CHARACTERISTIC PROPERTIES OF THE NEVANLINNA CLASS N AND THE HARDY CLASSES H^p AND H^p_h

Ž. Pavićević

For a measurable function $u(z) \geq 0$ defined in the unit disc D: |z| < 1, we introduce a characteristic function which in the case of a meromorphic function becomes its Nevanlinna characteristic function in the Ahlfors-Shimizu form. In terms of new characteristic functions we prove necessary and sufficient conditions for a function to belong to the Nevanlinna class N, to the Hardy classes H^p , $0 , and to the hyperbolic Hardy classes <math>H^p$, 0 .

1. For a measurable function $u(z) \ge 0$ defined in the unit disc D: |z| < 1 on the complex z-plane, we introduce the characteristic function $\mathbf{P}(r,u)$ in the form

$$\mathbf{P}(r, u) = \int_0^r \frac{S(t, u)}{t} dt, \qquad 0 < r < 1,$$

where

$$S(t, u) = \frac{1}{\bar{u}} \int_{|z| < t} \int (u(z))^2 dx dy, \qquad z = x + iy, \ 0 < t < 1,$$

and put $\mathbf{P}(1, u) = \lim_{r \to 1} \mathbf{P}(r, u)$.

If f(z) is a meromorphic function in D and

$$f_p^{\#}(z) = \frac{1}{2}p|f'(z)|^{p/2-1}|f'(z)|(1+|f(z)|^p)^{-1}, \ 0$$

then $\mathbf{P}(r, f_p^{\#}) = \frac{1}{2}pT_p(r, f)$, where $T_p(r, f)$ is the characteristic for the meromorphic function f(z) introduced by S. Yamashita [4]; for p = 2 we get $T_2(r, f) = T(r, f)$, the Nevanlinna characteristic function of f(z) in the Ahlfors-Shimizu form.

Lemma 1. Let $S(r,u) < +\infty$ for any r, 0 < r < 1. Then

$$\mathbf{P}(r,u) = \frac{1}{\bar{u}} \int_{|z| < r} \int \left(u(z) \right)^2 \ln \frac{r}{|z|} \, dx \, dy, \qquad z = x + iy,$$

for any r, $0 < r \le 1$.

Proof. First suppose that 0 < r < 1. Since $S(r,u) < +\infty$ for 0 < r < 1, we get

$$S(r,u) = \int_0^r t S_1(t,u) dt,$$

where

(1)
$$S_1(t,u) = \frac{1}{\overline{u}} \int_0^{2\overline{u}} \left(u(te^{i\theta}) \right)^2 d\theta.$$

For any $f \in L(0, a)$, a > 0,

(2)
$$\int_0^a \left(\frac{1}{x} \int_0^x f(t) dt\right) dx = \int_0^a f(t) \ln \frac{a}{t} dt$$

(see, for instance, [8, p. 59]). Putting $f(t) = tS_1(t, u)$ in (2) and using (1), we get

$$\mathbf{P}(r,u) = \int_0^r \frac{S(x,u)}{x} \, dx = \int_0^r t S_1(t,u) \ln \frac{r}{t} \, dt$$

$$= \frac{1}{\bar{u}} \int_0^r t \ln \frac{r}{t} \left(\int_0^{2\bar{u}} \left(u(te^{i\theta}) \right)^2 d\theta \right) dt = \frac{1}{\bar{u}} \int_0^r \int_0^{2\bar{u}} \left(u(te^{i\theta}) \right)^2 \ln \frac{r}{t} t \, dt \, d\theta$$

$$= \frac{1}{\bar{u}} \int_{|z| < r} \int \left(u(z) \right)^2 \ln \frac{r}{|z|} \, dx \, dy, \qquad z = te^{i\theta} = x + iy.$$

In the case r = 1, consider the characteristic function $\chi_r(z)$ of the disc D_r : |z| < r < 1, i.e.,

$$\chi_r(z) = \begin{cases} 1, & \text{if } |z| < r, \\ 0, & \text{if } r \le |z| < 1. \end{cases}$$

Then

$$\mathbf{P}(r,u) = \frac{1}{\bar{u}} \int_{|z| < 1} \int \left(u(z) \right)^2 \ln \frac{r}{|z|} \, dx \, dy, \quad 0 < r < 1.$$

Since $0 \le \chi_r(z) \ln(r/|z|) \uparrow \ln 1/|z|$ as $r \to 1-0$, the conclusion of Lemma 1 holds in the case r = 1 by a well-known Fatou theorem.

Remark. In the case $u(z) = f^{\#}(z) = |f'(z)| (1 + |f(z)|^2)^{-1}$ for a meromorphic function f(z) in D, Lemma 1 is proved by S. Yamashita ([3, Lemma 2.2]).

2. For the Green potential

$$\omega(w) = \int\limits_{|z|<1} \int \ln \left| \frac{1 - \bar{w}z}{z - w} \right| dx \, dy, \quad z = x + iy, \quad w \in D,$$

we proved in [2] the following lemma.

Lemma 2. If $\omega(w)$ is a Green potential in D, then

$$\omega(w) = \frac{1}{2}\bar{u}(1 - |w|^2), \qquad w \in D.$$

3. Let $\varphi_w(z)=(z+w)/(1+\bar wz),\ w\in D$ is fixed, and $u_w(z)=u(\varphi_w(z))|\varphi_w'(z)|$, obviously, $u_0(z)=u(z)$.

For a point $\xi = e^{i\theta} \in \Gamma$: |z| = 1 and any δ , $0 < \delta < 1$, we consider two tangents drawn at the point $\xi = e^{i\theta}$ to the circle Γ_{δ} : $|z| = \delta$, and denote by $\Delta(\theta, \delta)$ the domain in D whose boundary consists of these two tangents and the largest subarc on Γ_{δ} . Suppose that for any δ , $0 < \delta < 1$, there exists a set $M(\delta)$ on Γ such that the linear measure $M(\delta) = 2\bar{u}$ and

$$A(\theta, \delta, u) = \int_{\Delta(\theta, \delta)} \int (u(z))^2 dx dy, \qquad z = x + iy,$$

is finite or infinite for each θ , $e^{i\theta} \in M(\delta)$ (cf. [1]).

Lemma 3. Let $u(z) \ge 0$ be a measurable function in D. The following assertions are equivalent:

- (i) For any fixed δ , $0 < \delta < 1$, the function $A(\theta, \delta, u)$ is a summable function of the argument θ on $[0, 2\bar{u}]$;
- the argument θ on $[0, 2\overline{u}]$; (ii) $\int\limits_{|z|<1} \int (1-|z|) (u(z))^2 dx dy < +\infty, \ z = x + iy;$
- (iii) $\int_{|w|<1}^{|z|} \int \mathbf{P}(1, u_w) \, d\xi \, d\eta < +\infty, \ w = \xi + i\eta.$

Proof. The equivalence of (i) and (ii) is proved by V.I. Gavrilov ([1, Theorem 1, in which one must replace u(z) with $(u(z))^2$].

To prove the equivalence of (ii) and (iii), we note that

$$1 - |z| = \frac{2}{\bar{u}(1+|z|)} \int_{|w|<1} \int \ln \left| \frac{1 - w\bar{z}}{w - z} \right| d\xi d\eta, \quad w = \xi + i\eta,$$

holds by Lemma 2. Hence, (ii) holds if and only if

(3)
$$\int_{|z|<1} \int \frac{2(u(z))^2}{\bar{u}(1+|z|)} \left(\int_{|w|<1} \int \ln \left| \frac{1-w\bar{z}}{w-z} \right| d\xi d\eta \right) dx dy < +\infty.$$

Changing the order of integration in (3), we see that (ii) holds if and only if

(4)
$$\frac{1}{\bar{u}} \int_{|w|<1} \iint \left(\int_{|z|<1} \int (u(z))^2 \ln \left| \frac{1-\bar{z}w}{w-z} \right| dx dy \right) d\xi d\eta < +\infty.$$

Since $\ln |(1-\bar{z}w)/(w-z)| = \ln |(1-\bar{w}z)/(z-w)|$ for any $z, w \in D$,

$$\mathbf{P}(1, u_w) = \frac{1}{\bar{u}} \int_{|z| < 1} \int \left(u(z) \right)^2 \ln \left| \frac{1 - \bar{w}z}{z - w} \right| dx \, dy,$$

(4) holds if and only if

$$\int\limits_{|w|<1}\int \mathbf{P}(1,u_w)\,d\xi\,d\eta<+\infty.$$

4. For a meromorphic function f(z) defined in D, we put

$$f_p^{\#}(z) = \frac{1}{2}p|f(z)|^{p/2-1}|f'(z)|(1+|f(z)|^p)^{-1}, \quad 0$$

Then $0 \le f_p^{\#}(z) \le +\infty$ and $f_p^{\#}(z) = +\infty$ at the zeros and the poles of f(z).

Theorem 1. For a meromorphic function f(z) in D and for any p, 0 , the following assertions are equivalent:

- (i) For any fixed δ , $0 < \delta < 1$, the function $A(\theta, \delta, f_p^{\#})$ is a summable function of the argument θ on $[0, 2\bar{u}]$;
- of the argument θ on $[0, 2\bar{u}]$; (ii) $\int_{|z|<1} \int (1-|z|) (f_p^{\#}(z))^2 dx dy < +\infty, z = x + iy;$
- (iii) $\int_{|w|<1}^{\infty} \int \mathbf{P}(1, (f_p^{\#})_w) d\xi d\eta < +\infty, \ w = \xi + i\eta;$
- (iv) $\mathbf{P}(1, f_p^{\#}) < +\infty;$
- (v) f(z) is a function of bounded type; i.e., the Nevanlinna characteristic T(r, f) is bounded as $r \to 1$.

Proof. According to ([4, Lemma 1]), the function $f_p^{\#}(z)$, 0 , is locally summable in <math>D. Letting $u(z) = f_p^{\#}(z)$ in our Lemma 3, we obtain the equivalence of (i), (ii) and (iii). The equivalence of (ii), (iv) and (v) is proved by S. Yamashita ([4, Theorem 1]).

Remark. In the case p = 2 the equivalence of (i), (ii), (iv) and (v) in Theorem 1 is proved by V.I. Gavrilov ([1, Theorem 2]).

5. If f(z) is a holomorphic function in D, we put $f_p^*(z) = \frac{1}{2}p|f(z)|^{p/2-1}|f'(z)|$, $0 . Then <math>0 \le f_p^*(z) \le +\infty$ and $f_p^*(z) = +\infty$ at the zeros of f(z). If p = 2, then $f_p^*(z) = |f'(z)|$ (cf. [5]).

Theorem 2. For a holomorphic function f(z) in D and for any p, 0 , the following assertions are equivalent:

(i) For any fixed δ , $0 < \delta < 1$, the function $A(\theta, \delta, f_p^*)$ is a summable function of the argument θ on $[0, 2\bar{u}]$;

(ii)
$$\int_{|z|<1} \int (1-|z|) (f_p^*(z))^2 dx dy < +\infty, \ z = x + iy;$$

(iii)
$$\int_{|w|<1}^{|z|<1} \mathbf{P}(1, (f_p^*)_w) d\xi d\eta < +\infty, \ w = \xi + i\eta;$$

- (iv) $\mathbf{P}(1, f_p^*) < +\infty$;
- (v) f(z) belongs to the Hardy class H^p .

Proof. Since f_p^* , 0 , is a locally summable function in <math>D (see [5]), putting $u(z) = f_p^*(z)$ in Lemma 3 we obtain the equivalence of (i), (ii) and (iii) in Theorem 2. The equivalence of (i), (ii), (iv) and (v) is proved by S. Yamashita ([5, Theorems 1 and 2]).

Remark. In the case p=2 the equivalence of (i), (ii), (iv) and (v) is proved by V.I. Gavrilov ([1, Theorem 3]).

6. Let B denote the class of holomorphic functions f(z) in D for which |f(z)| < 1 in D. For a function $f(z) \in B$, let $f^h(z)$ denote the hyperbolic derivative of f(z), i.e., $f^h(z) = |f'(z)|(1-|f(z)|^2)^{-1}$. Consider $\lambda(f(z)) =$ $\lambda(f) = -\ln(1 - |f(z)|).$

Following S. Yamashita [6], we say that a function $f(z) \in B$ belongs to the hyperbolic Hardy class H_h^p , 0 , if

$$\sup_{0 < r < 1} \frac{1}{2\bar{u}} \int_0^{2\bar{u}} \left(\sigma \big(f(z) \big) \right)^p d\theta < +\infty, \quad z = re^{i\theta},$$

where $\sigma(f(z)) = \frac{1}{2} \ln(1 + |f(z)|) / (1 - |f(z)|)$.

Theorem 3. For any function $f(z) \in B$ and for any p, 0 , thefollowing assertions are equivalent:

- (i) For any fixed δ , $0 < \delta < 1$, the function $A(\theta, \delta, \lambda(f)^{(p-1)/2} f^h)$ is a summable
- function of the argument θ on $[0, 2\bar{u}]$; (ii) $\int_{|z| < 1} \int (1 |z|) \lambda (f(z))^{p-1} (f^h(z))^2 dx dy < +\infty, z = x + iy;$
- (iii) $\int_{|w|<1} \mathbf{P} \left(1, \left(\lambda(f)^{(p-1)/2} f^h \right)_w \right) d\xi d\eta < +\infty, \ w = \xi + i\eta;$
- (iv) $\mathbf{P}(1, \lambda(f)^{(p-1)/2} f^h) < +\infty;$
- (v) $f(z) \in H_h^p$.

Proof. Since $(f(z))^{(p-1)/2}f^h(z)$ is a locally summable function in D for any $p,~0 , putting <math>u(z) = \lambda \left(f(z)\right)^{(p-1)/2} f^h(z),~0 , in Lemma 3,$ we obtain the equivalence of (i), (ii) and (iii) in Theorem 3. The equivalence of (i), (ii), (iv) and (v) in Theorem 3 is proved by S. Yamashita ([6, Theorems 1 and 4]). **Lemma 4.** Let $P(1, u) < +\infty$. Then

(5)
$$\int\limits_{|z| < r} \int \left(u(z) \right)^2 dx \, dy = o\left(\frac{1}{\ln r}\right), \quad r \to 1, \ z = x + iy.$$

Proof. By Lemma 1 and the condition $P(1,u) < +\infty$ we have

$$\mathbf{P}(1, u) = \lim_{r \to 1} \mathbf{P}(r, u) = \frac{1}{\bar{u}} \lim_{r \to 1} \int_{|z| < r} \int (u(z))^2 \ln \frac{r}{|z|} dx dy$$

$$= \frac{1}{\bar{u}} \lim_{r \to 1} \ln r \int_{|z| < r} \int (u(z))^2 dx dy + \frac{1}{\bar{u}} \lim_{r \to 1} \int_{|z| < r} \int (u(z))^2 \ln \frac{1}{|z|} dx dy$$

$$= \frac{1}{\bar{u}} \lim_{r \to 1} \ln r \int_{|z| < r} \int (u(z))^2 dx dy + \mathbf{P}(1, u),$$

from which the assertion of Lemma 4 follows.

Remark. Since $\ln r \sim (r-1)$ as $r \to 1$, the assertion (5) may be rewritten in the form

$$\lim_{r \to 1} (r-1) \int\limits_{|z| < r} \int \left(u(z) \right)^2 dx \, dy = 0$$

when $\mathbf{P}(1,u) < +\infty$.

8. Conclusion. (i) Putting $u(z)=f_p^\#(z),\ 0< p<+\infty,$ in Lemma 4 we obtain the following result: If f(z) is meromorphic in D and T(r,f)=O(1), $r\to 1$, then

$$\lim_{r \to 1} (r - 1) \int_{|z| < r} \int \left(f_p^{\#}(z) \right)^2 dx \, dy = 0, \qquad z = x + iy.$$

In the case p=2 this result is mentioned in [7].

(ii) Putting $u(z) = f_p^*(z)$, 0 , in Lemma 4, we obtain a result of S. Yamashita ([7, Theorem 3]): If <math>f(z) belongs to the Hardy class H^p , 0 , then

$$\int\limits_{|z| < r} \int \left(f_p^*(z) \right)^2 dx \, dy = o\left(\frac{1}{1-r}\right), \qquad r \to 1.$$

(iii) Putting $u(z) = (\lambda(f(z)))^{p-1} f^h(z)$ in Lemma 4, we obtain the following result: If f(z) belongs to the hyperbolic Hardy class H_h^p , 0 , then

$$\int_{|z| \le r} \int \left(\lambda(f)\right)^{p-1} \left(f^h(z)\right)^2 dx \, dy = o\left(\frac{1}{1-r}\right), \qquad r \to 1.$$

In the case p = 1 this result is mentioned in [7].

I wish to express my gratitude to V.I. Gavrilov for his valuable advice.

References

- [1] GAVRILOV, V.I.: A characteristic property of bounded type functions. Vestnik Moscow Univ. Ser. I Mat. Mekh. 3, 1974, 47-49 (Russian).
- [2] PAVIĆEVIĆ, Ž.: An integral criterion for bounded type functions. Mat. Vesnik 3-4, 1988, 291-294 (Russian).
- [3] YAMASHITA, S.: Functions of uniformly bounded characteristic. Ann. Acad. Sci. Fenn. Ser. A I Math. 7, 1982, 349–367.
- [4] Yamashita, S.: The meromorphic Hardy class is the Nevanlinna class. J. Math. Anal. Appl. 80, 1980, 298-304.
- [5] YAMASHITA, S.: Criteria for functions to be of Hardy class H^p . Proc. Amer. Math. Soc. 75, 1979, 69–72.
- YAMASHITA, S.: Hyperbolic Hardy classes and hyperbolically Dirichlet finite functions. -Hokkaido Math. J. 10, 1981, 709-722.
- [7] YAMASHITA, S.: Holomorphic functions and area integral. Boll. Un. Mat. Ital. (6) 1-A, 115-120.
- [8] ZYGMUND, A.: Trigonometric series, I. Cambridge University Press, Cambridge, 1959.

University of Titograd Institute of Mathematics and Physics Cetinjski put b.b. P. Fah 176 81000 Titograd Yugoslavia

Received 22 November 1988