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1. Introduction

disc of the complex plane endowed with metric p

dp-#
If I is a discrete group preserving A and a € L is not fixed by any non-identity
transform of I, then we may construct the Dirichlet region centered at a, denoted

Do, as follows

Do: {z e A: p(z,o) < p(r,7(a)) for all7 € f \/}.

A point € e äA is said to be represented on the boundary of D" if. there exists

z € f with 7(o e 7Do. It is well known [1] that every parabolic fixed point
and every ordinary point in 0A must be represented on the boundary of every

Dirichlet region and we are led to define the Dirichlet set, denoted D, as follows

O: {€ e äA: for each a€ Ä, thereexists 7 € f with r(O e 6p"}.

At the other end of the spectrum are horocyclic limit points. A point ( e 0A
is said to be a horocyclic limit point for I if the orbit of one, and hence every,

point of Ä enters every horocycle at {. It is not too difficult to prove [1] that
a horocyclic limit point cannot be represented on the boundary of any Dirictrlet
region for l. Writing H for the set of horocyclic limit points we thus have

OL:DUHUG

a disjoint union, where G may be defined as the complement of. DUH in 04. The
set G is called the Garnett set and rnay be characterized geometrically as follows.
If € e 04, then ( € G if and only if there exists o € a and a horocycle h at (
with the property that no image of o is interior to ä but infinitely many images

of a are interior to any horocycle contaiuing ä in its interior. Thus the orbit of
a clusters around the critical horocycle /2. The set G first arose in the work of
Sullivan [6] on the ergodic properties of discrete Sroups. Sullir,'an showed that G
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has zero measure but the first author showed that, in general, it is not empty [B].
The method used to construct a point of G was to find a point ( represented
on the boundary of some domain Do but not represented on the boundary of D6
say. Since this point is not represented on the boundary on D6, it cannot possibly
belong to D. Also, its representation on ODo prohibits it from being in H . A
point with these properties exhibits the Garnett behavior with respect to the orbit
of å, but not with respect to the orbit of a.

It is perhaps easier to visualize this behavior in
the upper half-plane. In order that oo be Garnett for a
group f preserving the upper half-plane it is necessary
and sufficient that some orbit be of bounded height
with every point in this orbit having an image of greater
height. In this case the Ford set, obtained by choosing
a point of greatest height from each orbit, will not be
a fundamental set for f .

Of course, another way for a point to belong to G
is for it to exhibit the Garnett behavior with respect
to every orbit-such a point will be called a universal
Garnett point. In order that oo be a universal Garnett
point for a group I preserving the upper half-plane it is
necessary and sufficient that every orbit be of bounded
height and that every point in the upper half-plane
have an image with greater height.

We thus have a nice classification of points of
AA-those in H,, and universal Garnett points, carl-
not appear on the boundary of any Dirichlet region. *
All other points are represented on the boundary of
at least one such region and, in the case of Dirichlet
points, of all such regions.

Our object in this paper is to consider the analogu-
ous situation as it applies to the wider class of convex,
locally finite domains. This is the largest class of do-
mains usually considered-these are the ones for which
the quotient domain is a Riemann surface which is con-
formally equivalent to the disc modulo the group [1].
\ re aim to find which points of äA can be represented
on the boundary of a convex, locally finite domain. In
one sense we find a very simple answer in that an obviously necessary geometric
condition turns out to be sufficient. Relating this geometric condition to the usual
classification of limit points is not simple and we do not have a definitive classsifi-
cation. We have some results along these lines and several examples that illustrate
the complications which may arise.
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We conclude this section by giving an example to show that universal Garnett
points exist, and indeed can lie on the boundary of a fundamenta,l domain.

Theorem L.L. There exisfs a Ftrcåsian group I with a convex, locally finite
funda,rnental domain having a univercal Garnett point on its boundary.

Proof. F'or n : \r2r3,... define a Möbius transform

En:

and set I : ({.8"}), n 2 2. We first need to show that I is a discrete group
and we do this by exhibiting a non empty packing for the action of I on the
upper half-plane. For each n let Cn be the circle centered on the real axis and
intersecting this axis at the points 3(n!)3 and .8,(3(n!)3). Note that .8, is an
elliptic transform of order two and so preserves the circle C,n.

Now
3(1 -1ln')-1-(1 -

( t - tln' -(n!)'[1 + (1 - tln )r] \
\ Ll@\l -(1 - 11"\ )

(fs-(1 -tl"\)
-1ln')- E*(oo)<3(nl)3

(1 - lln')r' -

r ln')'

1

and so E"(oo) is interior to the circle Co. It follows that, for each n, E, maps
the exterior of, Cn onto its interior. We now check the relative placement of the
circles Cn. We observe that

E*(g(rr)') - 3((, - 1)r)' 
L

- 3((, - 1)l)' 
I

- Ll

3 [("

3

ln:]

,r3 )(1
år'[t+(1 -tl"\')

n>2.- 1)l] ' for

rl

all
n3 - 1- 1

3(2 + 1 lnu)

and so the circles Co are exterior to each other. It is now immediate that the
region exterior to all Co, n:2,,3,. .., is a packing for I which is thus a discrete
group. We see immediately that

r"(a1nt;3) - l(n!)g

and, using a result of Maskit [2, p. 772], can conclude that the region exterior to
all Cn is a fundamental domain for I. This fundamental region is clearly convex,
locally finite, and has oo on its boundary. We will show that oo is a universal
Garnett point. As a first step we note that, for any z in the upper half-plane and
for any n

Im(z)Im(.a,(r)) -
lzlQil)l - (1 - tlneyz
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For each z we may find an n such that

and so every z has a I image of larger imaginary part. It follows that oo is either
a universal Garnett point or is a horocyclic limit point. To rule out the latter
possibility we need to show that the set

{tmtz1;;: y e r}
is bounded. For this we need some preliminary estimates.

Suppose an integer n (> 2 ) is fixed, that å is an integer less than n and
that z is interior to Cx.It is easily checked that

la-(r-#)

(1.1)

then

( 1.2) la-(r-#)
We note that i is exterior to all the circles C n and that

If V e f we write V as a red,uced word. in the generators

y -- Enx.. .ErEno

and note that from (1.1), (1.2), and (1.3) above and an induction on the formula

,*(3#):m
we have

rmrz(i): rm(E,n...E,.(i)) < #H,,y = gfl\1'"y.*
and so oo is not a horocyclic limit point. It follows that oo is a universal Garnett
point for I and the proof of the theorem is complete.

Similarly it can be shown that if & is greater than n ard, z is interior to Cx

Z

la-(r-#)
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2. A geometric condition

If € € äA lies on the boundary of a convex fundamental domain D for a
discrete group I then it is clear that we may find a half-geodesic a ending at (
which meets none of its l-images-we merely join ( to an interior point of D. If
( lies on the boundary of a convex, locally finite fundamental domain D then we

find a half-geodesic o as above and note that the images of o cannot accumulate

in Ä (else D is not locally finite). It follows then that for any z e A the set

{p(v(,),a):Ize r}

has no finite accumulation point. Thus no orbit can approach ( within a cone.

We recall [a] the definition of a conical limit point and we have shown that if (
lies on the boundary of a convex, locally flnite fundamental domain then
(i) { is not a conical limit point and
(ii) there is a half-geodesic ending at { which meets none of its l-images.

The following result shows that the second property above is a property of (
and not of any particular half-geodesic.

Theorem 2.1 Let I be a Fucåsian group and suppose ( e 0A is not a
conical limit point. If some half-geodesic ending at ( meets none of its l -images,

then every half-geodesic ending at ( meets only finitely many of its I -images.

Proof. We conjugate to the upper half-
plane and assume that ( - co. \\'e suppose
that the set

meets infi.nitely many images under l. Un-
der the assumption that oo is not a conical
limit point we show that any geodesic seg-

ment

meets infinitely many of its group images-
this will suffi.ce to prove the theorem.

Suppose then that {Tn: n:1,2,3,...} C I and T"(o)no + 0 for ev-

ery n. Our first observation is that f {f"(m)} is a bounded set of reals then

{p(r"@),i)} is bounded and hence so is {p(o,""-'(i))}. Thus the orbit of i
approaches oo in a cone which contradicts the fact that oo is not a conical limit
point. Thus we assume, without loss of generality---on a subsequence if necessary,

Tn (i)

Tr, ("" )

(2.1) T,,(oc) -» +oo.

\
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With this assumption we next show that n"(f"(,;)) -+ -oo. Consider the
picture and it is clear that Re(?"(i)) < 0 for every n. ff {Re(""(i)) : n --
1,2,...) is bounded then (on a subsequence possibly) either

T"(i) * oo in a chimney

which makes oo a conical limit point or

-k<Re(z)<0

T"(i) *,

for some
bounded
a conical

(2.2)

non-positive real number n. However, in this latter case, i remains a
distance from [(o) and we argue as before to show that this makes oo

limit point. We have shown

Re(r"(i)) -) -oo.

We next wish to show that p(T"(i), imaginary axis) -+ oo as r, --+ oo. If this
were not the case then the set {""(i) : n : 1r2, . . .\ would be contained in some
conical region around the imaginary axis as shown below.

This again implies-that oo is a conical limit point and thus we have

(2.3) O(f"111, Imaginary axis) --+ m as n -+ oo.

Choose a * ib in the upper half-plane and write oo,6 for the half-geodesic

ra,b:{z:aaiy:y>b}
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and let tc: p(i,a*ib). Write Bn for the hyperbolic ball centered at 7"(i) and

of radius 2&-this ball clearly contains T.(a*iä). From (2.1) we note that for n.

large enough
7"(m) > o.

From (2.2) and (2.3) we know that for n large enough co,b I Bn : 0. Clearly
then, for all n > .l[ say we will have the situation illustrated above and it is clear

that Tn(o,,a) n o,,o * 0 and the proof of the theorem is complete.

What this theorem says is that if ( is not conical and if some half-geodesic

ending at ( is simple (meets none of its l-images ) then every half-geodesic ending

at ( contains a simple half-geodesic. These considerations motivate the following
definition.

Deffnition. For a Fuchsian group I acting in a a point ( of 0Ä is said to
be simple if it is not a conical limit point and if some half-geodesic ending at ( is

simple.
Our next result shows that a sirnple point must be one end of a simple geodesic.

Theorem 2.2. Let T be aFucåsian group
acting in A and suppose that ( e AA is a sim-
ple point for f then there exists a camplete
geodesic q ending at ( which meets none of
jts I -images.

Proof. Consider a half-geodesi c o, ending
at (, which is simple. Choose V e T and note
that the set o U V(") meets none of its f -

images (** assume I/(() * t). Join the finite
ends of o and V (") by a geodesic segment

r so that ( is joined to I/(() by a piecewise

L( oa,b)
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geodesic path-oUrU V(o) shown at the
right.

Call this path I and note that / is not
necessarily simple. However, we do claim that
/ meets only finitely many of its l-images. If
this \Mere not the case then, by our assumption
on o, we would have infinitely many l-images E

of o meeting r. But this would make ( a
conical limit point contrary to hypothesis. If
we project I to the quotient surface we obtain
a piecewise geodesic with a finite number of
loops in it. Deleting the loops and lifting back
up to the disk we obtain a subset L of I which
comprises o ) V ("), and a finite collection of
subintervals of r and which is simple. From
our constructionr äo end point of one subinter-
val of T is equivalent under f to the nearest
end point of the next subinterval. The diagram
at the right shows the situation.

If, with the notation of the picture, the
piece of L to the right of z1 is replaced by its E

V;' image then the resulting set is still simple
and has one less "g.p". R"peating this oper-
ation finitely often yields a simple piecewise
geodesic path L' say, from ( to some S({) as

shown the right. Let rt be the geodesic joining
( to ^9(€).

We now show that ry is simple and this
will complete the proof of the theorem. But this is easy. If 7 intersects 7(4), say,
then the geodesic from 7(O to 7.9(() crosses 7 and this forces 7(.t') to cross
tr' in contradiction to the above. The proof of the above theorem may easily be
strengthened to give:

Theorem 2.3. Let I be a Fbcåsjan group acting in L and €,rt e 0L, simple
points then the following are equivalent
(i) for some T e I tåe geodesic with endpoints (, Tr1 is simple;
(ii) for some half-geodesics ot t oz ending at t, \ rcspectively only finitely many

T -images of o1 cross o2.

We can now prove the main theorem of the section.

Tlreorem 2.4, Let I be a Fuchsian group acting in L and ( e äA . In order
that ( be on the boundary of some convex,locally fr.nite fundamental domain for

t ( t-*
I vr(1)
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I it is necessaxy and sufrcient that ( be simple.

Proof. Flom our comments at the beginning of this section the necessity of
the condition follows. Thus we assume ( is simple and will construct a convex,

locally finite fundamental domain D for f which has ( on its boundary.
Let r7 be the simple geodesic ending at ( whose existence is guaranteed by

Theorem 2.2. Note that the other end of 1 is an image of ( and is thus also a

simple point. Define the set D as follows.

D : {, e A: p(z,ri < pQ,,V(d) for all Iz e f \ I}.

For any V e I \ I, y(n) r|rl : 0. The bisector ot V(q) and 17 is a geodesic

dividing A into two half-planes, one of which contains 7. Call this half-pla,ne

Hv.
Clearly D - Oyer Hv which is a con-

vex set containing \ , and hence with ( on
its boundary. It is evident from the defini-
tion that D contains no two points which
are equivalent under f and is thus a convex

packing. We next show that D is a cover-

irrg. If this is not the case then there exists
z € A which has no closest image of rl .

There will then exist a sequence {V"} C f
such that

p(r,vn(ry)) k < oo

and so the I/r-1 images of z will remain a
bounded distancefrom 7. In this situation V.-'(r) will approach ( (or ^9(O) in
a cone contradicting the fact that r is not conical. We have shown that D is

a convex fundamental domain with ( on its boundary. It remains only to show

that D is locally finite. If this is not the case then there exists z € A at which
l-images of D accumulate. But this cannot happen since z, as remarked above,

must have a closest image of 7.
In contrast to the situation for ordinary points and parabolic fixed points

which a,re necessaxily represented on the boundary of a convex locally finite fun-
damental domain:

Theorem 2.5. There exisfs a Fuchsian group I and two simple points which
cannot both be represented on the boundary of the same fundamental domain.

Proof. 'We construct an example of a surface with a geodesic o : otUa2 such

that o crosses itself infinitely often but the half-geodesics or1 and 02 ate simple.

The theorem then follows from Theorem 2.3.
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The basic "buildirrg block" is obtained by
glueing alternate sides of two regular all-right oc-
tagons:

Note the existence of the geodesic segments
01. t 02 orthogonal to the boundaries shown.

Assembling copies of this building block we
get:

Boundary curves of building blocks

The theorem follows after observing that ot t 02 eventually leave any compact
set so that they lift to half-geodesics which do not end at conical limit points.

3. The set of simple points

Our aim in this section is to consider the relationship between the set of
simple points and the other subclasses of the limit set with which we have been
concerned. We first need a condition which will enable us to recognize horocyclic
limit points. Throughout this section we will be working in the upper half-plane
model of hyperbolic space.

Lemma 3.1. Let I be a Fuchsian group preserving the upper half-plane. If
I contains a sequence {Tn : n : 1r2r. . ,} with

T"(r) : anz * b"
arrdn-bncn - 1

cnz * dn

and
(i) a,n + a:
(ii) cn -) 0

then oo

0< a< 1 and
("n * a)

is a horocyclic limit, point.

(ono* * bncn )z + (

\
I

,F\
a:

4-i:. I

I,J
a

t

\

Proof. Consider

rrt rF
r rtl nt ("narrr*dncrrr)r+(
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For each n choose rn so large that lår,c-l < lln and ld,c*l <L/n. Thus we have
a sequence ,T^(r) : (ranz a fi^)f Qc^z * d*) of elements of I with 1Q,n "+ ctz

and 1c* -+ 0. Repeating the process we find a sequence {^9"} of elements of I
with

S "(z) -
and a.n ---+ 0 t 'Yn --+ 0. Recalling tfuat

Qnz * §"
Tnz * 6"

Im,9,(z):#W

we note that Im(,S"(r)) - oo and so oo is a horocyclic limit point as required.
We will consider how the set of simple points relates to the sets D, G, H

introduced in Section 1.

Theorem 3.2. Let T be a Fuchsian group preserving the upper half plane.

If ( e D UG then ( is simple.

Proof. If ( € D UG andis
not a universal Garnett point then (
must appear on the boundary of some
Dirichlet domain. Such a domain is
convex and locally finite so, by Theo-
rem 2.3, ( it a simple point. It remains
only to deal with the case where € it
a universal Garnett point.

We assume that oo is a universal
Garnett point and write

,:{r:z:iyry>l}

-a half-geodesic ending at oo. We
will show that o meets only finitely many of its f -images and the proof will be
completed.

Assume then that a meets infinitely many of its images, say ^9,r(o). Write

nni - onSr(o), Å,, - p(S"(i), t,i).

With the assumption that m is not a conical limit point we note that c, -+
oo and l* ---+ oo. If we take the ,S;1 image of this picture then ,S,-l(rni) :
onS.t(o): *'o say and we have r'n -+ oo. We may suppose without loss of
generality that r'o ) r, for all n (this will merely be a matter of relabelling).

Sr(z):cln'z+2?t'- 
'& \ - '/ ctt,z * dn

Writing
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then

from which

(3.1)

and

Thus

(3.2)
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dnfrni - bn -(onbn * cndn"?r) * rniI rrrTl.^/ tnv Lr.n
fr 

^ 
-

arv a l/

-cnrni * an cZr? * a?17,* 17, , *rl

From (3.1) we have cn --+ 0 and la"l ( 1, but there can be no subsequence on
which au converges to a number less than one-otherwise, by Lemma 3.1, oo is a
horocyclic limit point. Thus we may assume

cn --+ 0 t ctn 1, dn --+ 1

and) by (3.2),

(3.3)

and so we have

(3.4) bncn < 0.

We calculate

"'"*1 + 
"?, 

S 1

&nbn*cndr*'n-0.

d"("1 +r1*?,):a,..

S;'("))o and S;'(")oo

provided n is large enough. The hyperbolic distance betweerr

IS

l.'+
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where o2 - (-bna")l@"d") ar,d u2 : -bn(a?"*bnc,)f co(d?*+b"c.). Thus the
distance is

which converges to zero as n --+ oo. We have shown that as n --+ @, Im(,9"(o)na)
and Im(Sfl( o) n o) both tend to infinity with

(3.5) tm [sfl(") n "] ( Im [s"(") n "]
But this leads to a contradiction as follows. The collection of all ,S with S(o)no {
0 cannot contain infinitely many elements that are powers of the same primitive
element in the group else infinity is fixed by that element. Thus the elements ,9

with ^9(o) no I 0 comprise a countably infinite collection of finite sets. These are
of the form {7"' ,Tn,,. . .T"n} where ? e f listed in order of increasing height
of the point of intersection. However, the first intersection points from these sets
have heights increasing to infinity and this contradicts (3.5) above. With this, the
proof of the theorem is completed.

We have seen that any point of D U G is represented on the boundary of some
convex, locally finite fundamental domain. The only other points which could
possibly be so represented must lie in .FI (the horocyclic limit set) but not in the
conical limit set. Pommerenke [5] has shown ihat this set can have full measure.
Our next two results show that both simple and non simple points can lie in ä
but not in the conical limit set.

Theorern 3.3. ?åere exists a Fuchsian group G and a convex, Iocally frnite
fundamental domain for G which has a horocyclic limit point on its boundary.

Proof. Let ,9, ? be fractional linear transforms preserving the upper half-
plane defined by

S(z) - 162, r(r) -
7z * 40

2z *23
Let I be the group generated by ,9 and ?. Define four circles Cs, Cs-r, Cy,
C7-r as follows. Each circle is centered on the real a;risl C7-r meets the axis at
1 and 70; C7-, meets the axis at -1.715 and -190/13; Cs meets the axis at

-15176 and 15/16 ; Cs at -15 and 15. Note that 7 maps C7 onto C7-r and
the exterior of. Cr onto the interior of. C7-r. Similarly ^9 maps Cs onto Cs-r.
The situation is illustrated below.

The region .F" indicated in the diagram is a convex, locally finite fundamental
domain for the discrete group I generated by ,9 and 7. In fact f is a Sc"hottky
group with .F, a Schottky domain. We define

o -,!""^s,,(r')

+
+

dl
al

(
(

n,

n

a

aå,"I
)

)
2
rL

I
c

?
n

b

b



and note that it is a Schottky domain for the group

G - ({,S""S-"}).
The point at oo is on the boundary of 0 l.{ow we note th

:g(+-'" .2 n)
and, from Lemma 3.1, it follows that oc is a horocylic limit
the proof of the theorem.
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at

point. This completes

We conclude this section by giving an example of a horocyclic, non-conical
limit point which is non-simple.

Theorem 3.4. There exjsfsa F\tchsiangroup I and ahorocyclicrnon-conica)
limit point for I which is aJso non-simple.

Proof. We utilize the same "building block" as in Theorem 2.5 to construct
a surface with a geodesic a each half of which crosses itself infinitely often yet
eventually leaves any compact set. It then follows from Theorems 2.1 and 3.2 that
if we lift o to a. geodesic in the upper half-plane its end points will be horocyclic,
non-conical., limit points.

Glue copies of the "building block" to obtain the surface and geodesic o on
the next page:

4. Concluding rernarks
In contrast to the situation in 2-dimensions, most geodesics in hyperbolic

n-space ä" with n ) 3 are simple. However, if one attemps the construction of
Theorem 2.4 on.e obtains a domain which is, in general, not convex.

Acknowledgements. We would like to thank Scott Wolpert for his helpful
comments on simple geodesics.
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