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CONSTRUCTING PAIRS OF PANTS

Ara Basmajian

In this paper we supply necessary and sufficient conditions for two hyperbolic
elements (7, 3) to form standard generators for a pair of pants. These conditions
are in terms of the hyperbolic distance between the axes of v and 3 and the
“collar widths” of v and B. Other writers who have investigated collars include
Beardon [Be], Buser [Bu], Halpern [H], Keen [K], Maskit [M], Matelski [Ma], and
Randol [R].

A torsion free Fuchsian group G is said to be a pair of pants if H?/G is
topologically a sphere with three holes. The pair of pants is tight if one of the
holes is really a puncture (that is, an open neighborhood of it is hyperbolically a
punctured disc).

We say that two hyperbolic elements v and § form standard generators for
a pair of pants G if

i) v and B are each primitive boundary elements in G that represent two of
the boundary geodesics on H?/G with (v,8) = G, and
ii) after possibly changing the orientations of v and 8 so that their axes lie to

the right of each other, the product 87 is a primitive boundary element of G

which represents the third boundary component (or equivalently, since 8y is

conjugate to 78 in G, By is a primitive boundary element which represents
the third boundary component).

If we think of v and § as being elements of the fundamental group of the
surface, then the definition essentially says that v and 3 are generators for the
fundamental group each of which is freely homotopic to a boundary geodesic with
the product By being freely homotopic to the third boundary geodesic.

We note that this definition is symmetric in the sense that if v and B are
standard generators then so are 3 and 7. We write (v, #) for a pair of standard
generators.

Define the collar width of a hyperbolic element to be the quantity,

c(y) = log coth T(y)/4,
where T(7) is the translation length of 7.

Main theorem. Suppose v and 8 are hyperbolic elements. Let d be the
hyperbolic distance between the axes of v and . Then (v,B) form standard
generators for a pair of pants if and only if

(%) c(v)+e(B)<d
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with equality if and only if the pair of pants is tight.

Furthermore, d projects to the distance between the boundary geodesics
which correspond to v and 3, and the numbers c(vy) and ¢(B) determine the
widths of disjoint collars on the quotient surface H?/(v, ) (see Figure 1).

c(y)+e(B)<d c(y)+c(B)=4d
Figure 1.

We remark that for any pair of pants there always exist generators that are
not standard. For example consider a standard set of generators (v, 8) for a pair
of pants G. Now form a new set of generators for G given by (v,7%8). These
generators are not standard since 724 is not simple.

We introduce some terminology in Section 0. In Section 1 we show that
inequality (*) is necessary and sufficient for a standard set of generators. In
Section 2 we show that the distance d projects to the quotient, and finally in
Section 3 we finish the proof of the main theorem. Some corollaries to the main
theorem are listed in Section 4.

The inequality (*) appears with a different form in the work of Seppali and
Sorvali [S-S]. The main theorem appears in the author’s Ph.D. thesis [Ba).

I would like to thank my mentor Bernard Maskit for his constant encourage-
ment and invaluable advice.

0. Recall that a Fuchsian group is a discrete subgroup of the orientation
preserving isometries of the hyperbolic plane H?>. We use p(,-) to denote the
hyperbolic metric. An element v of the orientation preserving isometries is said
to be hyperbolic if it fixes two points on the boundary of the hyperbolic plane.
In this case v leaves invariant a unique geodesic A(7) called the axis of 7. An
element which only fixes one point on the boundary of the hyperbolic plane is said
to be parabolic. A boundary element of a Fuchsian group is either a parabolic
element or a hyperbolic element whose axis bounds an interval of discontinuity.
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The hyperbolic distance between two disjoint geodesics in " (H? with the circle
at infinity) is the distance along the unique common orthogonal segment that joins
the two geodesics. The distance is zero if the geodesics intersect.

We say that a set of geodesics bound a free polygon if they bound a common
domain and they do not intersect in H?.

1. Suppose v and B are hyperbolics with disjoint axes. Let o, be reflection
in the common orthogonal of these axes. Next construct the reflections o3 = Bos
and oy = 097 (see Figure 2). The distance between the o; and o; reflection
circles is denoted by o(oi,0;).
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Lemma 1. Let v and B be hyperbolic elements with axes [1,z] and [0, o]
respectively having repelling fixed points ¢ and 0. Let o; be as above. Define o}
to be reflection in the geodesic orthogonal to the axis of v and having the same
right endpoint as o3. Then the o; reflection circles bound a free polygon if and
only if the following inequalities are satisfied

I) d > ¢(B)
and
(II) T(v) 2 20(02,01).

With equality in (1) if and only if 01 = o} .

Proof of Lemma 1. First suppose the o; reflection circles bound a free polygon.
Since B = 0304, we have BA(y) N A(y) = 0. Now 8 has the form B(z) = Az for
A>1;thus A > «z.

Observe that z is uniquely determined by d, and in fact a simple computation
yields the formula

_ ed +1\2
= (ed - 1) '
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Hence d is also uniquely determined by z.
Writing A as eT(® | the inequality A > z translated into hyperbolic terms

becomes ;
T(8 e’ + 142
e )>(ed—-1)

and after some easy manipulations we see that this is precisely inequality (I).
Since the translation length of « is twice the distance between the o; and o,
reflection circles, and since o] separates oy from o3, we have

T(v) 2 20(02,07)-

Furthermore, the fact that two geodesics perpendicular to the same geodesic are
either equal or disjoint implies that T'(y) = 2¢(02,01) if and only if o; = o} . This
verifies the necessity of (II).

For the converse, assume inequalities (I) and (II) hold. Recall that inequality
(I) (by the above arguments) is equivalent to A > z and hence, since by a simple
calculation the o3 reflection circle has radius ), the o3 reflection circle does not
intersect the axis of v (see Figure 2).

Inequality (II) guarantees that

o0(o2,01) > o(02,01).

Thus the o; reflection circle is interior to the o} reflection circle. We conclude
that the o; reflection circles bound a free polygon. This finishes the proof of
Lemma 1. o

We can restate inqualities (I) and (II) in terms of the collar widths of v and
8.

Lemma 2. Inequalities (I) and (II) are equivalent to

() +¢(B) < d,
with equality if and only if equality in (II).

Proof of Lemma 2. We start with ¢(8) + ¢(y) < d. To verify (I) simply
observe that ¢(y) > 0 and ¢(y) + ¢(8) < d imply that d > ¢(3). Next rewrite
() +e(7) < d as

3T |1 3T 4 1
B P T <d
efT(ﬁ -1 efT(‘Y) -1

Exponentiating on both sides and clearing denominators we have

(e%m) n 1) (e%T(v) n 1) <el (G%T(ﬂ) _ 1) (e%m) _ 1)'
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After multiplying and gathering terms we obtain
1
[_ed (eéw) _ 1) + (e%T(ﬁ) + 1)} 3T 4 (e%T(ﬂ) + 1) < e (efms) _ 1).

1 1
Note that [—ed (efT(ﬁ) -1)+ (efT(ﬁ) + 1)] < 0, since d > ¢(f).
Solving for T(y) we find that

—el(e2T® 1) - (e%m) +1)
—ed(e2TB) _ 1) + (27 1 1)

T(v) > 2log

and hence, by some straightforward rearranging we have

1
e2TP)(ed 4 1) — (e? — 1)
- .
e2TP(ed — 1) = (ed +1)

T(y) = 2log

Now it is a simple, albeit tedious, computation to make the substitutions T(3) =

log A and d = log((v/z + 1)/(v/z — 1)) to show that

) 2 2iog( 321

Finally we would like to show that the right side of the above inequality is precisely
20(02,01). To compute this distance we normalize the axis of 4 by an element
A of PSL(2,R) which takes 1 to 0, /= to 1, and z to co. Note that a simple
computation shows that the right endpoint of o} (which is the same as the right
endpoint of o3) is vV Az (see Figure 3). Thus,

o(02,01) = log|4(Va)| = log(%).

This verifies inequality (II). Obviously equality is preserved at each step and
all of these computations are reversible. o

Proof that (*) is necessary and sufficient. Note that if the axes of v and S

intersect in H_ , then d = 0 and the theorem is trivially correct. Thus, for the
rest of the proof we consider v and § to have disjoint axes.

Assume (v, B) are standard generators for a pair of pants. If necessary change
the orientations of 4 and B so that their axes are oriented to the right of each
other. Normalize the group (v, /), by conjugating in PSL(2,R), so that the axis
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of B is [0,00], the axis of 4 is [1,z], and the axis of v lies to the right of the
axis of ~.

The group (7, B) is a subgroup of index two in the reflection group generated
by reflection in the common orthogonals joining the three axes. Denote these
reflections by oy, o2, and o3 as in Figure 2; thus v = o307, f = 0302, and
(B7)" = 105

Observe that since the group (v,8) contains no elliptics, the o; reflection
circles must be disjoint and hence bound a free polygon. Thus we can apply
Lemmas 1 and 2 to conclude the necessity of inequality (*) in the main theorem.

To prove the sufficiency, suppose v and 3 are hyperbolic elements so that
c(B) + ¢(y) £ d or equivalently (I) and (II) are satisfied. Normalize in PSL(2,R)
and change orientations if necessary so that 8 has repelling fixed point 0, attract-
ing fixed point oo, and v has attracting fixed point 1 (let = be the repelling fixed
point of v). Hence f(z) = Az, for A > 1.

Construct the common orthogonal to the geodesics [0, o0] and [1,z] and call
reflection in this geodesic o3. Set o3 = foy and o7 = o2y. Then by Lemma 1
the o; reflection circles bound a free polygon (see Figure 2).

The group (o1, 02,03) acts discontinuously on H2. To see this, observe that
the free polygon bounded by the o; reflection circles and the boundary of H? is
a fundamental polygon for (o1, 02,03).

Now consider the orientation preserving subgroup (v, 3) of (o1,02,03). (v, 3)
is an index two subgroup of a discontinuous group, hence (v, 3) acts discontinu-
ously on H?. Furthermore it is not hard to see that (v, 3) is a pair of pants with
standard generators (v, 3), where n = y~137! is either a boundary hyperbolic or
a parabolic element.

Finally, by Lemmas 1 and 2, note that equality holds for () if and only if the
o; reflection circles bound a free polygon with o; = o}; that is (v, 8) are standard
generators for a pair of tight pants. o

This proves the first half of the main theorem.

2. Suppose (v, ) are standard generators for a pair of pants. Without loss
of generality we can think of v and f as being normalized so that their axes are
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as in Figure 2 and the o; are, as before, reflections in common orthogonals where
B = o302 and v = 020;. We define the interior of the o; reflection circle to be
the connected component of H? — {o; reflection circle } which does not contain
the other reflection circles.

The projections of the axes of v and B are boundary geodesics and since
the quotient surface is complete, the hyperbolic distance between these closed
geodesics is realized by a geodesic line segment orthogonal to the boundary geode-
sics. We would like to show that this geodesic segment is the image of the common
orthogonal segment between the axes of ¥ and §. Hence this would show that the
distance between the axes of standard generators of a pair of pants projects to the
distance between the boundary geodesics that represent the standard generators.
It is in fact enough to prove the following proposition.

Proposition. We have for all 7 € {(01,02,03)

o(TA(), A(B)) > o(A(7), A(B)).

To prove this, first observe that o7 and o3 keep the axis of v invariant. Hence,
we can assume that 7 has the form o;_ --- 03 and no two successive factors are the
same. At this point, the proposition follows by inducting on the following lemma.

Lemma. Let C be a geodesic which is contained in the interior of the o;
reflection circle and whose endpoints lie on the positive real axis. Furthermore
suppose that the euclidean line passing through the origin and tangent to C' has
slope m. Then C gets sent by o; (j # 1) to a geodesic in the interior of the o;
reflection circle having a tangent line through the origin with slope no bigger than
m. The slope is smaller if and only if 0 = 0, .

In essence, the lemma says that as we apply more and more reflections to the
axis of v, its distance from the axis of § can only get bigger.

Proof of Lemma. Clearly reflection by o; sends C to the interior of the o;
reflection circle. Also the tangent line to C is invariant under o, and o3. In
particular the slope of the tangent line remains the same. Hence the only case
we need to consider is when o; = 01 and C lies either in the o2 or o3 reflection
circle. Assume for the sake of argument that C lies in the o3 reflection circle (the
argument for oy is similar).

Draw the line L tangent to C and passing through the center of the oy
reflection circle. Notice that L lies below the tangent line to C' through the origin
and o keeps L invariant. Since o;C lies below the tangent line L, the slope
of the line L tangent to ;C and passing through the origin is smaller than the
slope of the tangent line of C' through the origin. o

3. Let B be a hyperbolic element with axis A(8). The canonical region for
B is
R(B) = {z € H? : o(z,A(B)) < c(B)}.
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See Beardon [B] for an equivalent geometric definition of R(f3).
We say that a subset X of the hyperbolic plane is precisely invariant under
the subgroup I' of G if

((3)) X=X for all ~veTl
and
((i1)) gXNX =40 forall g¢geG-T.

If X is open this says exactly that X/T' isometrically imbeds into H?/G'.

In this section, we would like to show that the canonical region of a primitive
simple hyperbolic projects to a collar on the surface. In order to accomplish this
we will need the following lemma.

Lemma. Suppose v and (3 are simple hyperbolic elements with disjoint axes
in a torsion free Fuchsian group. Then (v, 3) are standard generators for a pair
of pants.

Proof. Normalize v and 3 as we previously did in Figure 1 and also draw
the o; reflection circles as before. Since ¢ is simple the o3 reflection does not
intersect the axis of 4. Similarly, since f§ is simple the o; reflection circle does
not intersect the axis of #. Moreover the o3 and o; reflection circles are disjoint
for otherwise their product would be elliptic. Hence the o; reflection circles bound
a free polygon, and thus by Lemmas 1 and 2, v and 3 satisfy the inequality

e(y)+¢(B) < d

We conclude from the main theorem that 4 and 8 are standard generators for a
pair of pants. o

Proposition. Let 8 be a primitive simple hyperbolic in a torsion free Fuch-
sian group G. Then R() is precisely invariant under (3) in G.

Proof. Clearly all powers of 8 keep R(f) invariant. Next suppose there exists
some g € G — (B) so that gR(B)NR(B) # 0, that is R(¢B8¢~ ) NR(B) # 0. This

implies that
c(9B9™") + c(B) > o(A(gBg™"), A(B)).

On the other hand, 8 being simple implies that the axes of g8g~! are 3 are
disjoint. Furthermore, gBg~! is simple in G since it is conjugate to 3. Thus by
the above lemma (g3¢~!, 3) are standard generators for a pair of pants and hence

c(9Bg™") + c(B) < o(A(gBg™"), A(B)).

We have reached a contradiction. o

Now we can conclude that the canonical regions for 3 and v project to disjoint
collars on the pair of pants (v, 5). For otherwise if the collars did intersect, the
distance d from the projections mA(v) to mA(B) (7 is the projection map to the
quotient) would have to be less than that of ¢(v) + ¢(8). Clearly a contradiction.
This completes the proof of the main theorem.

1
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4. In this section we list two corollaries to the main theorem. The first is a
collar lemma.

Corollary. Two disjoint simple closed geodesics v and (8 on a hyperbolic
Riemann surface have disjoint collars of width c(vy) and ¢(B) respectively. Fur-
thermore, this collar lemma is sharp in the sense that if the collar width of a simple
closed geodesic were any bigger, then there exists a surface where the collars in-
tersect.

Proof. To see that the lemma is sharp, simply observe that on a tight pair of
pants the boundaries of the collars meet tangentially. Hence if they were of any
bigger width they would intersect.

Next to prove that the collars are disjoint, suppose not. Then, using the
canonical isomorphism, there exist lifts of v and 8 to simple hyperbolic elements
with disjoint axes in a torsion free Fuchsian group so that the canonical regions of
these hyperbolic elements intersect. Call the lifts v and 3.

On the other hand, we know that (v, 3) form standard generators for a pair
of pants, and hence (by the main theorem) their canonical regions are disjoint.
We have arrived at a contradiction. o

We remark that this is a new proof of a collar lemma due to Buser [Bu].
Different versions of this lemma have appeared in [H], [K], [M], [Ma], and [R].

Let a be a curve on a hyperbolic Riemann surface that starts and ends in
a simple closed geodesic 8 (that is, a: [0,1] — S is continuous and «(0) € B
and a(1) € B). We say that a has nontrivial relative free homotopy if it is
freely homotopic to a common orthogonal segment joining # to itself, where the
homotopy leaves the endpoints of & in 3. We denote the hyperbolic length of a
curve o by L(a). We have the following corollary.

Corollary. Let 8 be a simple closed geodesic in a hyperbolic surface S,
and let a be a curve that starts and ends in 3 and has nontrivial relative free
homotopy. Then 2¢(8) < L(a).

Proof. Let G be a Fuchsian group representing S. # and o determine two
conjugate simple hyperbolic elements in G with disjoint axes that are joined by
the lift of . Call these hyperbolic elements 3 and 3'. Let d be the hyperbolic
distance from the axis of 8 to the axis of 3'. Then since (3,4') form standard
generators for a pair of pants we have

2¢(8) = ¢(B) + ¢(f) < d < L(a). o

Notice that if « is a closed geodesic that intersects 3 transversely we arrive
at the well known result that the length L(a) — oo as L(3) — 0.
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