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SOME FURTHER ARITHMETICAL IDENTITIES
INVOLVING A GENERALIZATION
OF RAMANUJAN’S SUM '

Pentti Haukkanen

1. Introduction

Let G be a commutative semigroup with identity 1, with respect to a mul-
tiplication denoted by juxtaposition. Suppose there exists a finite or countable
infinite set P(C G) of primes such that each n € G can be represented uniquely
in the form

n= H pn(P),
peEP

where the exponents n(p) are non-negative integers of which all but a finite num-
ber are zero. (Define 1(p) = 0 for all p € P.) Further, suppose there exists a

real-valued norm || - || defined on G such that
@ =1 Ipl>1 (peP),
(ii) |mn| = |lm]/[n]  (m,neG),

(iil) the set {n € G : ||n|| < z} is finite for all real numbers z.

Then G is called [18, p. 11] an arithmetical semigroup. Throughout this paper
elements in an arbitrary arithmetical semigroup are typed in boldface.

Let G be an arbitrary but fixed arithmetical semigroup. By an arithmetical
function we mean a complex-valued function defined on the arithmetical semigroup
G. Let A be a mapping from the set G into the set of subsets of G such that for
each n € G, A(n) is a subset of the set of divisors of n. Then the A-convolution
of two arithmetical functions f and ¢ is defined by

(fag)= Y f(d)g(n/d).

d€eA(n)

In this paper we confine ourselves to regular convolutions and we shall assume
the reader to be familiar with this notion (see e.g. [13, Section 1.3], [22, Chapter 4],
[27]). For example, the Dirichlet convolution D, where D(n) is the set of all
divisors of n, and the unitary convolution U, where U(n) = {d : d|n,(d,n/d)
= 1} , are regular.

doi:10.5186/aasfm.1990.1513


koskenoj
Typewritten text
doi:10.5186/aasfm.1990.1513


38 Pentti Haukkanen

For a positive integer k, we define
Ax(n) = {d € G:d" € A(n*)}.

It has been shown (see [13, p. 10], [32, p. 267]) that the A-convolution is regular
whenever the A-convolution is regular. The symbol (a,b) , ; denotes the greatest
kth power divisor of a which belongs to A(b).

The classical Ramanujan’s sum C(n;r) is defined by

C(n;r) = Z exp(2mimn/r),

m(mod r)
(m,r)=1

where n is a non-negative integer and r is a positive integer. Its well-known
arithmetical representation is given by

C(n;r) = Z du(r/d).

d|(n,r)

In [14] the author together with P.J. McCarthy defined a generalized Ramanujan’s
sum by

Car(na,-oomair) = ) exp(2mi(miny + -+ + many)/r*),
m1,...,;my (mod r¥)
((mf)yrk)A,k=1

where n,,...,n, are non-negative integers, r is a positive integer and (m;) =

(m1,...,my), the greatest common divisor of my,...,m,. We noted [14] that
Car(ny,...,ny;r) = Z d* g, (r/d) = Z d* g, (r/d),
d*€A(((ni),r%) a,k) deAk(r)
d*|(ns)
where p4, is the inverse of E, the function = 1, with respect to the Aj-

convolution. For an arithmetical semigroup this suggests we define

Car(ny,...,myr) = > )" pa, (r/d).
dkeA(((ni),r*)a,x)

In [13] we defined a generalized Ramanujan’s sum by

SE4(ni,.omsr) = Y f(d)g(r/d).

dreA(((n:),r*)a,x)
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In other words,

SE%(ny,. oty = > f(A)g(r/d) = (x((mi); () farg) (r),
d€Ak(r)
ak|(n;)
where x(n;d) =1 if d|n, and = 0 otherwise.

The purpose of [13] was to derive arithmetical identities of classical type
involving that sum. The purpose of the present paper is to give more arithmetical
identities for that sum. We shall also list a large number of known special cases
of the given identities. At the end of this paper we shall note that two identities
here can be extended to totally A-k-even functions (modr).

2. Preliminaries

We define an arithmetical function f to be quasi- A-multiplicative [13, p. 14]
if f(1) # 0 and f(1)f(mn) = f(m)f(n) whenever m,n € A(mn). Quasi-A-
multiplicative functions f with f(1) = 1 are called A-multiplicative [45]. It is
easy to see that an arithmetical function f with f(1) # 0 is quasi- A-multiplicative
if, and only if, f/f(1) is A-multiplicative. Quasi-U-multiplicative functions are
called quasi-multiplicative [19]. For those functions f(1) # 0 and f(1)f(mn) =
f(m)f(n) whenever (m,n) = 1. All quasi- A-multiplicative functions are quasi-
multiplicative.

Let AD  A® . A®) be regular convolutions. Then we define the A()
A® ... A _convolution of arithmetical functions f(ny,ng,...,n,) and g(n;,ny,
...,n,) by

(1) f(ng,ng, ..., nu)A(l)A(2) <o a®g(ny, ny,...,ny,)

_ Z Z Z f(di,da,...,dy)-

di€AM(n1) d2€AP) (n2)  du€AM)(ny)
. g(nl/dl,ng/dz, ey llu/du).

It is easy to see that an A(I)A@ .-+ A _convolution of arithmetical functions is
associative. Also, if A is an A(Y)-multiplicative function, then

(2) (f(ny,ng,..., n,)ADa® ... aMg(ny n,, ... 0y))R(0;)
= f(nl, nz,..., nu)h(ni)A(l)A(Z) e A(u)g(nla nsz,..., nu)h(ni)‘
Let f be an arithmetical function of one variable and e, m, v € N, u > 2,

0 < m < u. Then we define Pe(f)(n1,...,0m; Nm4t1,...,0y) to be the arithmeti-
cal function of w variables such that

fny), ifny=--=n,= (nm+1)e
(3) Pe(f)(nyp,...,0pmiNpmy1,...,0y) = { == (n,)",

0 otherwise.
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In particular, we denote

Pi(f)(my,... 0y N, .., 0y) = P(f)(ng,...,1m,).
If m =0, then we have
(4) P(f)(n1,...,0m;Npmy1,...,0y) = P(f)(ny,...,n0y).

We note that some special cases of the function P.(f) can be found in [39, p. 627]
and [42, p. 86).

It is easy to see that if f, ¢ are arithmetical functions of one variable and
u>2,1<i<u,then

(5) g(m)P(f)(my,ng,...,0n,) = P(fg)(n1,ny,...,0y).
Also, if f, g are arithmetical functions of one variable, 1 < j < u and
A(j)(n) C A(i)(n)
whenever n € G, 1 <i < u, i # j, then
(6) P(f)(n1,my,...,0,)a0a® ... s® P(g)(ny,n,,...,n,)
= P(f a9 g)(ny,n,,...,n,).
3. Identities

Theorem 1. Suppose f and g are arithmetical functions and 0 < m < u.
Then for ny,...,n,, re G

Sﬁ’i(nl,...,nm,(nm+1)k,...,(nu)k;r)
= E(ny) - E(ny)g(r)D- - DAL P(f)(01,. .., N Mgy, o0, Dy, 1),
where E(n) =1 forall n € G.
Proof. By (1) and (3),

E(ny)---E(ny)g(r)D--- DAL P(f)(n1,. .., Nmi Npg1,. .., Ny, T)
=> > > E(m/d))-E(n,/d,)g(r/d)
diln;  dy|n, dEAg(r)
CPe(f)(dy, .. dmsdimyy, .. dy, d)
= > g(r/d)P(F)(d*,...,d¥;d,....d,d)

d€Ak(r),d|nm41,...,00
dk[nl,‘..,nm

= > g(r/d)f(d)
d€Ar(r),dnm41,...,nq
dk|n1,...,nm

= Sﬁ”gk (01, Ny (Mg)*, o (00)F5 1),

which was to be proved.
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Theorem 2. Suppose hy, ..., h, are quasi-D-multiplicative functions, h is a
quasi- Ay -multiplicative function and f, g, H are arbitrary arithmetical functions.
Then for ny,ng,...,n,,r €G

(hy -~ hyh)(1) Z Sf",gk ((ny/d)F,...,(n,/d)*;r/d)
“Sicny

- hi(n1/d) - hy(ny /d)A(r/d)H(d)
= Y ha(m/d) - hy(nu/d)(hg)(x/d)((fhy -~ huh)axH)(d).

d€Ai(r)
d|(n;)

Proof, It suffices to consider the case hy(1) = --- = hy(1) = h(1) = 1. Let
L denote the left-hand side of the identity in Theorem 2. Then, by (1)-(6) and

Theorem 1,

L= (E(nl)"'E(nu)g(r)D“'DAkP(f)(hl,nz,---,nu,r))

hy(ny) - - hy(n)h(x)D- - DAL P(H)(ny,ny,...,M0y,T)

= (ha(0a) - hu(0a)(hg)(X)D -~ Dagha(m1) -~ hu (0 )h(r)
‘P(f)(nl,n2,...,nu,r))D"'DAkP(H)(lll,l’lz,...,nu,l‘)

= (m(n1) -+ hu(m)(hg)X)D -+ DAP(Fhy -+ huh)(na,ma, o))
-D--DALP(H)(ny,my,...,0,,r)

= ha(m1) - hu(ma)(hg)(X)D- - - DAL
. (P(fhl ---huh)(nl,ng,...,nu,r)D---DAkP(H)(n],ng,...,nu,r))

= hy(ny) - - hu(0,)(hg)(x)D- - - DARP((fha o hyh)AcH) (g, ng,. .., 0y, T).

We thus arrive at our result.

Theorem 3. Suppose H is a quasi-Ap-multiplicative function, H,, Hj,
..., Hy are quasi-D-multiplicative functions and f, g, h, k1, ha, ..., hy are
arbitrary arithmetical functions. Then for ny,ny,...,n,,r € G, aj,...,as =0,1
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(Hi--HH)(1) Y - > S si4(aF™, ... dk™;8)

dijni dulnu fea,(r)
CHy(dy) - Hy(dW)H(8)hy (11 /dy) - - - hy(n, /dy )h(x/6)
= Y (FE@H (A7) Hy (A7) (ha(gH)) (r/d)

dEAk(“)
ak|(nk*)

. (Hl Dh1)(111/dk1-a1) . (HuDhu)(nu/dkl_a“).

Proof. 1t suffices to consider the case Hy(1) = --- = H,(1) = H(1) = 1.
Further, without loss of generality we may assume a; = ... = a,, = 0, amt1 =

“=ay =1 (0 <m < u). Then, by (1), the left-hand side of the identity in
Theorem 3 can be written as

hi(ng) .- hy(ny)h(r)D.. .DAkS};’i(n], e, (Mmg1)®, L (1) 1)
. Hl(n]) s Hu(nu)H(r).

Thus, applying Theorem 1 and formulas (2), (3), we have the theorem.

Remark. The functions Ay, ..., hy, h are of great importance in Theorem 3.
In fact, if A = Ej, defined by Eo(1) = 1 and Eyp(n) = 0 for n # 1, then the
summation over d;, ..., d,, éreduces to the summation over d;, .. L, d,. A
similar reduction is vahd Wlth respect to any subset of the set of functions hy, .

hu, h.

Notation. For an arithmetical function f, denote

LY

MAez)= > f(n) (z€R),
n”Enflli(-EZ)

fN@)= fND,e;z)= Y f(n) (z€R).

Inli<z

Theorem 4. Suppose f, g, h, hy, ha, ..., by (0<m < u ) are arithmetical
functions. Then for z1, ..., 2 , y >0 (21, ..., Tpm, yeER) ny,eq, ..., ng,
reG,a, ..., a,=0,1

(7) IREED DD Sf,g(im’,.-,,L,:m,nm.,.l,...,nu;j)

i€z llimll<em I5l<y
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D @/ i) - B (e i) B2 (AR 3597 111)
= Y £(d)(hy DEY (/) ™)

. a1 ke
lldl* <min{y*,zf" " .z ™ )
d* Inm41,enu

o (b DEY @m/ I141F ) (B a9)" (Ar, s v/]1d]),

k%1 okom
(8) Z Z Sﬁ’i(ll R I ,nm+1,...,nu§r)

lil<z1  Himl<zm
b (@o/ all) -+ - Py (@ / [l 1)
- 3 F(d)g(r/d)(hy DEY (z1/ | d)IF ) -

. a a
Ild||* <min{z¥"! ... ,2% ™}

d¥|npm 1,0 ,nu;d€AL(r)

(hmDE)M&m/ 1d]* ), m>1

Proof. Let L denote the left-hand side of (7). Then, using the notation of x
given in the introduction, we can write

L= Z Z Z Z x((nm+1,...,nu);dk)

[li1l|<21 limll<zm 5Ly L d€AL(0)
akt—ev liy,v=1,...m
SF@gG/d) D> hby)e Y. hm(ba) Y h(a)
IbrlI<za /llisll lom <z m /limll llall<y/li5ll

a€Ag(ja)

Now we shall change the order of summation. It can be proved that the rule
(c1,--s¢m,v,d, by, ..., by,a) = (c1/by,...,¢m/bm,v/a,d,b,..., by, a)

defines a bijection from the set of (2m + 3)-tuples (c1,...,¢m,Vv,d,by,..., by, a)
satisfying
leill € @1, llemll S zm, VIS,

de Awv), d¥" eg,...,d" " em,
bilerd™¥ T bmlemd ™ T, a € Ar(v/d)

onto the set of (2m + 3)-tuples (iy,...,im,J,d,by,..., bn,a) satisfying

il S 21,0 llimll S zms il < v,
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. l-ay ., l—am ,,
d € 4;:(j), d* " iy,...,d* lim,

ball < @1 /llizll,-- - omll < zm/llimll, llall < y/llill, a€ Ax(ja).
Thus we obtain

L = Z Z Z E X((nm+1,~~-a“u)§dk)f(d)

lerll€z1 llemllSzm IVILy deAi(v)

rl=—avy
d lev,v=1,...,m

Yo mb).. Y hm(bm) Y R(a)g((v/d)/a)

b; |C1d_’°1-a1 b, lcmd"kl-am a€Ai(v/d)
.k
— Z E Z Z X((nm+17~",nu)yd )f(d)
llerlI<zs flemlI€zm lIvli<y . d€Ak(v)
P L |ev,v=1,...,m

- (h1 DE)(cld_kl_'”) . (hmDE)(cmd'kl-am)(hAkg)(v/d).
Further, it can be proved that the rule
(€1, em, t,d) = (e:d* ™. end® ™" td, d)
defines a bijection from the set of (m + 2)-tuples (e1,...,€em,t,d) satisfying
Id]l* < min{y*, 25",

kem
NS A N

1 m

kl-a kl—a
ledll <z /IIdlI® . llemll < 2m/ 4] » It <y/lldll, ¢ € Ax(td),
onto the set of (m + 2)-tuples (cy,...,cp,Vv,d) satisfying
l-a l—am
leill S @ssesllemll S 2m,  (IVISy, dedi(v), d¥ Vley,...,d* e,
Thus

L= > X(m41,- -, my);d%) £(d)
ldll* <min{y*, 25t ,... .ok }
> (hiDE)(ey)- - > (hmDE)(em)
llesll<za /lld]*" " lemll<zm/lld]* 2™

> (harg)(t)

lieli<y/ldil
teA; (td)

- > F(d)(hy DEYN(zy/)d|F ™) - -

. ay a
lld|* <min {y*,z* a8 ™}

ooy
k
d |nm+1,...,nu

(hmDEY (@m /[[d][*" )(harg) Ak, dsy/[1d])).
This proves (7). The proof of (8) goes through on similar lines.
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Theorem 5. Suppose hy, hy, ..., hm (0 < m < u) are quasi- D -multipli-
cative functions, h is a quasi- Ay -multiplicative function and f, g are arbitrary
arithmetical functions. Then for 1, ..., Tm,y >0 (T1,-..,Zm,y € R), Npmy1,

.., n,, re@G, a,...,an =0,1

(9)(h1hmh)(1) Z o Z Z Sﬁ’,%c(ifalw--aiﬁ—:m»nm+l7"'snu;j)

i<z Mimll<zm lI<y

- > FA()hy (@) o (@5

. a a
flalk Smin{yk, k1, 2k )

k
d |nm+1,...,n.‘

B (e /IR - Rl (e NIANET ) (g (Ak, diy/ 1),

(10) (hl hm)(l) Z Z S,{l‘,gk(i,]falr'-aiﬁ:m7nm+la~"7nu;r)

lisll<zr  llimli<zm
chi(iy) - hm(im)

N > F(d)g(r/d)hg (@ ™) o R (AT
"d“kSmin{.’n{‘al '''' zzcn“m}

d* Inm41se,nu;d€EAL(R)

R (e /NI R (e /YY), mo 1

Theorem 5 can be proved in a similar way to Theorem 4.

Theorem 6. Suppose z1, z2, ..., zs € C (1 < s < u) and denote z +

29+ -+ 2z, = z. Let f be an arithmetical function such that f(m) # 0 for all
m € G. Then for n,r € G

fz’#Ak lev”'Ak
SA,k (n1,...,ny;r) = E SA’,C (n1,Ne41,...,0y;dy) -
di,...,d; €EAL(r)
[d1,...,ds]=r

f*,pa
“Sun (e ey, .., a5 dy),

where the symbol |- -] is used for the least common multiple.

Proof. Let R(r) denote the right-hand side of the identity of Theorem 6.
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Then
Z1
. R@)= ), > S g ndy)
d€Ai(r) d€Ak(r) di,...,ds €EAr(d)
[d1,....ds]l=d
: Sik’;uk (nsa Ngti,...,1y; ds)
S
zj y
= H Z S/’;’k B4% (nj,mg41,. .., 0,5 d;)
J=1d; EAk(r)
]
= T x((jo mesn, - ma)i v) 5 (1) = (0 ¥4 £ (),
i=1
that is,

(Ra E)(r) = x((n:); r") £*(x),
where x is the function defined in the introduction. Thus
R(r) = (x((m); ()F) FF Aupa,) (r) = S,f‘,}c“" (n1,..., ;).
This completes the proof.

Remark. It is easy to see that the value of the sum

ij{,yk(nl,...,nu;r)

is independent of the order of the variables ny,...,n,. Thus Theorems 1, 4, 5 and
6 can be further generalized by rearranging the first u variables into an arbitrary

order.

Theorem 7. Suppose g, h and H are arithmetical functions such that h,
H are quasi- A -multiplicative and hArgH = (hgH)(1)E,, where E¢(1) = 1 and
Eo(n) = 0 for n # 1. Let f be an arbitrary arithmetical function. Then for

reG,a=0,1
(11) Y. SL4(d¥sx/d)h(A)H(r/d) = g(1)(fH)(m)h(m* ")
deA(r)

fr=mF "t me Ag(r), and = 0 otherwise.
Proof. Denote by L the left-hand side of (11). Then
L= ) > f(8)g(r/(d8))h(d)H (r/d).

d€AL(r) §eAr(r/d)
51: |dka
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It can be proved that
de Ay(r), &€ A(r/d),  &"|d¥
if, and only if,
§ € Axr), T Tleaur), d=6"T"e, ec Ay(xr/6" ).
Therefore

S S @/ (" " ) H (r/ (65 "))
bt ceane/6tTY
6k —a+1€Ak(P)

_ oy UEGMET s

e TR

& e
= 3 BER(E ) g)E(r/6" ).
8€Ak(l‘)

&' e
We thus arrive at our result.

Theorem 8. Suppose f is a quasi- Ay -multiplicative function and a, b,
r € G with a, b € Ag(r). Then

f, Ak finay L Jf(D)f(r) ifa=b,
de%;(,) (/) ((r/b)k’d)‘{o " asb,

Theorem 9. Suppose f is a quasi- Ay-multiplicative function such that
f(r)#0 for all r € G. Then for all n, r € G and integers a, b

S ShE @ nSh N (ie/d) = £ aegen, (6P (6),
d€Ak(r)

where §* = (n,r*) 4.

Theorem 10. Suppose f is an Aj-multiplicative function with (fAwpa,)
(r)#0 forallr € G. Thenforallm, n, re G

> SHAM ()R (myd) £(x)
W (fAarpa,)(d) = (Farnan)(x/8)

if (n,r*¥)ap = (m,r*)q ;= 6k, and = 0 otherwise.
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Theorem 11. Suppose f is a quasi- Ay -multiplicative function and n, r €
G. Denote a =r/v4,(r), bF = (n,'y(r)k)A,k, where v4,(1) =1 and for r # 1,
YA, (r) is the product of distinct prime divisors of r. Then

FOSHRA (@ n5e) = F(a)a, (1au (1) 4, (B)(f Axpo, )(B).

By quasi-multiplicativity Theorems 8-11 can be proved by considering the
case in which r is a prime power. We omit the details.

Theorem 12. Suppose f, g, h and H are arithmetical functionsand n € G.
Let w denote the arithmetical function such that w(1) =0 and for r # 1, w(r)
is the number of distinct prime divisors of r. Then

> S4(dy,. .., duse)h(e)H(n/e) = f(1)((v* H)u(gh))(n),

dl,...,du,e
where the summation is over di,...,d,,e € G such that d;---d,e = n and
dy,...,dq,e are pairwise relatively prime.

Proof. The left-hand side of the identity in Theorem 12 is

Y. f()gle)r(e)H(n/e) = f(1) D u*™/g(e)h(e)H(n/e)

di,erduye e€U(n)
= f(1)((gh)v(v*H))(n);
hence the theorem is valid.
. Theorem 13. Let f, g, h and H be arithmetical functions and n € G.
Then

Y. Shi(di,....duie)h(e)H(n/e) = f(1)((BuH)u(gh))(n),

dy---dye=n
(di--dy,e)=1

where E, = EDED---DE (u factors).
Proof. The left-hand side of the identity is

> fgehEHMm/e)=£1) Y (Y 1)g(e)r(e)H(n/e)

dy--dye=n ecU(n) d;---dy=n/e

(dy---dy,e)=1
= f(1) Y Eu(n/e)g(e)h(e)H(n/e) = f(1)((E. H)v(gh))(n).

e€U(n)

We thus arrive at our result.
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Remark. A large number of special cases of our results can be found in
the literature. In fact, special cases of Theorem 1 can be found in [33, Corollary
(2.1.5), p. 170, Theorem (2.2.6), p. 174], [38, pp. 15 and 72] and [40, Chapter
4.1]. Special cases of Theorem 2 can be found in [2, equation (2.7)], [20, equation
(6)], [33, Theorem (2.2.12), p. 176], [34, Theorem 3.1], [35, equation (4.3)], [41,
Theorem 3] and [44, Theorem 5.3]. Special cases of Theorem 3 can be found
in [1, Theorems 1-4], [2, equations (2.8), (2.10)], [4, Theorem 8], [5, Corollaries
2, 3, 4, 5, 10.2 and 10.4], [6, equation (5.4)], [8, equations (3.1), (5.1)], [10, p.
203], [12, equation (3.16)], [18, equation (2.3), p. 194], [20, equations (4), (5)], [23,
Lemma 1], [28, Theorem 1], [29, equation (1a) and Theorem 8], [30, equation (2.6)],
[31, Theorem 2.4], [33, Theorem (2.1.8), p. 172, Theorem (2.2.11), p. 176}, [34,
Theorems 3.2, 3.3], [36, equation (3.3)], [41, Theorems 1, 2] and [44, Theorem 5.4].
Special cases of Theorem 4 can be found in [1, Theorems 5, 6], [28, Theorem 2]
and [29, Theorem (1b)]. Special cases of Theorem 5 can be found in [1, Theorems
7, 8], [2, Theorem 3.2], [3, Corollary 2.1], [17, Lemma 2.6], [29, Theorem 3], [40,
Theorem 4.1.2] and [44, Theorem 5.5]. Special cases of Theorem 6 can be found in
[7, Lemma 4], [14, Lemma 3] and [25, Theorem 8]. Special cases of Theorem 7 can
be found in [2, Theorem 2.6], [16, Theorem 1], [20, equation (3)], [37, equations
(2.10), (2.11)] and [40, equation (4.14)]. Special cases of Theorem 8 can be found
in [3, Theorem 2], [8, equation (4.2)], [15, Theorem 1], [18, Lemma 2.2, p. 194],
[21, Theorem 5], [24, Theorem 3], [26, equation (4.1.6)] and [32, Theorem 7.2].
A special case of Theorem 9 can be found in [37, equation (2.12)]. Special cases
of Theorem 10 can be found in [4, Theorem 6], [8, equation (4.5)], [9, Theorem
3.3], [21, Theorem 4], [32, Theorem 7.4] and [34, Theorem 3.4]. Special cases
of Theorem 11 can be found in [11, Theorem 3] and [25, Theorem 3]. Finally,
Theorem 6 of [25] is a special case of Theorems 12 and 13.

4. Totally A-k-even functions (modr)

Let r € G be fixed. Then an arithmetical function f(n;r) of one vari-
able is said to be A-k-even (modr) if f(n;r) = f((n,r¥)ax;r) for all n € G.
An arithmetical function f(nj,...,n,;r) of u variables is said to be totally A-
k-even (modr) if there exists an A-k-even function g(n;r) (modr) such that
f(ny,...,ny;r) = g((nyg,...,n,);r) for all ny,...,n, € G. The concept of a
totally A-k-even function (modr) originates from [14] in the case of the arith-
metical semigroup of positive integers. It can be proved (cf. [14, Theorem 1]) that
an arithmetical function f(mny,...,n,;r) is totally A-k-even (modr) if, and only
if, it has a unique representation of the form

f(ng,...,n,r)= Z a(d;r)Car(ng,...,ny;d),
deAr(r)

where
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a(dir) =r7" Y~ g(xk/6%r)Can(r*/dk,. .. " /d; 6).
SeAx(r)

The coefficients a(d;r) are called the Fourier coefficients of f(mi,...,n,;r).
It can also be proved (cf. [14, Theorem 2]) that an arithmetical function
f(ny,...,n,;r) is totally A-k-even (modr) if, and only if, it has the form

(12) f(ny,...,ny5r) = > f(d;r).

at€A(((ni),r*)a )

In this case
a(d;r) = Z f'(r/e;r)er™.

eEAk(l‘/d)

By (12) we find that the generalized Ramanujan’s sum considered in this paper is
a totally A-k-even function (modr).

The purpose of this section is to note that the equations (8) and (10) can be
extended to totally A-k-even functions (modr). In fact, if we replace the general-
ized Ramanujan’s sum by an arbitrary totally A-k-even function f(ny,...,n,;r)
(modr) in the left-hand sides of equations (8) and (10), we must replace the factor
of f(d)g(r/d) by f'(d;r) in the right-hand sides of the equations.
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