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CHARACTERISTIC PROPERTIES OF
THE NEVANLINNA CLASS N AND
THE HARDY CLASSES H? AND H}

Z. Paviéevié

For a measurable function u(z) > 0 defined in the unit disc D: |z| < 1, we
introduce a characteristic function which in the case of a meromorphic function
becomes its Nevanlinna characteristic function in the Ahlfors—Shimizu form. In
terms of new characteristic functions we prove necessary and sufficient conditions
for a function to belong to the Nevanlinna class N, to the Hardy classes H?,
0 < p < +00, and to the hyperbolic Hardy classes H}, 0 < p < 400.

1. For a measurable function u(z) > 0 defined in the unit disc D: |z| <1 on
the complex z-plane, we introduce the characteristic function P(r,u) in the form

14
P(r,u):/ (tu)dt 0<r<l,
0

where
S(t,u):% //(u(z))zdxdy, z=zx+1y, 0<t <1,
|l<t
and put P(1,u) = lim,_,; P(r,u).

If f(z) is a meromorphic function in D and

) = bl A+ )] T 0<p < +oo,

then P(r, ff) = L1pT,(r, f), where Ty(r, f) is the characteristic for the meromor-
phic function f(z) introduced by S. Yamashita [4]; for p = 2 we get Ta(r, f) =
T(r, f), the Nevanlinna characteristic function of f(z) in the Ahlfors—Shimizu
form.

Lemma 1. Let S(r,u) < +oo for any r, 0 <r < 1. Then

P(r,u) = // u(z) dx dy, z =z + 1y,

z|<r

forany r, 0 <r <1.
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Proof. First suppose that 0 < r < 1. Since S(r,u) < oo for 0 <r <1, we
get

S(r,u):] tS1(t,u)dt,
0

where
(1) Si(t,u) = %/M (u(teio))zdg

For any f € L(0,a), a > 0,

2) /Oa(i-/ozf(t)dt> dx=/0af(t)1n§dt

(see, for instance, [8, p. 59]). Putting f(t) = tS1(¢,u) in (2) and using (1), we get

P(r,u):/o S(Z“)d —/Ortsl(t,u)lnfdt

=é/rtlnt(/[; (u(te'?)) d6> dt = / /“ u(te®))?In tdtd9

//(u(z) ln—dxdy, z=te' =z +iy.

z|<r

In the case r = 1, consider the characteristic function x(z) of the disc D,: |z| <

r<l,ie.,
() = 1, if|z|<r,
Xr#I=N0, ifr<|z <1
Then
P(r,u) = // u(z) n—dxdy, 0<r<l.
|z]<1

Since 0 < xr(2)In(r/|z]) T1In1/|2| as » — 1 —0, the conclusion of Lemma 1 holds
in the case r = 1 by a well-known Fatou theorem.

Remark. In the case u(z) = f#(z) If’(z)l(l + if(z)| )_ for a meromor-
phic function f(z) in D, Lemma 1 is proved by S. Yamashita ([3, Lemma 2.2]).

2. For the Green potential

1—
w(w) = n bk

|z|<1

dedy, z==z+1y, weD,

we proved in [2] the following lemma.
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Lemma 2. If w(w) is a Green potential in D, then
w(w) = La(l - |wl?), w e D.

3. Let pu(2z) = (2 4+ w)/(1 + wz), w € D is fixed, and wu,(z) =
u(pw(2))|ew(2)], obv1ously, uo(z) = u(z).

For a point ¢ = ¢ € I': |2/ = 1 and any §, 0 < § < 1, we consider two
tangents drawn at the point ¢ = e'? to the c1rcle Ts: |2] = 6 and denote by
A(6,6) the domain in D whose boundary consists of these two tangents and the
largest subarc on I's. Suppose that for any §, 0 < § < 1, there exists a set M(9)
on I' such that the linear measure M(6) = 2u and

A(8,6,u) = / / (W) dedy, ==z +iy,
A(8,8)

is finite or infinite for each 6, €' € M(6) (cf. [1]).

Lemma 3. Let u(z) > 0 be a measurable function in D. The following
assertions are equivalent:
(i) For any fixed 6§, 0 < é < 1, the function A(6,6,u) is a summable function of
the argument 6 on [0 2a);

(i1) f<1f(1 — |2]) (u(z)) dzdy < 400, z =z +1y;

(i) [ [P(l,uy)dédn < 400, w =€+ 1.
jw|<1

Proof. The equivalence of (i) and (ii) is proved by V.I. Gavrilov ([1, Theo-
rem 1, in which one must replace u(z) with (u(z))z]
To prove the equivalence of (ii) and (iil), we note that

1-—

dd = ;
u(1+|z £dn, w=¢&+m,

holds by Lemma 2. Hence, (ii) holds if and only if

CEIE g =

Changing the order of integration in (3), we see that (ii) holds if and only if

o L[ fuers

|w|<1 |z<1

df dn) dzdy < 4o0.

—Zw

dz dy) d¢ dn < +oo.
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Since In|(1 — zw)/(w — z)| = In|(1 - ®z)/(z — w)| for any z, w € D,

P(l,uw)=é- //(u(z))21n

|z]<1

1—wz
z—w

dz dy,

(4) holds if and only if

//P(l,uw) dé dn < 4o0.

lw|<1

4. For a meromorphic function f(z) defined in D, we put

) = PP+ £ 0<p< oo

Then 0 < f#(2) < +oo and f#(2) = +oo at the zeros and the poles of f(z).

Theorem 1. For a meromorphic function f(2) in D and for any p, 0 < p <
400, the following assertions are equivalent:
(i) For any fixed §, 0 < § < 1, the function A(9, 6, ff) is a summable function
of the argument 6 on [0,24];
(i1) ff(1—|z|)(ff(z))2do:dy<+oo, z=1z+1y;
|z]<1
(i) [ SP(L(fF)w)dédn < 400, w=E+in;
lw|<1
(iv) P, ff) < +oo;
(v) f(2) is a function of bounded type; i.e., the Nevanlinna characteristic T(r, f)
is bounded as r — 1.

Proof. According to ([4, Lemma 1]), the function f#(z), 0 < p < +o0, is
locally summable in D. Letting u(z) = ff(z) in our Lemma 3, we obtain the
equivalence of (i), (ii) and (iii). The equivalence of (ii), (iv) and (v) is proved by
S. Yamashita ([4, Theorem 1]).

Remark. In the case p = 2 the equivalence of (i), (ii), (iv) and (v) in
Theorem 1 is proved by V.I. Gavrilov ([1, Theorem 2]).

5. If f(z) is a holomorphic function in D, we put fx(z) = 1p|f(2)[P/>71|f'(2)],
0 <p<+oo. Then 0 < fy(2) < +oo and f;(z) = 400 at the zeros of f(z). If

p =2, then fy(z) = lf’(z)| (cf. [5]).

Theorem 2. For a holomorphic function f(z) in D and for any p, 0 < p <
+00, the following assertions are equivalent:
(1) For any fixed §, 0 < § < 1, the function A(6,$6, fy) is a summable function
of the argument 6 on [0, 24];
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(ii) | lf<1f(1—|z|)(f;(z))2d:vdy<+oo, 2=z +iy;

(iii) | If JP(L,(fp)w) dédn < +o0, w =&+ in;
w|<1

(iv) P(1,f;) < +oo;

(v) f(z) belongs to the Hardy class H?.

Proof. Since fy, 0 < p < 400, is a locally summable function in D (see [5]),
putting u(z) = f;(z) in Lemma 3 we obtain the equivalence of (i), (ii) and (iii)
in Theorem 2. The equivalence of (i), (ii), (iv) and (v) is proved by S. Yamashita
([5, Theorems 1 and 2]).

Remark. In the case p = 2 the equivalence of (i), (ii), (iv) and (v) is proved
by V.I. Gavrilov ([1, Theorem 3]).

6. Let B denote the class of holomorphic functions f(z) in D for which
|f(z)] < 1in D. For a function f(z) € B, let f"(z) denote the hyperbolic
derivative of f(z), ie., f*(2) = [f'(2)|(1 - |f(z)|2)_1 Consider A(f(z)) =
Af) =-In(1 - |f(2)]).

Following S. Yamashita [6], we say that a function f(z) € B belongs to the
hyperbolic Hardy class HY, 0 < p < 400, if

2%

sup L_ (a(f(z)))p df < 400, z=re',
o<r<1 2t Jo

where o(f(z)) = 1In(1+|f(2)])/(1 - |£(2)])-

Theorem 3. For any function f(z) € B and for any p, 0 < p < 400, the
following assertions are equivalent:
(i) For any fixed §, 0 < § < 1, the function A(8,8,\(f)P~1/2f*) is a summable
function of the argument 8 on [0,24];
) [ (1= zDAF)" T (Fr(2))  dody < +00, z = T + iy;
|z]<1
(i) [ [P (1, (AMH)PD/2fR) ) dEdn < +oo, w = £ +in;
|w|<1
(iv) P(LAHP /2 ) < oo;
(v) f(z)e H}.

Proof. Since ( f(z))(p_l)/ 2 f*(2) is a locally summable function in D for any

p, 0 < p < +oo, putting u(z) = )\(f(z))(p_l)/th(z), 0 < p < +00, in Lemma 3,
we obtain the equivalence of (i), (ii) and (iii) in Theorem 3. The equivalence of (i),
(ii), (iv) and (v) in Theorem 3 is proved by S. Yamashita ([6, Theorems 1 and 4]).
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Lemma 4. Let P(1,u) < +o00. Then

(5) //(u(z)fda:dy:o(&;), r—1, z=z+iy.

|z]<r
Proof. By Lemma 1 and the condition P(1,u) < 400 we have

P(l,u) = lirn P(r,u) = l lim // u(z) )2ln le:n dy

|z|<r
- lmi Inr // u(z)) dx dy -|- = hm //(u(z) In —dx dy
ar—
|z|<r |z|<r
= é lin} Inr //(u(z)) de dy +P(1,u),

|z|<r
from which the assertion of Lemma 4 follows.

Remark. Since Inr ~ (r — 1) as r — 1, the assertion (5) may be rewritten

in the form
lini(r -1) //(u(z))zd:z: dy =0

|z|<r
when P(1,u) < +o0.
8. Conclusion. (i) Putting u(z) = ff(z), 0 < p < 400, in Lemma 4 we

obtain the following result: If f(z) is meromorphic in D and T(r, f) = O(1),
r — 1, then

1in}(r—1) //(ff(z))zdxdy=0, z =z +1y.
lz|<r
In the case p = 2 this result is mentioned in [7].
(ii) Putting u(z) = f5(2), 0 < p < +o0, in Lemma 4, we obtain a result of
S. Yamashita ([7, Theorem 3]): If f(z) belongs to the Hardy class H?, 0 < p <

400, then
//(f,f(z«'))zdwdy=0<1ir), r— 1.

|z|<r

(iii) Putting u(2) = ()\(f(z)))p_1 f"(2) in Lemma 4, we obtain the following
result: If f(z) belongs to the hyperbolic Hardy class HY, 0 < p < 400, then

//(/\(f))p_l(fh(z))2dx dy = o<1 i r), r— 1.
In the case p =1 this result is mentioned in [7].

|z|<r
I wish to express my gratitude to V.I. Gavrilov for his valuable advice.




The Nevanlinna class N and the Hardy classes HP and Hf 9

References

GaVRILOV, V.I.: A characteristic property of bounded type functions. - Vestnik Moscow
Univ. Ser. I Mat. Mekh. 3, 1974, 47-49 (Russian).

Paviéevié, 7.: An integral criterion for bounded type functions. - Mat. Vesnik 34, 1988,
291-294 (Russian).

YAMASHITA, S.: Functions of uniformly bounded characteristic. - Ann. Acad. Sci. Fenn.
Ser. A T Math. 7, 1982, 349-367.

YAMASHITA, S.: The meromorphic Hardy class is the Nevanlinna class. - J. Math. Anal.
Appl. 80, 1980, 298-304.

YAMASHITA, S.: Criteria for functions to be of Hardy class H?. - Proc. Amer. Math. Soc.
75, 1979, 69-72.

YAMASHITA, S.: Hyperbolic Hardy classes and hyperbolically Dirichlet finite functions. -
Hokkaido Math. J. 10, 1981, 709-722.

YAMASHITA, S.: Holomorphic functions and area integral. - Boll. Un. Mat. Ital. (6) 1-A,
115-120.

7ZYGMUND, A.: Trigonometric series, I. - Cambridge University Press, Cambridge, 1959.

University of Titograd

Institute of Mathematics and Physics
Cetinjski put b.b.

P. Fah 176

81000 Titograd

Yugoslavia

Received 22 November 1988



