
Introduction and the main results

In this paper, we study some properties of the weak solutions of the following

nonlinear scalar field equations

N
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(1.1) ueE: {ue Lc(RN)l#rLP(RN), r<;<n},
where CZp if p) N 22, and

p 1 q 1o. : {\, when .l[ > s.

when p -- q : 2, (7.1) is derived by considering the standing wave§ of the
nonlinear Schrödinger equation

(7.2) iDt-ao+s(lol)o,

where o e C, A:2[r10'z1a"?), *:(*',*2,...,oN) q^E'. A standing wave

of (1.2) is a solution 
"f 

(t.21 which has the form O(o, t) - ei?tu(a); thus u satisfies

au+g(l"l)u*Bu:0,
which is a special case of (1.1). For more details about scalar field equations see

e.g. [BL].
Throughout this paper, we denote by llull, th'e -L'-norm of the function u

over ftN ""a 1;";;,,,,t>ny the tr"-norm "f u å""r the set {r e RN I l"l > n}
where s ) 1. Let p, g, and the space E be given as in (L.L). The norm in .E is

defined bv ll"llu: lllvulll, + ll"llo for any u € E.It is clear the (.E,ll'llr) is a
reflexive Banach space.

By Nirenberg's inequality (see [N]), E is imbedded in .D'(BN) for t 2 q when

l[ < p arrdfor q 1t <-p* : Npl(N -p) when N > p. Furthermore, we have the
following result which is a generalization of N. Trudinger's inequality (see [L]).
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Lemma 1.3. Suppose that 0 < 7 < N/(If - 1),, ) g ) N with 1no )
r + N/(If - 1), ö ) 0 where ns is a positive integer. Then for aJt u e E

t§r, t(1.4) ä; Jo*l"l,"o*<c(lllvulllN)llull;,

andfor0<r<1

å * (l*.tur"^')'< Ö(111v';1;') ttutti' '

where c(t), 0O) a,e nonnegative real functions on [0,**). Furthermore for
each M > 0, tåere is a constant I{(M) ) 0 such that

c(lllvulllN) . N(u), Ö(111v"1;1r; < r{(M)

whenever lllV"lllrv I M and furthermore there is a constant K such that

c(lllvulllp) s I( lllvullllloo'o

whenever lllv"llLv ( 1. rlere ano is a positive constant depending only on ns.

Proof. This lemma was proved |ralLZ, Lemma 1], but for completeness, we
sketcå the proof.

By the results of C.-Talenti (see [T]), we know that if s, f ) 1 , lf s : 1lt-1lN
and when lvhl € I'(ä'), rhen

(1.5) llhll, < r(nr,r) lll\7älll,

where

K(N.t\: t-7 I tr-, l,/, i r(lr+r) 1,1,\- '-l r\i -, LN(, - l)J |.r(N/r)r(N * 1 - N/r)rory_1]

arrd a;7y-1 : r.N/z /f (*nir + 1).
Setting en : I -rlln (n 2 no), h : lull/"" and using (1.b) and Hölder,s

inequality we obtain, for each u e E,

(1.6) 
lo*,u,,"0*= [{*rd]'"'" lllo,lllif,,* ll,lll,

where p, is such that 1,f lnan:l/Fn -llN. On the other hand, it is easy to
see that

K(N, P^) < gn@-r)/N
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where C > 0 is a constant independent of n, so we have

å # l**rur'*o*= ä \st'o'n{N-t)1na*/N lllvulllfli" llulli,

from which the lemma follows.
Next, we state the conditions imposed on c(r) and /(r,t) in (1.1).

(c1) The function c(r) belongs to C0(rBN,rtl), and there is a constant c ) 0 such

that c(r) ) c for any , €.RN.
(fr) f(*,r) € C0(-BN x .nl,-Rl).
(/2) liml-s f(x,t)lltlt-t - g uniformly in r € rBN.
(å) If N 1p, thenthereis a I, q<t < *oo suchthat lims*oo f(a,t)/ltlt-t:g

uniformly in r € -EN.

If -l[ :p, then there is a 7 with 0 < 7 < N/(N - L) such that

,lgg /1", tlleltl' : 0 uniformly in o € BN.

If .ltr > p, then there is a constant å ) 0 such that

§yf(r,t)lltP'-r -, uniformlv in c € -RN.

Under the above conditions (c1), (å)-("fs), *e easily see that for any e ) 0,
there is a C" ) 0 such that

(1.7) l/{r,t)l S eltlr-t t c,pf*-r, for all (r,t) e 8N x Rl if N > p,

(1.8) l/{r,t)l S elt;c-t +c"ltlt-l, for all (c,t) e J?N x J?l if -l[ <p,

(1.e) lf{*,t1lS elt;r-r * c" f !1!1}11, for all (r,t) e .EN x -81 ir lr: p.
n=no

A function u e E is called a weak solution of (1.1) if for each o € E

(1.10) I" lå tyulo-z##*c@)lult-zuu- f(x,u),f a,:0.

Note that under conditions (cr), (å)-(fr), u:0 is always the trivial so-

lution of (1.1). The existence of nontrivial weak solutions of (1.1) was studied in
[BL] for p: g:2 and in [Li], [LZ], and [YZ] for general q> p.

It is our aim in this paper to study some properties of the weak solutions of
(1.1). The main result is the following:
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Theorem 1.11. Suppose that (.r) , (fr,)-(Å) hold and

that for any R ) Ro

u € E is aweak

(1.12)

where C is a positive consta,nt independent of R. Fbrthermore, lim;,;*oou(o)
:0, and ue Cl;i@') forsorne o < a < 1.

Remark 1.13. Cl,o regularity is the best possible in general for weak so-
lutions of degenerate elliptic equations like (1.1) as one can see from a simple
example in [To].

There have been some results for Cl,o regularity of wealc solutions in bounded
domains (see e.g. [LU], [To]). For the unbounded domain äN, H.Brezis and
E.H. Lieb showed that wea^k solutions of semilinear elliptic systems, in particular
of (1.1) when .l[ ) p:2, are in .D-(.RN) n Crf:(.RN) for all 0 < o < ]. and the
solutions tend to zero as lrl - +oo (see [BLi]). But their method seems not to
extend to pl2.

The main difficulty in proving Theorem l-.11. is to prove (1.12) and u €
,""(EN). We overcome this difficulty by using the Nash-Moser method (see

[GT]) together with careful estimates.

In this section, we
main result in [T"], w€
limgrl*oo u(r) : 0.

Suppose that u is
rl e c@(l?'),0< rt5l

(2.1)

We set u+ :
We fi.rst deal

Wr - rlu*u*?-r
and by Sobolev's
p >7,,

f t if lrl > R,q- {o iriri ia_?,,

2. Proof of the main theorem

prove the main result of this paper, Theorem 1.11. By the
need only to prove (1.12) and u e L"p(I?') together with

a weak solution "f (1.1). For any E ) 0, 0 < r < RlZ,let
1 with

lvryl S 2lr.

max(0 ,, u) , uI - min (u+ , L) where L > 0.

\,vith the case where 
^r 

> p. To this end, let u - qpu*ulo(P-L),
for any P > 1. Then by (1.7), by the definition of weak solutions

(2.2) llwr,llfl, S

t 
Y,l l, u+ P uIo(B -r' O.) .

c t Nwrlo,t*
JRN

c pp 
U._ 

u,*p* rlpulo(P-l) d* * l*-
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We claim that

(2.3) uEtrn.2ln(lrl >a)

for ,R large enough. In fact, let B : p" f p,from (2.2) we have

( | *- {r'*'+ b. -il t o1n' o*)'' 
o'

< c(Ir, p) { I | *. (rr* rI*. 
- r) / n 

1n. 6*)''' 
U,,,.*_,u+ 

n. d*)b' - p) t p

* I o- lY rtf u+c ufo' -o d*j

s c(n, p) { ll ̂
_t 

r* r+ @. - d t n1n' o*l'' 
n. 

ll"* lll. ul,- å"r

* I *- lY rlle Y+r u+ ln' -il 6*\'

Since u* € ,P'(AN) , ll"*ll1o..io,l>årl ( llC(N,p) for -B large enough.

Hence we obtain

(2.4) ( 
1,,,, *(,* 

uf.". -il t t1c o*)o''' 
= U *Qtu+ 

uftn' -il /n1n' o*)n/r'

< c(n, ,) l^-lvrt\u+Pu+@'-d6* 
a 3 l-.,*p'd*.

Thus (2.2) follows.
Next, we note that if. P : p*(t -l)/pt with t : p*2 /(p* - P)p,then B > L

and, ptl(t - 1) < p*. Now suppose that u+ e LpBt/(t-r) (lrl > R-r) for some
p > 1. Then (2.3) gives that

(2.5) llwrlloo, . c O'{llo,rr_,(,,eu+1)p)tt1-» d*f'

' U o,r-*-,u+ 
@' - t) t 4*)t 

/ t

*ln* -(1- il*l'/' 
1 1 u+pBt/(t-t)dr)'-'r')^tp \J1,1>n-,

< c pp(, . #) U,or*_,u+nst/(t_r) 
6*),-r,, .
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Letting tr * +* in (2.5), we obtain

ll,*ll1f,_<r,rrn1 s c 9e(, . #) fi,*lliuu,rc_r).zr>a_r) .

If we set X : p*(t - 7)/pt, s : ptl$- L), then

(2.6) ll,* 11rr"11,12 n1 3 c'/ P 0rro (t + #l'', llu*ll u"(rcr>E-r) .

Let B : X* , (m :1,2,. . .), then we get

llr*ll"-*,"1r,rza) S cx-^ x*X-^ (, - #)''n*^ llr*llr^srct)_R-r).

It is clear that p > N/t. So if r* - 2-On+r1P,, then (2.6) implies

ll'+ ll r-*,"1r,r>n) S ll'+ ll *-*,,1ror)E-r-.r1 )

< o»L, *-' *D?=,,r-' "*, (i h( 1 1 2n(;+r)1 1 r*;) I l 
r* 

ll r,,,, | )R_r1)
i=1

. c ll"*llr.rr,r>ån) .

Letting rn --+ foo in the last inequalitS we obtain

ll'* ll-rr,r> a1 3 c ll"*llr'11,121*1'

Similarly, we can show

ll"- ll""rt,t> n1 3 c ll"-11r.11,121ry

where u-: max(-u,0)lhence (i.12) holds for trf > p and 1img,1*-u(c) - 0.
To show that llull." ( *oo when .l{ ) pr we need only show that for any 16 €

.RN, there is a ball Ba(ao): {r € rtN I lr -rol (.8} such that llull-1Bn(,0)) (
*oo. But this was essentially done in [ZY] for weak solutions of equations similar
to (1.1) in bounded domains. We just sketch the proof of this fact.

For any rs €.1?N, E) 0, 0 < r S |.R, l"t € € co(rBN) with 0< € < 1 and

,_lt if lo-rol(.E,t-Io if lc-cal)rBlr,
and lv(l < 2lr.Write u - lnu+u+o(§-r) , Wr, : fu+(u!)-l, we can show that
for .Rs small enough 

u+ , trn*2ln(8.(*o))
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and similarly for some E that u+ e L*(Bp(xo)) by the method used above.

Thus llu+ll- ( *oo hence llull"" < *oo and we have completed the proof of
Theorem 1.11 in the case .lf > p.

If now N: pt weset ,: u+ulN(P-r),(g >t); then u € E andthe
definition of weak solutions gives that

(2.7) 
l**lru*l*u|N(e-\d, + N(p - D l*_lvuf lNuiN(e-L)dx

+ " [ '+au*N(|-i4*JP.N

= 
,å * l--ut'rn*N-tu+u*N(,.-r)6*.

If we set W7 : u*u!,?-', then (2.7) implies

l**lo*rr* d,x < c BN §. å f **u*'*rwrr* 
d*.

Using Hölder's inequality we get

gllvwrlllil < cpN§. å (l*.**r,*"i-d*)t/Q*'i ilw{ll,r*

where eo is small enough such that .y * €o < Nl(N - 1), t : .U(ry + €o)lqo > q.
Thus Lemma 1'3 vields 

lllvwzlll,v 3 c§llwill,
Hence by Nirenberg's inequality (see [N]) there is a s ) t with

(2.8)

where C > 0 is a constant from which we obtain ll"+11." ( *m by standard
Nash-Moser iteration. Similarly ll"-11." ( *oo and hence llull"" < +m.

To show (1.12) for If : pr w€ can use the same method we used in the case

where l[ > p. In fact, let u : ryNu+u+N(P-\, Wt : r1u+u!P-1 where ? was
given by (2.1) for iA > r ) 0, then by the definition of weak solutions and
Lemma l-.3 we have, for any 6 > 0, that

(2.9) 
l**lOu*1* rN u*N(r-r)6*
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fN
* * l**i lo,*1" H*rN*ru+N(P- 

\u*du

+ N (B - \ I *- lv u[lN rtN uIN {P -i ds * 
" I ** u* t rN u* N (B -t) d,a

f

= l** f (x,u+)u+r1N u+N(P-t) d0

=, I ** u+t rN ulN (B -r) d,x + c 
" llw Llly

forsome C")0 andt>g.
Taking e > 0 small enough and using Young's inequality and (c1), we get

(2.10) 
l**Fu*lrvrivr+rv(0 

-i d,* + N(B - D l*_lVuj lNTNu IN(I-L) d*

f
*u 

J**u*trNu*N(p-t)da

3 "llwr,llf * * l*-lvu+lN-llv 
r71qN-1u+ulN(P-r)a*

36 [ lvu+lNTNulN(B-\a*Jn*

* ,o 
l**lvTlNu+Nu lN(P-')aa + c llwLlly

where 6 > 0 is arbitrary and ö > 0 is a constant.
Choosing 6 > 0 small enough, we have

(2.11) 
l**Fu*lNqN 

u+N(p-\d,* + N(p - r) 
l*_lvujlNaNu IN(B-Da*

* ö I *. u+t rN ulN(u -r) d,x

< c (nwrtti * I *- lY ?tlN u+ ulN(P -D dt)

where C)0,0>O areconstants. Hence

(2.r2) l**F*rl* d.u + llwr.ll{

= "ll*lvTlNu+Nu lN(B-id, * 
l*_qNu+N(P-t)1vr+1N 

d*
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+ ( p -1)' l*.rtN'IN(B-1)lvu!,1'a"] 
+ ll w"llf

< c PN U.-lvrtl'r* 
*'IN(B-t)d't+ 

ll wr.lll)

35

-r)
7l[

[n'- (n ,] (, -N) lt

) ll". uLB-' lll,,rz*-.)cpNtt*

Again, by Nirenberg's inequality, for some s > t, w€ have

llwrll" SC(lt tvwr.l llno + llwrll,)
r RN(r-N) ltar/Nscpll+Tl

Letting L + *oo, w€ get

ll,*ll"^r,r> n1 a crlB g.ro 
[r + 4A--f "*' ll,*ll,^r,r>*-,1

where C is a positive constant independent of .E and r' Let 1 : sft, 0: X*
and r- - 2-@+t) P for .R > 1. Now we obtain

from which (1.12) follows easily and hence lim1,1-oou(r) : g'

The case where w a o ".r, 
b" dealt with i" th" same way; we omit the details.

We have thus completed the proof of Theorem 1'L1'
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ll ".'!,8-' ll tq, r2E-")

ll"* llr*tq,r>r?)
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