CIRCULAR DISTORTION OF CURVES AND QUASICIRCLES

F.W. Gehring ${ }^{1}$ and Ch. Pommerenke

1. Introduction

Suppose that C is a Jordan curve in the extended complex plane $\overline{\mathbf{C}}=\mathbf{C} \cup$ $\{\infty\}$. Then C is a K-quasicircle, $1 \leq K<\infty$, if it is the image of the unit circle under a K-quasiconformal self mapping f of $\overline{\mathbf{C}}$. Thus C is a 1 -quasicircle if and only if C is a circle or line [A], [LV].

Next we say that C has circular distortion $c, 1 \leq c<\infty$, if for each Möbius transformation φ, either $\varphi(C)$ separates the boundary circles of an annulus

$$
\begin{equation*}
A=A\left(z_{0} ; r, s\right)=\left\{z \in \mathbf{C}: r \leq\left|z-z_{0}\right| \leq s\right\} \tag{1.1}
\end{equation*}
$$

with radii ratio $s / r=c$ or $\varphi(C)$ contains the point ∞. The circular distortion is a Möbius invariant which measures how far a Jordan curve differs from being a circle or line. In particular, C has circular distortion 1 if and only if it is a circle or line.

Kühnau recently established the following relation between these two concepts [K].
1.2. Theorem. If C is a K-quasicircle in $\overline{\mathbf{C}}$, then C has circular distortion c where c depends only on K.

Kühnau found sharp bounds for the constant c in terms of K and asked if the converse of Theorem 1.2 is true, that is, if each curve C with circular distortion c is a K-quasicircle where K depends only on c.

In Section 2 of this paper we consider two classes of curves for which this is the case-convex curves with arbitrary circular distortion and arbitrary curves with circular distortion $c<\sqrt{2}$. Then in Section 3 we present an example to show that a curve with circular distortion $c \geq 5$ need not be a quasicircle.

[^0]
2. Two classes of quasicircles

For each $z_{0} \in \mathbf{C}$ and $0<r<\infty$ we let

$$
B\left(z_{0}, r\right)=\left\{z \in \mathbf{C}:\left|z-z_{0}\right|<r\right\}, \quad B^{*}\left(z_{0}, r\right)=\left\{z \in \overline{\mathbf{C}}:\left|z-z_{0}\right|>r\right\}
$$

We begin by noting that each convex curve in \mathbf{C} is a K-quasicircle where K depends only on its circular distortion. (See also [C], [L].)
2.1. Theorem. If C is a convex curve which separates the boundary circles of an annulus A with radii ratio c, then C is a K-quasicircle where

$$
\begin{equation*}
K=\frac{1}{4}\left(\sqrt{c^{2}+3}+\sqrt{c^{2}-1}\right)^{2} \tag{2.2}
\end{equation*}
$$

Proof. By performing a preliminary similarity mapping, we may assume that $A=A(0 ; 1, c)$. Then for each $\theta \in[0,2 \pi]$ there exists a unique point $z=r e^{i \theta} \in C$ where $r=r(\theta) \in[1, c]$. Fix θ and let E denote the double cone bounded by $\partial B(0,1)$ and the two tangent rays drawn from $\partial B(0,1)$ through $z=r(\theta) e^{i \theta}$ to ∞. Because C is convex with $B(0,1) \subset \operatorname{int}(C) \subset \bar{B}(0, c), C \backslash\{z\}$ lies in $\mathbf{C} \backslash E$ and

$$
\begin{equation*}
\limsup _{\theta^{\prime} \rightarrow \theta} \frac{\left|r\left(\theta^{\prime}\right)-r(\theta)\right|}{\left|\theta^{\prime}-\theta\right|} \leq \sqrt{c^{2}-1} r(\theta) \tag{2.3}
\end{equation*}
$$

Now let

$$
f\left(s e^{i \theta}\right)=s r(\theta) e^{i \theta}
$$

for $0 \leq s<\infty, 0 \leq \theta \leq 2 \pi$ and $f(\infty)=\infty$. Then $f: \overline{\mathbf{C}} \rightarrow \overline{\mathbf{C}}$ is a homeomorphism which maps the unit circle onto C. Next (2.3) implies that f satisfies a local Lipschitz condition at each point of \mathbf{C} and hence is differentiable almost everywhere in \mathbf{C}. Let $\partial_{\alpha} f$ denote the directional derivative of f in the direction α. Then an elementary calculation and (2.3) imply that

$$
\max _{\alpha}\left|\partial_{\alpha} f(z)\right| \leq K \min _{\alpha}\left|\partial_{\alpha} f(z)\right|
$$

at each point where f is differentiable and hence that f is K-quasiconformal where K is as in (2.2).

If C is a Jordan curve with circular distortion c, then C is a circle or line and hence a quasicircle whenever $c=1$. We show next that C is a quasicircle whenever $c<\sqrt{2}$. Our proof is based on elementary classical properties of the exterior mapping function

$$
w=g(z)=z+\sum_{0}^{\infty} b_{j} z^{-j}
$$

2.4. Lemma. If g maps $B^{*}\left(z_{0}, s\right)$ conformally into $B^{*}\left(w_{0}, t\right)$, then

$$
\begin{equation*}
\left|b_{1}\right| \leq s^{2}-t^{2} \tag{2.5}
\end{equation*}
$$

Proof. Since the coefficient b_{1} is invariant under translations in the z - and w-planes, we may assume that $z_{0}=w_{0}=0$. Then

$$
h(z)=\frac{1}{s}\left(g(s z)+\frac{t^{2} e^{i \theta}}{g(s z)}\right)=z+\sum_{0}^{\infty} c_{j} z^{-j}
$$

maps $B^{*}(0,1)$ conformally into $\overline{\mathbf{C}}$,

$$
\left|b_{1}+t^{2} e^{i \theta}\right| s^{-2}=\left|c_{1}\right| \leq 1
$$

by the area theorem $[\mathrm{P}]$ and we obtain (2.5) by setting $\theta=\arg b_{1}$.
2.6. Lemma. If C is a Jordan curve which separates the boundary circles of an annulus A with radii ratio c and if g maps $B^{*}(0,1)$ onto $\operatorname{ext}(C)$, then

$$
\begin{equation*}
\left|b_{1}\right| \leq \frac{c^{2}-1}{c^{2}+1} \tag{2.7}
\end{equation*}
$$

Proof. Suppose that $A=A\left(w_{0} ; r, c r\right)$. Then g maps $B^{*}(0,1)$ conformally into $B^{*}\left(w_{0}, r\right)$ and hence

$$
\begin{equation*}
\left|b_{1}\right| \leq 1-r^{2} \tag{2.8}
\end{equation*}
$$

by Lemma 2.4. Next

$$
z=g^{-1}(w)=w+\sum_{0}^{\infty} c_{j} w^{-j}
$$

maps $B^{*}\left(w_{0}, c r\right)$ conformally into $B^{*}(0,1)$ and $c_{1}=-b_{1}$. Hence by Lemma 2.4

$$
\begin{equation*}
c^{-2}\left|b_{1}\right|=c^{-2}\left|c_{1}\right| \leq c^{-2}\left((c r)^{2}-1\right)=r^{2}-c^{-2} \tag{2.9}
\end{equation*}
$$

and (2.7) follows directly from adding (2.8) and (2.9).
2.10. Remark. The mapping

$$
g(z)=z+\frac{c-1}{c+1} \frac{1}{z}
$$

shows that one cannot replace the upper bound in (2.7) by anything less than $(c-1) /(c+1)$.
2.11. Theorem. If C is Jordan curve in $\overline{\mathbf{C}}$ with circular distortion c and if f maps $B(0,1)$ conformally onto a component of $\overline{\mathbf{C}} \backslash C$, then

$$
\begin{equation*}
\left|S_{f}(z)\right|\left(1-|z|^{2}\right)^{2} \leq 6 \frac{c^{2}-1}{c^{2}+1} \tag{2.12}
\end{equation*}
$$

for each z in $B(0,1)$, where S_{f} denotes the Schwarzian derivative of f.
Proof. Fix $z_{0} \in B(0,1)$; since the left hand side of (2.12) is continuous in z_{0} we may assume that $f\left(z_{0}\right) \neq \infty$. Let

$$
\varphi(z)=\frac{z+z_{0}}{1+\bar{z}_{0} z}, \quad \psi(w)=\frac{\left(1-\left|z_{0}\right|^{2}\right) f^{\prime}\left(z_{0}\right)}{w-f\left(z_{0}\right)}
$$

and set $g(z)=\psi \circ f \circ \varphi(1 / z)$ in $B^{*}(0,1)$. Then by a well known computation,

$$
\begin{equation*}
g(z)=z+\sum_{0}^{\infty} b_{j} z^{-j}, \quad b_{1}=-\frac{1}{6} S_{f}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)^{2} \tag{2.13}
\end{equation*}
$$

[D], [N]. Next g maps $B^{*}(0,1)$ onto $\operatorname{ext}(\psi(C))$ and $\psi(C)$ does not contain ∞. Thus $\psi(C)$ separates the boundary circles of an annulus with radii ratio c and we obtain (2.12) for $z=z_{0}$ from (2.13) and (2.7).
2.14. Theorem. If C is a Jordan curve in $\overline{\mathbf{C}}$ with circular distortion $c<\sqrt{2}$, then C is a K-quasicircle where K depends only on c.

Proof. If f is a conformal mapping of $B(0,1)$ onto a component of $\overline{\mathbf{C}} \backslash C$, then

$$
\left|S_{f}(z)\right|\left(1-|z|^{2}\right)^{2} \leq 6 \frac{c^{2}-1}{c^{2}+1}=b<2
$$

for $z \in B(0,1)$ by Theorem 2.11. Hence by the Ahlfors-Weill theorem, f has a K-quasiconformal extension \tilde{f} to $\overline{\mathbf{C}}$ where K depends only on b and hence on c [AW], [L].

3. A geometric interpretation for circular distortion

Finally we show that there exists a Jordan curve C with circular distortion 5 which is not a quasicircle. We shall make use of the following alternative characterization for circular distortion. For the sake of simplicity, we restrict ourselves to the case where C passes through ∞.
3.1. Theorem. Suppose that C is a Jordan curve in $\overline{\mathbf{C}}$ which contains ∞. Then C has circular distortion c if and only if there exists a constant b, $2 \leq b<\infty$, such that for each point w_{1} in one component of $\overline{\mathbf{C}} \backslash C$ there exists a point w_{2} in the other component with

$$
\begin{equation*}
b \operatorname{dist}\left(w_{1}, C\right) \geq\left|w_{1}-w_{2}\right|, \quad b \operatorname{dist}\left(w_{2}, C\right) \geq\left|w_{1}-w_{2}\right| \tag{3.2}
\end{equation*}
$$

Here $b=c+1$ in the necessity and $c=b^{2}+b-1$ in the sufficiency.

Proof. For the necessity, choose w_{1} in a component of $\overline{\mathbf{C}} \backslash C$ and let φ be a Möbius transformation for which $\varphi\left(w_{1}\right)=\infty$. Since C has circular distortion $c, \varphi(C)$ separates the boundary circles of an annulus $A=A\left(z_{0} ; r, c r\right)$. By a preliminary change of variables we may assume that $z_{0}=0$. Then $w_{2}=\varphi^{-1}(0)$ lies in the other component of $\overline{\mathbf{C}} \backslash C$.

Let C_{1} and C_{2} denote the images under φ^{-1} of the outer and inner boundary circles of A, respectively. Next for $j=1,2$ let z_{j} and z_{j}^{\prime} denote the points where C_{j} meets the extended line L through w_{1} and w_{2}, labeled so that z_{j} lies in the segment $\left[w_{1}, w_{2}\right]$, and set $r_{j}=\left|z_{j}-w_{j}\right|$. Then by the Möbius invariance of the cross ratio,

$$
\begin{equation*}
\frac{\left|z-w_{1}\right|}{\left|z-w_{2}\right|}=\frac{\left|z_{j}-w_{1}\right|}{\left|z_{j}-w_{2}\right|} \quad \text { for } z \in C_{j}, j=1,2 \tag{3.3}
\end{equation*}
$$

If $\infty \notin C_{1}$, then C_{1} is a circle which does not separate w_{2} from ∞,

$$
\left|z_{1}^{\prime}-w_{1}\right| \leq\left|z_{1}^{\prime}-w_{2}\right|
$$

and we obtain

$$
\begin{equation*}
\left|z_{1}-w_{1}\right| \leq\left|z_{1}-w_{2}\right| \tag{3.4}
\end{equation*}
$$

from (3.3) with $j=1$ and $z=z_{1}^{\prime}$. If $\infty \in C_{1}$, then $z_{1}^{\prime}=\infty$ and (3.4) again follows from (3.3). Interchanging the roles of C_{1} and C_{2} in the above discussion then shows that

$$
\begin{equation*}
\left|z_{2}-w_{2}\right| \leq\left|z_{2}-w_{1}\right| \tag{3.5}
\end{equation*}
$$

Next

$$
\begin{equation*}
\frac{\left|z_{1}-w_{2}\right|\left|z_{2}-w_{1}\right|}{\left|z_{1}-w_{1}\right|\left|z_{2}-w_{2}\right|}=\frac{\left|\varphi\left(z_{1}\right)\right|}{\left|\varphi\left(z_{2}\right)\right|}=c \tag{3.6}
\end{equation*}
$$

and with (3.4) and (3.5) we obtain

$$
\left|z_{1}-w_{2}\right| \leq c\left|z_{1}-w_{1}\right| \quad\left|z_{2}-w_{1}\right| \leq c\left|z_{2}-w_{2}\right|
$$

whence

$$
\begin{equation*}
\left|w_{1}-w_{2}\right| \leq\left|z_{j}-w_{1}\right|+\left|z_{j}-w_{2}\right| \leq(c+1)\left|z_{j}-w_{j}\right|=(c+1) r_{j} \tag{3.7}
\end{equation*}
$$

for $\mathrm{j}=1,2$.

Finally (3.3) together with (3.4) and (3.5) implies that

$$
B\left(z_{j}, r_{j}\right) \subset \operatorname{int}\left(C_{j}\right) \subset \overline{\mathbf{C}} \backslash C
$$

and hence (3.2) follows from (3.7).
For the sufficiency, suppose that φ is any Möbius transformation for which $\varphi(C)$ does not contain ∞ and let $w_{1}=\varphi^{-1}(\infty)$. Then w_{1} lies in a component of $\overline{\mathbf{C}} \backslash C$. Let w_{2} denote the point in the other component of $\overline{\mathbf{C}} \backslash C$ for which (3.2) holds and set

$$
\psi(z)=\frac{w_{2}-w_{1}}{z-w_{1}}
$$

Then $\varphi \circ \psi^{-1}$ is a euclidean similarity and in order to show that $\varphi(C)$ separates the boundary circles of an annulus of radii ratio c, it suffices to consider the case where $\varphi=\psi$.

Now let $r=\left|w_{1}-w_{2}\right| / b$ and $s=b /\left(b^{2}-1\right)$. Then

$$
\varphi\left(B\left(w_{1}, r\right)\right)=B^{*}(0, b), \quad \varphi\left(B\left(w_{2}, r\right)\right)=B(b s, s)
$$

while (3.2) implies that

$$
C \subset \overline{\mathbf{C}} \backslash\left(B\left(w_{1}, r\right) \cup B\left(w_{2}, r\right)\right)
$$

Hence

$$
\varphi(C) \subset \varphi\left(\overline{\mathbf{C}} \backslash\left(B\left(w_{1}, r\right) \cup B\left(w_{2}, r\right)\right)\right) \subset A\left(b s ; s,\left(b^{2}+b-1\right) s\right)
$$

an annulus with radii ratio $b^{2}+b-1$.
3.8. Theorem. There exists a Jordan curve C in $\overline{\mathbf{C}}$ with circular distortion $c=5$ which is not a quasicircle.

Proof. For $j=1,2, \ldots$ let α_{j} and β_{j} denote the upper and lower semicircles $\alpha_{j}=\{z:|z-1|=2 j-1, \operatorname{Im}(z) \geq 0\}, \quad \beta_{j}=\{z:|z+1|=2 j-1, \operatorname{Im}(z) \leq 0\}$. Then

$$
\alpha_{j} \cap \beta_{k}= \begin{cases}\{0\} & \text { if } j=k=1 \tag{3.9}\\ \{2 j\} & \text { if } j=k-1, \\ \{-2 j+2\} & \text { if } j=k+1 \\ \emptyset & \text { otherwise. }\end{cases}
$$

Hence

$$
\gamma_{1}=\bigcup_{1}^{\infty}\left(\alpha_{2 j-1} \cup \beta_{2 j}\right) \cup\{\infty\}, \quad \gamma_{2}=\bigcup_{1}^{\infty}\left(\alpha_{2 j} \cup \beta_{2 j-1}\right) \cup\{\infty\}
$$

are arcs which have only their endpoints $0, \infty$ in common and

$$
C=\gamma_{1} \cup \gamma_{2}=\bigcup_{1}^{\infty}\left(\alpha_{j} \cup \beta_{j}\right) \cup\{\infty\}
$$

is a Jordan curve.
Fix j and let $z_{1}=4 j-2$ and $z_{2}=4 j$. Then $z_{1} \in \gamma_{1}$ and $z_{2} \in \gamma_{2}, 0$ and ∞ are separated by z_{1} and z_{2} in C and

$$
\min \left(\operatorname{dia}\left(C_{1}\right), \operatorname{dia}\left(C_{2}\right)\right) \geq 4 j=2 j\left|z_{1}-z_{2}\right|
$$

where C_{1} and C_{2} are the components of $C \backslash\left\{z_{1}, z_{2}\right\}$. Hence C is not a quasicircle by Ahlfors' well known criterion [A].

Suppose that w_{1} is a point in a component of $\overline{\mathbf{C}} \backslash C$; by replacing w_{1} by $-w_{1}$ we may assume without loss of generality that $\operatorname{Im}\left(w_{1}\right) \geq 0$. Next choose $j=1,2, \ldots$ so that

$$
2 j-2 \leq\left|w_{1}-1\right|<2 j
$$

and let $w_{2}=2 w_{0}-w_{1}$, where

$$
w_{0}= \begin{cases}1+(2 j-1)\left(w_{1}-1\right) /\left|w_{1}-1\right| & \text { if } w_{1} \neq 1 \tag{3.10}\\ 2 & \text { if } w_{1}=1\end{cases}
$$

Then $w_{0} \in \alpha_{j}$. If $z \in \alpha_{k}$, then

$$
\begin{equation*}
\left|w_{1}-z\right| \geq\left|\left|w_{1}-1\right|-(2 k-1)\right| \geq\left|\left|w_{1}-1\right|-(2 j-1)\right|=\left|w_{1}-w_{0}\right| \tag{3.11}
\end{equation*}
$$

Similarly if $z \in \beta_{k}$ with endpoints $z_{k}=-2 k, z_{k}^{\prime}=2 k-2$, then

$$
\left|w_{1}-z\right| \geq \min \left(\left|w_{1}-z_{k}\right|,\left|w_{1}-z_{k}^{\prime}\right|\right), \quad z_{k}, z_{k}^{\prime} \in \bigcup_{1}^{\infty} \alpha_{l}
$$

and we obtain $\left|w_{1}-z\right| \geq\left|w_{1}-w_{0}\right|$ from (3.11). Thus

$$
\operatorname{dist}\left(w_{1}, C\right)=\left|w_{1}-w_{0}\right|
$$

A similar argument shows that

$$
\operatorname{dist}\left(w_{2}, C\right)=\left|w_{2}-w_{0}\right|
$$

and we conclude that

$$
2 \operatorname{dist}\left(w_{1}, C\right)=2 \operatorname{dist}\left(w_{2}, C\right)=\left|w_{1}-w_{2}\right|
$$

Finally let $z_{k}=1+i\left|w_{k}-1\right|$ for $k=0,1,2$. Then $U=\bar{B}\left(z_{0}, 1\right)$ is a closed neighborhood of $z_{0} \in \alpha_{j}$ and $U \backslash C$ has exactly two components, one of which contains z_{1} and the other z_{2}. Since for $j=1,2$ the arc

$$
\left\{z:|z-1|=\left|w_{j}-1\right|, \operatorname{Im}(z) \geq 0\right\}
$$

joins z_{j} to w_{j} in $\overline{\mathbf{C}} \backslash C, w_{1}$ and w_{2} lie in different components of $\overline{\mathbf{C}} \backslash C$. Thus C satisfies the hypotheses of Theorem 3.1 with $b=2$ and hence has circular distortion 5 .

4. Concluding remarks

Remark 4.1. Theorems 2.14 and 3.8 show that a Jordan curve with circular distortion c must be a quasicircle if $c<\sqrt{2}$ and need not be if $c \geq 5$. The bound $\sqrt{2}$ is not sharp. Indeed a slightly different argument yields the same conclusion for

$$
c<\frac{\sqrt{6}(1+\sqrt{37})}{12}=1.4457 \ldots
$$

Remark 4.2. One can use Theorem 3.1 to construct a Jordan curve with finite circular distortion which has positive area (or two dimensional measure) and hence is certainly not a quasicircle.

We indicate the construction of such a curve C in Figure 1 which was kindly drawn for us by U . Graeber. At the j th stage of the construction, $j=1,2, \ldots$, we have $4^{j-1} j$ th generation squares $Q_{j, k}$ of sidelength $a_{j}=2^{-j}(j+1) / j$. Next in each square $Q_{j, k}$ we draw four $(j+1)$ th generation squares $Q_{j+1, l}$ of sidelength a_{j+1} leaving three vertical and three horizontal corridors of width $b_{j}=2^{-j} / 3 j(j+1)$. In these corridors we draw the j th generation arcs as in Figure 1. This figure contains two generations of squares and arcs.

The intersection E of all generations of squares has area $\frac{1}{4}$. The curve C is the union of all generations of arcs together with the set E and two halflines connecting the two endpoints in $\partial Q_{1,1}$ of first generation arcs to the point ∞. Then C is a Jordan curve with positive area and it follows from Theorem 3.1 that C has finite circular distortion.

Figure 1.

References

[A] Ahlfors, L.V.: Quasiconformal reflections. - Acta Math. 109, 1963, 291-301.
[AW] Ahlfors, L.V., and G. Weill: A uniqueness theorem for Beltrami equations. - Proc. Amer. Math. Soc. 13, 1962, 975-978.
[C] Calvis, D.: Domain constants of injectivity. - University of Michigan thesis, 1988.
[D] Duren, P.L.: Univalent functions. - Springer-Verlag, Berlin-Heidelberg-New York, 1983.
[K] Kühnau, R.: Eine geometrische Eigenschaft quasikonformer Kreise. - Rev. Roumaine Math. Pures Appl. 32, 1987, 909-913.
[L] Lehto, O.: Univalent functions and Teichmüller spaces. - Springer-Verlag, New York-Berlin-Heidelberg-London-Paris-Tokyo, 1986.
[LV] Lehto, O., and K.I. Virtanen: Quasiconformal mappings in the plane. - SpringerVerlag, Berlin-Heidelberg-New York, 1973.
[N] Nehari, Z.: Conformal mapping. - McGraw-Hill, New York-Toronto-London, 1952.
[P] Pommerenke, Ch.: Univalent functions. - Vandenhoeck \& Ruprecht, Göttingen, 1975.

University of Michigan
Department of Mathematics
Ann Arbor, MI 48109-1003
U.S.A.

Technische Universität Berlin Department of Mathematics D-1000 Berlin 12
Federal Republic of Germany

[^0]: 1 This research was supported in part by grants from the Humboldt Foundation and the U.S. National Science Foundation.

