Abbildung der z-Ebene auf sich mit Festhaltung des unendlich fernen Punktes (kurz $\infty \to \infty$), bei der \mathfrak{c} punktweis festbleibt. In dieser Festhaltung des unendlich fernen Punktes liegt der Unterschied zur Mitteilung [5]. Obwohl im folgenden manche Überlegung in der Tendenz ähnlich wie in [5] ist, gibt es doch durch die Bedingung $\infty \to \infty$ einige wesentliche Unterschiede in der Durchführung und in den entstehenden Resultaten.

Eine quasikonforme Spiegelung an \mathfrak{c} mit kleinstmöglicher Dilatationsschranke heißt (bei $\infty \to \infty$) "möglichst konform" im Anschluß an H. Grötzsch bzw. "extremal quasikonform" nach O. Teichmüller. Die zugehörige kleinstmögliche Dilatationsschranke $\mathfrak{Q}_{\mathfrak{c}} \geq 1$ bzw. $\mathfrak{q}_{\mathfrak{c}} = (\mathfrak{Q}_{\mathfrak{c}}-1)/(\mathfrak{Q}_{\mathfrak{c}}+1)$ nennen wir "Spiegelungskoeffizient von \mathfrak{c} (bei $\infty \to \infty$)". Dieser ist invariant bei ganz-linearer Transformation der Ebene. Im Unterschiede hierzu war in [5] der ohne die Nebenbedingung $\infty \to \infty$ entstehende Spiegelungskoeffizient $Q_{\mathfrak{c}} \geq 1$ bzw. $\mathfrak{q}_{\mathfrak{c}} = (Q_{\mathfrak{c}}-1)/(Q_{\mathfrak{c}}+1)$ sogar invariant bei beliebiger linearer Transformation. Es gilt natürlich $\mathfrak{Q}_{\mathfrak{c}} \geq Q_{\mathfrak{c}}$ bzw. $\mathfrak{q}_{\mathfrak{c}} \geq q_{\mathfrak{c}}$. Wie bei $\mathfrak{q}_{\mathfrak{c}}$ gelten auch bei $\mathfrak{q}_{\mathfrak{c}}$ einfache naheliegende Monotonieeigenschaften ($\mathfrak{q}_{\mathfrak{c}}$ vergrößert sich nicht bei Verkürzung von \mathfrak{c}).

Bildet man die zweiblättrige Riemannsche Fläche mit Windungspunkten bei z_1 und z_2 auf die schlichte \mathfrak{z} -Zahlenkugel so ab, daß die beiden Exemplare von ∞ in ∞ und 0 übergehen, entsteht aus \mathfrak{c} eine geschlossene Jordankurve \mathfrak{C} . Aus einer Q-quasikonformen Spiegelung an \mathfrak{c} entsteht so eine Q-quasikonforme Spiegelung an \mathfrak{C} mit der Nebenbedingung $\infty \to 0$; ebenso umgekehrt. Somit folgt $\mathfrak{q}_{\mathfrak{c}} = 0$ genau für eine Strecke \mathfrak{c} (nachdem zunächst in elementarer funktionentheoretischer Schlußweise aus $\mathfrak{q}_{\mathfrak{c}} = 0$ folgt, daß \mathfrak{C} ein Kreis ist). Die Bestimmung von $\mathfrak{q}_{\mathfrak{c}}$ für einen Kreisbogen \mathfrak{c} ist gar nicht elementar (im Gegensatz zur Bestimmung von $\mathfrak{q}_{\mathfrak{c}}$), aber auf eine klassische Arbeit [9] von O. Teichmüller zurückführbar; vgl. Sektion 2. Analog wie in [5] ergibt sich $\mathfrak{q}_{\mathfrak{c}} = |1 - \gamma|$ für den Fall, \mathfrak{c} besteht aus zwei unter dem Winkel $\gamma\pi$ zusammenstoßenden Strecken. Weitere Beispiele \mathfrak{c} mit explizit angebbarem $\mathfrak{q}_{\mathfrak{c}}$ sind noch nicht bekannt.

Durch die genannte Zurückführung auf die Spiegelung an der geschlossenen Jordankurve \mathfrak{C} mit $\infty \to 0$ ergibt sich sofort aus Kompaktheitsgründen die Existenz mindestens einer möglichst konformen Spiegelung an \mathfrak{c} mit $\infty \to \infty$. Daß diese für z.B. analytisches \mathfrak{c} eindeutig bestimmt ist und sich durch ein quadratisches Differential (regulär bis auf eventuell einen einfachen Pol in ∞) charakterisieren läßt, folgt durch die Strebelsche Theorie möglichst konformer Abbildungen bei fest gegebenen Randwerten [8], [4].

Im folgenden soll nun die möglichst konforme Spiegelung an einem "kleinen" Bogen $\mathfrak c$ näher untersucht werden.

Satz 1. Es sei \mathfrak{c} ein abgeschlossener Teilbogen eines festen analytischen Jordanbogens, wobei \mathfrak{c} die Länge 2ε besitzt und die Länge durch den festen Punkt $z_0 \in \mathfrak{c}$ halbiert wird. Dann gilt für $\varepsilon \to 0$

(1)
$$q_{\mathbf{c}} = \frac{1}{4}k\varepsilon + O(\varepsilon^2),$$

wobei k die Krümmung in z_0 ist. $O(\varepsilon^2)/\varepsilon^2$ bleibt für $\varepsilon \to 0$ beschränkt.

Auch zur Geometrie der möglichst konformen Spiegelung an \mathfrak{c} läßt sich für hinreichend kleines ε unter der Voraussetzung $k \neq 0$ eine Aussage treffen.

Satz 2. Für alle hinreichend kleinen ε ist das die möglichst konforme Spiegelung an \mathfrak{c} (mit $\infty \to \infty$) beschreibende quadratische Differential bis auf einen einfachen Pol in ∞ außerhalb \mathfrak{c} und auf den beiden Ufern von \mathfrak{c} regulär und besitzt keine Nullstellen (in den Endpunkten von \mathfrak{c} in einer Randuniformisierenden betrachtet).

Zur bequemeren Formulierung des folgendes Satzes (wieder unter der Voraussetzung kleiner ε und $k \neq 0$), der diese Aussage noch weiter präzisiert, nehmen wir o.E.d.A. \mathfrak{c} in der Lage von Figur 1 in der z-Ebene an ($z_0 = 0$, horizontale Tangente in 0, Vorzeichen der Krümmung so, daß \mathfrak{c} oberhalb der reellen Achse liegt). Dann führen wir noch eine ähnliche Vergrößerung von \mathfrak{c} durch eine ganzlineare Transformation in eine \mathfrak{z} -Ebene so aus, daß die Endpunkte von \mathfrak{c} in ± 2 übergehen und das Bild $\mathfrak{c}_{\mathfrak{z}}$ von \mathfrak{c} unterhalb der reellen Achse liegt (Figur 1). Nun bilden wir die zweiblättrige Überlagerung des Äußeren von $\mathfrak{c}_{\mathfrak{z}}$ mit Windungspunkt in ∞ schlicht konform auf das Innere des Einheitskreises einer ζ -Ebene so ab, daß $\mathfrak{z} = \infty$ in $\zeta = 0$ übergeht und in $\mathfrak{z} = \infty$ die Entwicklung $a/\sqrt{i\mathfrak{z}} + \cdots (a > 0)$ vorliegt. Als Schar \mathfrak{S} bezeichnen wir dann in der \mathfrak{z} -Ebene die Gesamtheit der Urbilder der zur imaginären Achse parallelen Strecken innerhalb $|\zeta| < 1$.

Satz 3. Bei der möglichst konformen Spiegelung an \mathfrak{c} mit $\infty \to \infty$ gehen infinitesimale Kreise in infinitesimale Ellipsen des Achsenverhältnisses $\mathfrak{Q}_{\mathfrak{c}}$ über, wobei die großen Achsen einen Neigungswinkel besitzen, der in jedem Punkte der \mathfrak{z} -Ebene übereinstimmt mit dem Neigungswinkel der durch diesen Punkt verlaufenden Kurve von \mathfrak{S} bis auf eine additive Fehlergröße, die nach Division durch $\sqrt{\varepsilon}$ beschränkt in \mathfrak{z} (außerhalb von $\mathfrak{c}_{\mathfrak{z}}$) und ε (hinreichend klein) ist.

Figur 1.

Die Schar \mathfrak{S} ist in Figur 2 dargestellt im Grenzfalle $\varepsilon = 0$. Diese Schar entsteht dann also als Urbild der zur imaginären Achse parallelen Strecken innerhalb $|\zeta| < 1$ bei schlichter konformer Abbildung des zweiblättrigen Äußeren (Windungspunkt in ∞) der Strecke -2...+2 der \mathfrak{z} -Ebene auf das Innere des Einheitskreises $|\zeta| < 1$ mit $\infty \to 0$ und der Entwicklung $1/\sqrt{i\mathfrak{z}} + \cdots$ in $\mathfrak{z} = \infty$. Die Schar \mathfrak{S} ist (in diesem Grenzfalle $\varepsilon = 0$) zur imaginären Achse symmetrisch. Bei Spiegelung an der reellen Achse entsteht die Schar der orthogonalen Trajektorien. Im oberen Ufer der Strecke -2...+2 endet die in \mathfrak{z} einmündende Kurve von \mathfrak{S} dort mit dem Neigungswinkel $\frac{1}{2}(\pi - \arcsin \frac{1}{2}\mathfrak{z})$ gegen die positiv reelle Achse.

Figur 2. (Schar \mathfrak{S} in der \mathfrak{z} -Ebene.)

Figur 3. (z-Ebene.)

Eine zu Satz 3 entsprechende Aussage ergibt sich für die z-Ebene, wobei dann die Neigungen der großen Achsen der infinitesimalen Bildellipsen analog außerhalb eines beliebig kleinen aber festen zu z = 0 konzentrischen Kreises approximiert werden durch die Schar der Figur 3 (Cardioiden). (Diese Schar der Figur 3 entsteht aus derjenigen von Figur 2 sozusagen bei Betrachtung mit immer stärker werdender Verkleinerung.)

2. Beispiel: Kreisbogen c

Dieser Kreisbogen \mathfrak{c} habe den Öffnungswinkel α ($< 2\pi$). $\mathfrak{q}_{\mathfrak{c}}$ hängt allein von α ab wegen der Invarianz bei Ähnlichkeitstransformation. \mathfrak{c} kann dabei mit den Endpunkten ± 2 entsprechend der Situation in der \mathfrak{z} -Ebene der Figur 1 angenommen werden. Aus \mathfrak{c} entsteht in der Z-Ebene der Figur 1 gemäß (11) eine exakte Kreislinie K, wobei man elementar für das Verhältnis ϱ des Abstandes zwischen dem Mittelpunkt von K und Z = 0 zum Kreisradius errechnet

(2)
$$\rho = \sin(\alpha/4).$$

Die Aufgabe der möglichst konformen Spiegelung an K mit $\infty \to 0$ ist nun gerade in [9] vollständig behandelt worden. Es ergibt sich nach [9] (dort berühmter Schreibfehler auf S. 343: K ist durch \sqrt{K} zu ersetzen; gleicher Fehler in der Darstellung in [6], S. 59 ff.)

$$\mathfrak{Q}_{\mathfrak{c}} = \left(e^{\mu(\varrho)} + 1\right)^2 / \left(e^{\mu(\varrho)} - 1\right)^2,$$

wobei $\mu(\varrho)$ der Logarithmus des konformen Moduls der von 0 bis ϱ geradlinig geschlitzten Einheitskreisscheibe ist. Mit der in [7, S. 62] gegebenen Darstellung für $\mu(\varrho)$ und der üblichen Bezeichnung für elliptische Integrale erster Gattung haben wir damit das Ergebnis:

(3)
$$q_{\mathbf{c}} = 1/\mathfrak{Cos}(\frac{1}{2}\pi K'(\varrho)/K(\varrho))$$

mit ρ nach (2).

Der topologische Verlauf der Hauptverzerrungsrichtungen der möglichst konformen Spiegelung am Kreisbogen \mathfrak{c} ergibt sich nach [9] für alle α (also nicht nur für hinreichend kleine entsprechend Satz 3) wie in Figur 2.

Bemerkung. Man muß sich des Gedankens entschlagen, es finde immer eine Vergrößerung von q_c statt, wenn man einen konvexen Bogen \mathfrak{c} in Richtung der konvexen Seite abändert (bei Festhaltung der Endpunkte). Besteht nämlich \mathfrak{c} aus zwei unter dem Winkel $\gamma \pi$ ($< \pi$) zusammenstoßenden gleich großen Strecken, ist nach der Einleitung $q_c = 1 - \gamma$. Für den Kreisbogen mit gleichen Endpunkten wie \mathfrak{c} und durch den Knickpunkt verlaufend ergibt sich für kleine Werte von $1 - \gamma$ nach (3) bzw. Satz 1 ein kleinerer Wert, nämlich asymptotisch $\pi(1 - \gamma)/4$.

3. Beweis von Satz 1

Dieser besteht im 1. Teil im Nachweis der Ungleichung

(4)
$$q_{\mathbf{c}} \geq \frac{1}{4}k\varepsilon + O(\varepsilon^2).$$

Dabei spielt eine zentrale Rolle eine Koeffizientenabschätzung für quasikonform fortsetzbare schlichte konforme Abbildungen. Im zweiten Beweisteile wird noch explizit eine Spiegelung konstruiert, für die der Betrag der komplexen Dilatation \leq der rechten Seite von (4) ist.

Zum 1. Beweisteil vergleiche man Figur 1. Es wird eine Kette von schlichten konformen Abbildungen durchgeführt.

Den Bogen \mathfrak{c} können wir o.E.d.A. in der z-Ebene in der Form

(5)
$$z = x + i(\frac{1}{2}kx^2 + O(x^3)), \quad k \ge 0,$$

annehmen, wobei k die Krümmung in $z_0 = 0$ ist,

$$z_1 = \varepsilon + O(\varepsilon^2) + i(\frac{1}{2}k\varepsilon^2 + O(\varepsilon^3)),$$

$$z_2 = -\varepsilon + O(\varepsilon^2) + i(\frac{1}{2}k\varepsilon^2 + O(\varepsilon^3))$$

die Endpunkte sind. Es wird

$$z_1 - z_2 = 2\varepsilon + 2\varepsilon O_1(\varepsilon) + iO(\varepsilon^3),$$

$$z_1 + z_2 = 2\varepsilon O_2(\varepsilon) + 2i\left(\frac{1}{2}k\varepsilon^2 + O(\varepsilon^3)\right).$$

Hierbei und im folgenden bezeichnet O das Landau-Symbol und zwar stets eine reelle Funktion. Wir hängen an O einen Index an, wenn wir eine ganz bestimmte Funktion meinen.

a). Übergang $z \to \mathfrak{z}$ als erstes Glied der angekündigten Abbildungskette: Erfolgt durch die ganz-lineare Transformation

(6)
$$\mathfrak{z} = \frac{4}{z_1 - z_2} z - 2 \frac{z_1 + z_2}{z_1 - z_2},$$

so daß der Bildbogen in der $\mathfrak{z}\text{-}Ebene die Endpunkte <math display="inline">\pm 2$ bekommt. Der Bildbogen hat nach (5) die Gestalt

(7)
$$\mathfrak{z} = 2 \frac{x + i(\frac{1}{2}kx^2 + O(x^3)) - \varepsilon O_2(\varepsilon) - i(\frac{1}{2}k\varepsilon^2 + O(\varepsilon^3))}{\varepsilon + \varepsilon O_1(\varepsilon) + iO(\varepsilon^3)},$$

wieder mit xals Kurvenparameter. Wir steigen nun zum Kurvenparameter φ durch

(8)
$$x = (\varepsilon + \varepsilon O_1(\varepsilon)) \cos \varphi + \varepsilon O_2(\varepsilon), \quad 0 \le \varphi \le \pi,$$

um. Die Endpunkte des Bildbogens bekommen wir jetzt durch $\varphi = 0$ und $\varphi = \pi$, wobei dort von x der Wert $\Re \mathfrak{e} x_1$ bzw. $\Re \mathfrak{e} x_2$ von zweiter Ordnung angenommen wird. Wir stellen uns noch vor, für $\pi \leq \varphi \leq 2\pi$ entsteht das andere Ufer des Schlitzes bei \mathfrak{c} .

Nun wird in diesem neuen Parameter φ nach (7) der Bildbogen in der $\mathfrak{z} extsf{-}Ebene gegeben durch$

$$\mathfrak{z}/2 = \frac{(1+\frac{1}{2}ik\varepsilon\cos\varphi)\cos\varphi + O_1(\varepsilon)\cos\varphi + iO(\varepsilon^2) - \frac{1}{2}ik\varepsilon}{1+O_1(\varepsilon) + iO(\varepsilon^2)},$$

wobei von jetzt ab das Landau-Symbol O (ohne Index) auch zusätzlich von φ abhängen kann, dabei immer als analytisch in ε und φ vorzustellen ist. Es ist $O(\varepsilon^2)/\varepsilon^2$ für $\varepsilon \to 0$ beschränkt, und zwar gleichmäßig in φ (Entsprechendes gilt unten).

Wir rechnen noch um zu

(9)
$$\mathfrak{z}/2 = \cos\varphi - \frac{1}{2}ik\varepsilon\sin^2\varphi + O(\varepsilon^3) + iO(\varepsilon^2).$$

Hier muß $O(\varepsilon^3)+iO(\varepsilon^2)$ für $\varphi = 0$ und $\varphi = \pi$ von zweiter Ordnung verschwinden, so daß also diese Größe nach Division durch $\varepsilon^2 \sin^2 \varphi$ beschränkt sein muß. Dies bringt

$$(\mathfrak{z}/2)^2 - 1 = -\sin^2\varphi \big(1 + ik\varepsilon\cos\varphi + O(\varepsilon^2) + iO(\varepsilon^2)\big),$$

362

Möglichst konforme Spiegelung an einem Jordanbogen

(10)
$$\left((\mathfrak{z}/2)^2 - 1 \right)^{1/2} = i \sin \varphi \left(1 + \frac{1}{2} i k \varepsilon \cos \varphi + O(\varepsilon^2) + i O(\varepsilon^2) \right).$$

b). Übergang $\mathfrak{z} \to Z$: Erfolgt durch

(11)
$$\mathfrak{z} = Z + 1/Z, \qquad Z = (\mathfrak{z}/2) + \sqrt{(\mathfrak{z}/2)^2 - 1}.$$

Mit (9), (10) wird die Bildkurve (eine geschlossene analytische Jordankurve) in der Z-Ebene dargestellt durch

$$Z = e^{i\varphi}(1 - \frac{1}{2}k\varepsilon\sin\varphi) + O(\varepsilon^2) + iO(\varepsilon^2).$$

Durch die weitere Substitution $\varphi = \psi - \frac{1}{2}k\varepsilon \cos \psi$ entsteht daraus die Darstellung

(12)
$$Z = e^{i\psi} - \frac{1}{2}ik\varepsilon + O(\varepsilon^2) + iO(\varepsilon^2).$$

c). Übergang $Z \to w$: Ist eine harmlose Drehung

(13)
$$w = iZ.$$

Aus (12) entsteht die Bildkurve

(14)
$$w = ie^{i\psi} + \frac{1}{2}k\varepsilon + O(\varepsilon^2) + iO(\varepsilon^2).$$

d). Übergang $w \to \mathfrak{w}$: Durch

(15)
$$\mathfrak{w} = \sqrt{w}.$$

In der \mathfrak{w} -Ebene entsteht dann die Bildkurve in der Form

(16)
$$\mathfrak{w} = ie^{i(2\psi+\pi)/4} + \frac{1}{4}k\varepsilon^{-i(2\psi+\pi)/4} + O(\varepsilon^2) + iO(\varepsilon^2).$$

e). Übergang $\mathfrak{w} \to W$: Erfolgt durch

(17)
$$\mathfrak{w} = W + \frac{1}{4}k\varepsilon\frac{1}{W}, \qquad W = \mathfrak{w} - \frac{1}{4}k\varepsilon\frac{1}{\mathfrak{w}} + \frac{1}{\mathfrak{w}^3} + \cdots.$$

Die Bildkurve in der W-Ebene ist dann gegeben durch

(18)
$$W = ie^{i(2\psi + \pi)/4} + O(\varepsilon^2) + iO(\varepsilon^2).$$

Wegen

$$|W| = 1 + O(\varepsilon^2)$$

haben wir eine Annäherung an den Einheitskreis von zweiter Ordnung. Das Äußere dieser Bildkurve hat einen konformen Radius der Form

(20)
$$R = 1 + O(\varepsilon^2).$$

f). Übergang $W \to \mathfrak{W}$: Erfolgt durch schlichte konforme Abbildung des Äußeren der Kurve der W-Ebene auf das Äußere des Einheitskreises, wobei für die Umkehrfunktion in $\mathfrak{W} = \infty$ der Entwicklungstypus (wegen der zentrischen Symmetrie zu 0)

(21)
$$W/R = \mathfrak{W} + \mathfrak{A}_1 \mathfrak{W}^{-1} + \mathfrak{A}_3 \mathfrak{W}^{-3} + \cdots$$

vorliegt. Entsprechend wie in [5] fließt aus (19)

(22)
$$|\mathfrak{A}_1| \leq O(\varepsilon^2).$$

Nun haben wir nach (17) in $\mathfrak{W} = \infty$ die Entwicklung

(23)
$$\frac{\mathfrak{w}}{R} = \frac{W}{R} + \frac{1}{4}k\varepsilon R^{-2}\frac{R}{W} = \mathfrak{W} + (\mathfrak{A}_1 + \frac{1}{4}k\varepsilon R^{-2})\mathfrak{W}^{-1} + \mathfrak{W}^{-3}.$$

Aus der $\mathfrak{Q}_{\mathfrak{c}}$ -quasikonformen Spiegelung an \mathfrak{c} mit $\infty \to \infty$ entsteht entsprechend der Einleitung eine $\mathfrak{Q}_{\mathfrak{c}}$ -quasikonforme Spiegelung an der "ellipsennahen" Kurve der \mathfrak{w} -Ebene mit $\infty \to 0$, und diese induziert in bekannter Weise (vgl. z.B. [4]) eine $\mathfrak{Q}_{\mathfrak{c}}$ -quasikonforme Fortsetzung der schlichten hydrodynamisch normierten konformen Abbildung (23) des Äußeren des Einheitskreises der \mathfrak{W} -Ebene auf das Äußere der Kurve der Ebene \mathfrak{w}/R .

Nun kommt der entscheidende Schritt in diesem ersten Beweisteil: Nach [1] können wir so in (23) den ersten Koeffizienten abschätzen

$$|\mathfrak{A}_1 + \frac{1}{4}k\varepsilon R^{-2}| \le \mathfrak{q}_{\mathfrak{c}}.$$

Das gibt im Verein mit (20), (22) unsere Behauptung (4).

Im 2. Beweisteil zu Satz 1 wird effektiv an der zu 0 zentrisch symmetrischen geschlossenen Jordankurve der \mathfrak{w} -Ebene (vgl. wieder Figur 1) eine quasikonforme Spiegelung konstruiert, deren Betrag der komplexen Dilatation $\leq \frac{1}{4}k\varepsilon + O(\varepsilon^2)$ ist und die ebenfalls zu 0 zentrisch symmetrisch ist (so daß sie — wenn man in Figur 1 die verschiedenen Ebenen zurückverfolgt — zu einer quasikonformen Spiegelung an \mathfrak{c} mit $\infty \to \infty$ Anlaß gibt, bei gleicher Dilatationsschranke). Diese Spiegelung wird analog und fast wörtlich wie in [5] (dort 2. Beweisteil in Sektion 3) konstruiert. Im wesentlichen ist nur A durch $\frac{1}{2}k$ zu ersetzen, und in den Potenzen von ε ist der Exponent entsprechend zu erniedrigen.

4. Beweis von Satz 2 und Satz 3

Zum näheren Studium der möglichst konformen Spiegelung an \mathfrak{c} mit $\infty \to \infty$ untersuchen wir wie in [5] die (zentrisch symmetrische) möglichst konforme Spiegelung an der geschlossenen Jordankurve der \mathfrak{w} -Ebene oder — was hierzu nach [4] äquivalent ist — die möglichst konforme Fortsetzung der schlichten konformen Abbildung $\mathfrak{w}(\mathfrak{W})$ von $|\mathfrak{W}| > 1$. Letztere Fortsetzung erhalten wir wie im Beweis von Satz 7 in [2] (dort Druckfehler: lies $F(w(1/\bar{z}))$), [3](Satz 1) aus der komplexen Eigenfunktion zur Jordankurve der \mathfrak{w} -Ebene, aufgefaßt als Funktion von \mathfrak{W} ,

(25)
$$F(\mathfrak{W}) = i \sum_{n=1}^{\infty} \overline{x_n} \mathfrak{W}^{-n} / \sqrt{n}, \qquad (|\mathfrak{W}| > 1), \quad \sum |x_n|^2 = 1,$$

falls diese schlicht ist.

Für hinreichend kleine ε gilt für den Koeffizienten a_1 von $1/\mathfrak{W}$ in (23)

(26)
$$a_1 = \frac{1}{4}k\varepsilon + O(\varepsilon^2), \qquad |a_1|^2 = \frac{1}{16}k^2\varepsilon^2 + O(\varepsilon^3).$$

And ererseits ist $\mathfrak{w}(\mathfrak{W})$ nach $|\mathfrak{W}| > \varrho$ schlicht und analytisch fortsetzbar, wobei wählbar ist

(27)
$$\rho = \operatorname{const} \sqrt{\varepsilon}$$

mit einer von ε unabhängigen Konstanten. Denn an dem Bogen der \mathfrak{z} -Ebene zwischen -2 und +2 läßt sich in einem Umgebungsstreifen einer Breite der Form const $(1/\varepsilon)$ spiegeln, und diese Spiegelung gibt in bekannter Weise Anlaß zu einer schlichten und analytischen Fortsetzung von $\mathfrak{w}(\mathfrak{W})$ nach $|\mathfrak{W}| > \operatorname{const} \sqrt{\varepsilon}$. Die Schlichtheit der Eigenfunktion (25) und Satz 2 ergeben sich nun aus (26), (27) nach Satz 5 in [5], dort insbesondere Bemerkungen 2 und 3 (hier wird $\Phi(\varrho) = \operatorname{const} \varepsilon^3 + O(\varepsilon^{7/3})$). Auch folgt noch nach Satz 5 in [5] für den reziproken Fredholmschen Eigenwert κ der Jordankurve der *w*-Ebene

(28)
$$\kappa = \mathfrak{q}_{\mathfrak{c}} = \frac{1}{4}k\varepsilon + O(\varepsilon^2).$$

Nun zum Beweis von Satz 3! Es gilt zunächst (vgl. die Analogie zu (40) in [5])

(29)
$$\sum_{n=2}^{\infty} \sqrt{n} |x_n| |\mathfrak{W}|^{-n-1} \le c\sqrt{\varepsilon} |x_1| |\mathfrak{W}|^{-2} \quad \text{für } |\mathfrak{M}| \ge 1$$

mit einer gewissen Konstanten c und für hinreichend kleine ε . Denn (29) folgt aus

$$\sum_{n=2}^{\infty} \sqrt{n} |x_n| \le c\sqrt{\varepsilon} |x_1|$$

und dies wie in [5] aus

$$\left(\sum_{n=2}^{\infty}\sqrt{n}\varrho^{n+1}\right)^2 + c^2\varepsilon\frac{\varrho^6}{1-\varrho^2} \le c^2\varepsilon\kappa^2,$$

was für kleine ε sicher mit einer geeigneten Konstanten c richtig ist wegen (27), (28). Es gilt weiter wie in [5]

$$|\kappa x_1 - \overline{a_1 x_1}| \le \frac{1}{\kappa} \frac{\varrho^6}{1 - \rho^2}.$$

Mit (26) und (28) (hier benutzen wir also Satz 2) ergibt sich hieraus

(30)
$$\Im \mathfrak{m} x_1 = O(\varepsilon)$$

Ferner gilt

$$\sum_{n=2}^{\infty} |x_n|^2 \le \frac{1}{\kappa^2} \frac{\varrho^6}{1-\varrho^2} = O(\varepsilon), \quad |x_1|^2 = 1 - \sum_{n=2}^{\infty} |x_n|^2 = 1 - O(\varepsilon),$$

so daß folgt

$$x_1 = 1 - O(\varepsilon) + iO(\varepsilon).$$

Damit gilt für die Ableitung der komplexen Eigenfunktion (25) nach (29)

(31)
$$\frac{d}{d\mathfrak{W}}F(\mathfrak{W}) = -i\mathfrak{W}^{-2}\overline{x_1}(1 + c\sqrt{\varepsilon}F^*(\mathfrak{W},\varepsilon)) \quad \text{für } |\mathfrak{W}| \ge 1$$

mit $|F^*(\mathfrak{W},\varepsilon)| \leq 1$ für $|\mathfrak{W}| \geq 1$ und alle hinreichend kleinen ε . Das beweist Satz 3, da die Schar \mathfrak{S} — in die \mathfrak{W} -Ebene überpflanzt — durch $\mathfrak{Im} i\mathfrak{W}^{-1} = \text{const}$ charakterisiert wird, die eigentliche Schar der Hauptverzerrungsrichtungen (Richtungen der großen Achsen der infinitesimalen Ellipsen, die Bilder infinitesimaler Kreise) durch $\mathfrak{Im} dF = 0$.

Literatur

- KÜHNAU, R.: Wertannahmeprobleme bei quasikonformen Abbildungen mit ortsabhängiger Dilatationsbeschränkung. - Math. Nachr. 40, 1969, 1-11.
- [2] KÜHNAU, R.: Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerte und Grunskysche Koeffizientenbedingungen. - Ann. Acad. Sci. Fenn. Ser. A I Math. 7, 1982, 383-391.
- KÜHNAU, R.: Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für Qquasikonforme Fortsetzbarkeit? - Comment. Math. Helv. 61, 1986, 290-307.
- KÜHNAU, R.: Möglichst konforme Spiegelung an einer Jordankurve. Jahresber. Deutsche Math. Ver. 90, 1988, 90-109.

366

- [5] KÜHNAU, R.: Möglichst konforme Spiegelung an einem Jordanbogen auf der Zahlenkugel.
 Pfluger Anniversary Volume, Birkhäuser Verlag, Basel-Boston-Berlin, 1988, 139– 156.
- [6] KÜNZI, H.P.: Quasikonforme Abbildungen. Springer Verlag, Berlin-Göttingen-Heidelberg, 1960.
- [7] LEHTO, O., and K.I. VIRTANEN: Quasikonforme Abbildungen. Springer Verlag, Berlin-Heidelberg-New York, 1965.
- [8] STREBEL, K.: On the existence of extremal Teichmueller mappings. J. Analyse Math. 30, 1976, 464-480.
- TEICHMÜLLER, O.: Ein Verschiebungssatz der quasikonformen Abbildung. Deutsche Math. 7, 1944, 336-343. Auch in: Gesammelte Abhandlungen, Springer-Verlag, Berlin-Heidelberg-New York, 1982.

Martin-Luther-Universität Halle-Wittenberg Sektion Mathematik DDR-40 Halle an der Saale

Received 27 October 1988