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CIRCULAR DISTORTION OF CURVES AND QUASICIRCLES

F.W. Gehring ! and Ch. Pommerenke

1. Introduction

Suppose that C is a Jordan curve in the extended complex plane C = C U
{oo}. Then C is a K -quasicircle, 1 < K < oo, if it is the image of the unit circle
under a K -quasiconformal self mapping f of C. Thus C is a 1-quasicircle if and
only if C is a circle or line [A], [LV].

Next we say that C has circular distortion ¢, 1 < ¢ < oo, if for each Mobius
transformation ¢, either ¢(C) separates the boundary circles of an annulus

(1.1) A= A(zo;r,8) ={2€C : r < |z— 2| < s}

with radii ratio s/r = ¢ or ¢(C) contains the point co. The circular distortion is
a Mobius invariant which measures how far a Jordan curve differs from being a
circle or line. In particular, C' has circular distortion 1 if and only if it is a circle
or line.

Kilhnau recently established the following relation between these two con-
cepts [K].

1.2. Theorem. If C is a K -quasicircle in C, then C has circular distortion
¢ where ¢ depends only on K.

Kithnau found sharp bounds for the constant ¢ in terms of K and asked if the
converse of Theorem 1.2 is true, that is, if each curve C with circular distortion ¢
is a K -quasicircle where K depends only on c.

In Section 2 of this paper we consider two classes of curves for which this
is the case—convex curves with arbitrary circular distortion and arbitrary curves
with circular distortion ¢ < v/2. Then in Section 3 we present an example to show
that a curve with circular distortion ¢ > 5 need not be a quasicircle.
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2. Two classes of quasicircles

For each zp € C and 0 < r < oo we let
B(z0,7) = {2 € C : |2 — z| <r}, B*(z0,7) = {2 € C : |z — 20| > r}.

We begin by noting that each convex curve in C is a K -quasicircle where K
depends only on its circular distortion. (See also [C], [L].)

2.1. Theorem. If C is a convex curve which separates the boundary circles
of an annulus A with radii ratio ¢, then C is a K -quasicircle where

(2.2) K=1 (\/c2 F34+4/c - 1)2.

Proof. By performing a preliminary similarity mapping, we may assume that
A = A(0;1,c). Then for each 6 € [0,27] there exists a unique point z = rei® € C
where r = () € [1,c]. Fix 6 and let E denote the double cone bounded by
0B(0,1) and the two tangent rays drawn from 8B(0,1) through z = r(6)e' to
co. Because C' is convex with B(0,1) C int(C) C B(0,c), C \ {z} liesin C\ E
and

(2.3) lim sup |T(0,) — 7‘(0)| <

i - -1 2 _
m su =g = c?2 —1r(0).

Now let . ‘
f(se') = sr()e'

for 0 < s <00, 0<6 <27 and f(oo) = c0. Then f : C — C is a homeo-
morphism which maps the unit circle onto C'. Next (2.3) implies that f satisfies
a local Lipschitz condition at each point of C and hence is differentiable almost
everywhere in C. Let 0, f denote the directional derivative of f in the direction
a. Then an elementary calculation and (2.3) imply that

mgx|30,f(z)| < ngn|0o,f(z)|

at each point where f is differentiable and hence that f is K -quasiconformal
where K is as in (2.2).

If C is a Jordan curve with circular distortion ¢, then C is a circle or line
and hence a quasicircle whenever ¢ = 1. We show next that C is a quasicircle
whenever ¢ < /2. Our proof is based on elementary classical properties of the
exterior mapping function

w=g(z)= z+ijz_j.
0
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2.4. Lemma. If ¢ maps B*(zp,s) conformally into B*(wy,t), then
(2.5) b] < 8% —¢2.

Proof. Since the coefficient b; is invariant under translations in the z- and
w-planes, we may assume that zy = wyg = 0. Then

) z+Zc,z J

19

h(z) = @u@+

maps B*(0,1) conformally into C,
Ib1 +t26i0|3_2 = |C1| S 1

by the area theorem [P] and we obtain (2.5) by setting § = arg b, .

2.6. Lemma. If C is a Jordan curve which separates the boundary circles
of an annulus A with radii ratio ¢ and if ¢ maps B*(0,1) onto ext(C), then

ct—-1

. < .
27) bl < S5

Proof. Suppose that A = A(wg;r,cr). Then g maps B*(0,1) conformally
into B*(wyp,r) and hence

(2.8) |b1] < 1—r2

by Lemma 2.4. Next
z=g"Hw)=w+ i cjw™?
0
maps B*(wo, cr) conformally into B*(0,1) and ¢; = —b;. Hence by Lemma 2.4
(2.9) e 2by| = c2er| < e ((er)? - 1) =r?—c72
and (2.7) follows directly from adding (2.8) and (2.9).

2.10. Remark. The mapping

c—11

9(z) =2+ —~

shows that one cannot replace the upper bound in (2.7) by anything less than

(c—1)/(c+1).
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2.11. Theorem. If C is Jordan curve in C Wi_th circular distortion ¢ and
if f maps B(0,1) conformally onto a component of C\ C, then

n2 _ ct—1
(2.12) |S#(2)| (1= 12*)" < 651
for each z in B(0,1), where Sy denotes the Schwarzian derivative of f.

Proof. Fix z, € B(0,1); since the left hand side of (2.12) is continuous in z,
we may assume that f(zp) # co. Let

_ (1 —120*) f'(20)
blw) = w — f(20) ’

and set g(z) =% o foyp(l/z) in B*(0,1). Then by a well known computation,

242
1+ 22’

¢(z) =

(2.13) g(2) =2+ biz7l, b= —184(20)(1 - |=]?)’,
0

[D], [N]. Next g maps B*(0,1) onto ext(y(C)) and ¢(C) does not contain co.
Thus ¢(C) separates the boundary circles of an annulus with radii ratio ¢ and we
obtain (2.12) for z = 2o from (2.13) and (2.7).

2.14. Theorem. If C is a Jordan curve in C with circular distortion
¢ < V2, then C is a K -quasicircle where K depends only on c.

Proof. If f is a conformal mapping of B(0,1) onto a component of C\ C,
then

21
|57 (1= 12P) <65 =b<2

for z € B(0,1) by Theorem 2.11. Hence by the Ahlfors—Weill theorem, f has a
K -quasiconformal extension f to C where K depends only on & and hence on ¢

[AW], [L].

3. A geometric interpretation for circular distortion

Finally we show that there exists a Jordan curve C' with circular distortion 5
which is not a quasicircle. We shall make use of the following alternative charac-
terization for circular distortion. For the sake of simplicity, we restrict ourselves
to the case where C passes through oo.

3.1. Theorem. Suppose that C is a Jordan curve in C which contains
oo. Then C has circular distortion ¢ if and only if there exists a constant b,
2 < b < oo, such that for each point w; in one component of C \ C there exists
a point ws in the other component with

(3.2) bdist(wy,C) > |wy — wy|, bdist(wz, C) > |wy — wz|.

Here b= c+1 in the necessity and ¢ = b* + b — 1 in the sufficiency.
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Proof. For the necessity, choose w; in a component of C \ C and let ¢ be
a Mobius transformation for which ¢(w;) = co. Since C has circular distortion
¢, ¢(C) separates the boundary circles of an annulus A = A(z;r,cr). By a
preliminary change of variables we may assume that zo = 0. Then wy; = ¢71(0)
lies in the other component of C\ C.

Let C; and C, denote the images under ¢~ ! of the outer and inner boundary
circles of A, respectively. Next for j = 1,2 let 2; and z; denote the points where
C; meets the extended line L through w; and w,, labeled so that z; lies in the
segment [wq,ws], and set r; = |z; —w;|. Then by the Mobius invariance of the
cross ratio,

|z —wi| _ |z; — wi]

(3.3) for z€ Cj, j=1,2.

|z —wa| |z — wal
If oo € C1, then C; is a circle which does not separate w, from oo,
|21 — w1| < |2y —wa,
and we obtain
(3.4) lz1 —w1]| € |21 — wa
from (3.3) with j =1 and 2z = 2. If oo € Cy, then 2{ = oo and (3.4) again

follows from (3.3). Interchanging the roles of C; and C, in the above discussion
then shows that

(35) |22 — w2| S |22 — w1|.

Next

(3.6) |71 = wallzs —wa| _ Jelen)| _ ‘.
lz1 — willze —wa| — |e(22)]

and with (3.4) and (3.5) we obtain
lz1 — we| < ¢|z; — wq| |22 — w1| < ¢|zg — w2
whence
(B7)  lwr—wal < |25 — wil + |25 — wal < (c+ Dleg — w] = (e + Lyr;

for j=1,2.
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Finally (3.3) together with (3.4) and (3.5) implies that
B(z;,r;) C int(Cj) C 6\ C

and hence (3.2) follows from (3.7).

For the sufficiency, suppose that ¢ is any Mobius transformation for which
¢(C) does not contain co and let w; = ¢~(c0). Then w; lies in a component of
C\ C. Let wy denote the point in the other component of C\ C for which (3.2)

holds and set w w
h(z) = 72——1

—wy

Then ¢ 0%~! is a euclidean similarity and in order to show that ¢(C) separates
the boundary circles of an annulus of radii ratio c, it suffices to consider the case
where ¢ = 1.

Now let r = |w; — ws|/b and s = b/(b% — 1). Then

(B(wi,r) = B*(0,8),  ¢(B(ws,r)) = B(bs,s)
while (3.2) implies that
C c C\ (B(wi,r) U B(wa,r)).
Hence
@(C) C ¢ (C\ (Blw1,r) U Blwz, ) C A(bsss, (7 +b—1)s),

an annulus with radii ratio 4 +b—1.

3.8. Theorem. There exists a Jordan curve C in C with circular distortion
¢ = 5 which is not a quasicircle.

Proof. For j =1, 2, ... let o; and f; denote the upper and lower semicircles

oj = {z: |z — 1| = 2j — 1,Im(2) > 0}, Bi={z: |2+1|=2j—1,Im(z)§0}.

Then
{0} fi=k=1,
27} ifj=k—-1
3.9 g = {2 J ;
(3:9) GNP=N o0y ik,
] otherwise.
Hence

7 =Jazj-1UBj)U{oo}, 72 =J(azj U Bajor) U{oo}
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are arcs which have only their endpoints 0, co in common and
o]
C=7Uv =|J(a;UB;)u{x}
1

is a Jordan curve.
Fix j andlet zy =45 —2 and 25 =4j. Then z; € y; and 2z, € ;, 0 and oo
are separated by z; and z, in C and
min(dia(Cl), dia(Cg)) > 45 = 2j|z — 22|

where C; and C; are the components of C'\{z1,22}. Hence C is not a quasicircle
by Ahlfors’ well known criterion [A]. .

Suppose that w; is a point in a component of C \ C; by replacing w; by
—w; we may assume without loss of generality that Im(w;) > 0. Next choose
j=1,2,... so that

2j —2< lwy — 1| < 25
and let wy = 2wy — wy, where
(3.10) wo = {2 if wy = 1.
Then wo € a;. If z € ai, then
(3.11)  |wy — 2| > [Jwy — 1] = (2k = 1)| > ||w1 — 1| = (2 — 1)| = w1 — wol.
Similarly if z € B¢ with endpoints z; = —2k, 2z; = 2k — 2, then

oo
lwy — z| > min(jwy — zx|, w1 — 2;]), 2k, 2 € Ual,
1

and we obtain |w; — z| > |w; — wo| from (3.11). Thus

dist(wy, C) = |wy — wg].
A similar argument shows that

dist(ws, C) = |wg — wo
and we conclude that

2dist(w;, C) = 2dist(wz, C) = |w1 — wo|.

Finally let zx = 1 +i|wx — 1| for k = 0,1,2. Then U = B(2,1) is a closed
neighborhood of zy € a; and U \ C has exactly two components, one of which
contains z; and the other z,. Since for j = 1,2 the arc

{+ |z =1] = |uw; - 1], Im(z) > 0}
joins z; to w; in C\ C, w; and w;y lie in different components of C \ C. Thus

C satisfies the hypotheses of Theorem 3.1 with b = 2 and hence has circular
distortion 5.
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4. Concluding remarks

Remark 4.1. Theorems 2.14 and 3.8 show that a Jordan curve with circular
distortion ¢ must be a quasicircle if ¢ < v/2 and need not be if ¢ > 5. The bound
V2 is not sharp. Indeed a slightly different argument yields the same conclusion

for
V6(1 +/37)
cLl —mM———=
12
Remark 4.2. One can use Theorem 3.1 to construct a Jordan curve with
finite circular distortion which has positive area (or two dimensional measure) and
hence is certainly not a quasicircle.

= 1.4457...

We indicate the construction of such a curve C in Figure 1 which was kindly
drawn for us by U. Graeber. At the jth stage of the construction, j = 1,2,...,
we have 4771 jth generation squares Qjx of sidelength a; = 279(5 + 1)/5.
Next in each square Qi we draw four (j 4 1)th generation squares Qjyq,; of
sidelength a;4; leaving three vertical and three horizontal corridors of width
bj = 277/3j(j + 1). In these corridors we draw the Jth generation arcs as in
Figure 1. This figure contains two generations of squares and arcs.

The intersection E of all generations of squares has area 1. The curve C
is the union of all generations of arcs together with the set E and two halflines
connecting the two endpoints in 8Q1,1 of first generation arcs to the point oco.
Then C is a Jordan curve with positive area and it follows from Theorem 3.1 that

C has finite circular distortion.



Circular distortion of curves and quasicircles

389

N - S

ENEN N ENEN

N Y NS
! v




390 F.W. Gehring and Ch. Pommerenke
References

[A] AnLFors, L.V.: Quasiconformal reflections. - Acta Math. 109, 1963, 291-301.

[AW] A=nLFORS, L.V., and G. WEILL: A uniqueness theorem for Beltrami equations. - Proc.
Amer. Math. Soc. 13, 1962, 975-978.

[C] Cavrvis, D.: Domain constants of injectivity. - University of Michigan thesis, 1988.

[D] DUREN, P.L.: Univalent functions. - Springer-Verlag, Berlin—Heidelberg-New York, 1983.

K] KUuNAU, R.: Eine geometrische Eigenschaft quasikonformer Kreise. - Rev. Roumaine
Math. Pures Appl. 32, 1987, 909-913.

[L] LeHTO, O.: Univalent functions and Teichmiiller spaces. - Springer-Verlag, New York—
Berlin—Heidelberg-London—Paris—Tokyo, 1986.

V] LeaTo, O., and K.I. VIRTANEN: Quasiconformal mappings in the plane. - Springer-
Verlag, Berlin-Heidelberg—New York, 1973.

[N] NEHARI, Z.: Conformal mapping. - McGraw-Hill, New York—Toronto-London, 1952.

[P] POMMERENKE, CH.: Univalent functions. - Vandenhoeck & Ruprecht, Gottingen, 1975.

University of Michigan Technische Universitat Berlin

Department of Mathematics Department of Mathematics

Ann Arbor, MI 48109-1003 D-1000 Berlin 12

U.S.A. Federal Republic of Germany

Received 14 November 1988



