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CONNECTEDNESS IN FINE TOPOLOGIES

J. Heinonen, T. Kilpeldinen, and J. Maly

1. Introduction

If E is an arbitrary subset of Euclidean n-space R™, let By p(E) denote the
Bessel capacity of E, 0 <a< o0, 1<p< n/a, that is

Bop(E) =inf{||f| : f€ LL(R"), Gaxf21 in E}.

Here LP(R™) is the usual Lebesgue space of p-th power summable functions,
L% (R™) the nonnegative elements, || f||, the usual norm of f in Ly, and Gq * f
the convolution over R™ of f with the Bessel kernel Ga, best defined by its
Fourier transform Go(¢) = (1 +[¢ |2)—Q/2 , see e.g. [St]. The reader should note
that the Bessel capacity is a Choquet capacity.

As usually in nonlinear potential theories, we say that the set E is (a,p)-thin

at z in R™ if the Wiener integral converges,
! 1/(p-1) dr
(1.1) / (rP="Bq , (E N B(z,))) T <o
0

Here B(z,r) is the open ball {yeR": [z - y| <r}. If E is not (a, p)-thin at
z, then we say that E is (a,p)-fat at z. The set b(E) of points at which E is
(a, p)-fat is called the (a, p)-base of E.

We define the (a, p)-fine topology, Ta,p, to be the collection of all sets V' C R™
such that V¢, the complement of V, is (a, p)-thin at each z € V. Thus |4
is an (a,p)-fine neighborhood of = € V if and only if V¢ is (a,p)-thin at z,
cf. [M2, p. 162]. Topological concepts in (a,p)-fine topology are equipped with
the phrase “(a,p)-fine”, for example (o, p)-finely open, (a,p)-finely connected,
or if no confusion arises, finely open, finely compact, etc.

The particular case of (a,p)-fine topologies when a=1and 1 <p<nis
related to second order elliptic equations. As well known, the (1,2)-fine topology
coincides with the classical fine topology of H. Cartan, the coarsest topology on
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R™ making all superharmonic functions continuous. A similar result holds for all
p not greater than n: the (1,p)-fine topology is the coarsest topology in which
all supersolutions of the p-Laplace equation

(1.2) div(|Vul[P~?Vu) = 0

are continuous. In effect, the equation (1.2) can be replaced by a more general
degenerate elliptic equation

(1.3) div A(z,Vu) =0

where A(z,h)- h = |h|P. See [HKM] and Section 6 below.

There are several sources for the various properties of the Bessel capacities,
the associated nonlinear potentials, and the use of the («,p)-fine topologies in
analysis. We refer the reader e.g. to [AH], [AL], [AM], [Hed], [HW], [M1-2], [MK],
and [R2]. See also [F1]. However, topological properties of (e, p)-fine topologies
are not yet thoroughly investigated. In [AL] D.R. Adams and J.L. Lewis showed
that for ap > 1 each («,p)-finely open and (a, p)-finely connected set is arcwise
connected; the result is false if ap < 1. Our main results in this paper assert that
the («, p)-fine topology is locally connected (provided ap > 1) and it obeys Doob’s
quasi-Lindelof principle: any collection of (a, p)-finely open sets has a countable
subcollection whose union differs from the union of the whole family only by a
set of (e, p)-capacity zero. See Sections 2 and 3. In classical potential theory
these two properties are proved using the balayage of measures, a tool which is
not available in this nonlinear setting. In the linear situation these results are
found in [F2] and [D].

We will also show that if ap > n — 1, then an (a, p)-finely open set is finely
connected, arcwise connected and euclidean connected at the same time, the asser-
tion being false if ap < n — 1. See Section 5. The case ap > n — 1 thus resembles
the classical plane case where this result is known [F3], [GL].

In the final section, Section 6, we apply the aforementioned arcwise connect-
edness result for asymptotic paths of .4-subharmonic functions.

2. The quasi-Lindel6f property
In this section we show that the (a,p)-fine topologies obey Doob’s quasi-
Lindeldf principle.
First we prove an auxiliary result, a modified Wiener criterion.
2.1. Lemma. Let zo € R™. Suppose that z is a sequence of points with
lex — 20| <2772, k=1,2,.... If Bi(zx) = B(xx,3-27%"2), then a set E C R™
is (a, p)-thin at z¢ if and only if

(e}

> (2P B, ,(E N Bi(aw))

k=1

< oo.

)1/(P—1)
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Proof. Since
B((EQ,Q—k-—l) C Bk(xk) - B(:L'o, 2_k)’

the claim follows easily.
The Kellogg property was proved in [HW, Theorem 2J:

2.2. The Kellogg property. Let E be any set in R™. If eq p(E) is the set
of all points at which E is (a,p)-thin, then

Bop(eap(E)NE) =0.

To state our main result in this section recall that 74, has the quasi-Lindelof
property if for each family {Ux}, A € A, of (a,p)-finely open sets there is a
countable set I' C A such that

Bap(J U\ U Tn) =0.

AEA Aer

We prove

2.3. Theorem. The (a,p)-fine topology T, , has the quasi-Lindelof prop-
erty.

Proof. We make use of the following local capacity: Let {Bx}, k =1,2,...,
be the collection of all balls B C R™ with rational centers and radii. Write

X o—t Bap(E N By)
cap(E) = ) 272,
; Ba p(Bt)

for E C R™. Then, clearly, cap(-) is a subadditive set function and B, ,(E) =0
if and only if cap(E) = 0.
Suppose then that the sets Ux, A € A, are (a, p)-finely open and that

U=|JU.

AEA

Let
§= inf{cap(U\ U Ux):TCA counta.ble}.
Aer

Then choosing countable sets I'; C A, j=1,2,..., with

cap(U\ |J Un) <6+1/j
A€T;
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and putting
o0
To=JTj
i=1
we obtain
6 = cap(F)
where

F=U\ | Ux
A€ET

To complete the proof we show that § = 0. Suppose, on the contrary, that
6 > 0. Since By p(F) > 0, it follows from the Kellogg property that there is a
point € FNb(F) C U. Then choose A € A such that 2 € Uy. Now, since
F\ U, is (a,p)-thin and F (a,p)-fat at , Lemma 2.1 enables us to pick a ball
B, with rational center and radius such that

Bap((F\Ux)N By) < Bap(F N By)

whence

cap(F\Uy) <cap(F) =6
which is a contradiction. The theorem follows.

3. Local connectedness

This section is devoted to proving that the (a,p)-fine topology is locally
connected provided ap > 1. This is not true if ap < 1.
Recall that the («,p)-base of the set E is

WE)={zeR": E is(a,p)fat at z}.
We have

3.1. Proposition. The (a,p)-base b(E) of aset E C R™ is a Gs-set.
Proof. The sets

1
Gr = {a: eR": / (r*?~"Bq,,(E N B(z, r)))l/(p_l) %r_ > k}
0

are easily seen to be open and, clearly,
H(E) = () Gx.
k=1

The lemma follows.
We call a set U C R™ (a,p)-finely regular if U°¢ = b(U¢). Proposition 3.1
immediately yields
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3.2. Corollary. An (a,p)-finely regular set U is (a, p)-finely open and of
type Fo.

3.3. Remark. It is easily seen that the (a, p)-fine interior of any (a, p)-finely
closed set is (o, p)-finely regular.

Next we establish the Lusin-Menchoff property (or binormality) for the (e, p)-
fine topology.

3.4. Theorem. Suppose that F C R" is (euclidean) compact and T C R"
(a, p)-finely closed with TN F = 0. Then there is an open set G C R™ such that

TCGCGUHG)CF-.

Proof. We proceed with the proof inductively. Put To = T and let k € N.
Then choose a finite set Zx C F such that

Fc |J B(z2757?).
2EZ}

Write
Py ={z e R™: dist(z, F) <3-27"7%}.

For each j =1,2,...,k and z € Z; choose an open neighborhood Gy j . of Ty—1
such that
Bap(Gijz N Bj(2)) < (2—27%) Bayp(T N Bj(2))

where Bj(z) = B(z,3-2777%). Then putting
Ty =Tr-1 U (ﬂ Gr,j,= \ Pk)
Jrz
we obtain
(3.5) Bap(Ti N Bj(2)) < (2—=27%)Bap (TN Bj(2))
for every j =1,2,...,k+ 1 and z € Z; since
T N Bk+1(z) cTinNP,CT.

To complete the proof write

o-in
k=1

Clearly, G is open and T C G C F°. Moreover, it follows from (8.5) that
Bap(G N Bj(2)) < 2Ba (TN B;(2))
for all j € N and z € Z;. Hence Lemma 2.1 implies that
G)NF =0

and the theorem is proved.
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3.6. Remarks. (a) Stated differently, Theorem 3.4 says that F' has an
(a, p)-finely open neighborhood U and T an open neighborhood G such that
UNnG=290.

(b) Theorem 3.4 holds also if F is assumed to be closed instead of compact,
see Corollary 3.8 below and the proof of [LMZ, 10.25].

The next two corollaries follow using [LMZ, 3.13 and 3.14].
3.7. Corollary. The («a,p)-fine topology is completely regular.

3.8. Corollary. If U is an (a,p)-finely open F,-set, then there is an upper
semicontinuous and («,p)-finely continuous function f: R™ — [0,1] such that

U={zeR": f(z) >0}.

3.9. Remarks. (a) It also follows that (R"™,74,,) is a Baire space; see [LMZ,
3.16).

(b) Corollary 3.7 implies that (a,p)-regular open sets form a base for the
(o, p)-fine topology Tap , cf. Remark 3.3.

We say that a property holds (a, p)- quasieverywhere, abbreviated (o, p)-q.e.,
if it holds except on a set of (a, p)- capacity zero. A function f, defined (a, p)-q.e.,
is called (a, p)- quasicontinuous if for every € > 0 there is an open set G such that
B, ,(G) < € and that the restriction f | .. is continuous. Then a function is
(@, p)-quasicontinuous if and only if it is (a, p)-finely continuous (e, p)-q.e. [HW,
Theorem 8.

3.10. Theorem. Suppose that f is an (a,p)-finely continuous function on
R"™. Then each zo € R" has an («,p)-fine neighborhood W of z, such that
f IW is continuous.

Proof. Similarly to [HKM, 3.17] one can easily show that thereis aset E C R"
which is (a, p)-thin at zo such that

lim f(z) = f(zo).

T—To
z¢ E

Fix j € N. Since f is quasicontinuous, there is an open set G; C B(z,27712)\
B(z,27771) such that the restriction

f|§(xo,2—i+1)\(B(xo,2—i)UG,~)
is continuous and

(3.11) Bop(Gj) < 27%m,
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Writing
oo
A=|JG;UE
i=1
and W = B(zo,1)\ 4, (3.11) implies that W is an (a,p)-fine neighborhood of

zo. Moreover, f|y, is continuous as desired.
For the next lemma we need to assume that ap > 1.

3.12. Lemma. Suppose that ap > 1 and that U is an (a, p)-fine neighbor-
hood of zo. Then there is an (a, p)-fine neighborhood V of zo, V C U, such
that V is connected in the euclidean topology.

Proof. By [AL, Theorem 2] there is an (o, p)-fine neighborhood V' of zo,
V' Cc U, such that for each € V' there is an arc 7, joining z to z¢ in U. Then

V= U%

zeV!

is the desired (a, p)-fine neighborhood of zo.
3.13. Remark. Lemma 3.12 is false if ap < 1. Indeed, let

c

U= (f_j 8B(0,1/3))

Since Ba,p(8B(0,1/5)) = 0 for ap < 1 [M1, Theorem 21}, U is («, p)-finely open.
On the other hand, {0} is the euclidean 0-component of U. Hence Lemma 3.12
fails to hold if ap < 1.

3.14. Lemma. Suppose that ap > 1 and that U is an (a,p)-finely regular
set. Then the family

ClopU ={V cU:V and U\ V are (a, p)-finely open}

is a o-algebra on U.

Proof. Let Vi € ClopU, k =1,2,..., and zo € N3, V. It suffices to show
that NV} is an (a, p)-fine neighborhood of xo. Since for each integer k, the sets
Vi and U\ Vi are (a,p)-finely regular, Corollaries 3.2 and 3.8 allow us to choose
upper semicontinuous and (a, p)- continuous functions fx and gi, 0 < fi, gr <1,
such that

Vi ={z € R": fix(z) > 0}

and

U\ Vi = {z € R" : gx(z) > 0}.
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Write -
F=Y 27 (fi + g0)-
k=1

Then f is («, p)-finely continuous whence, by Theorem 3.10, there is an (a, p)-fine
neighborhood W C U of z¢ such that f|; is (euclidean) continuous. In light of

Lemma 3.12 we may pick an («,p)-fine neighborhood W of z,, W C W, such
that W is connected. Then fix k£ € N. Since f|w is continuous and f; and g
are upper semicontinuous, the restrictions fi|w and gx|w are continuous. Thus
the sets Vi NW and (U\Vi)NW are relatively open in W. Since W is connected
and zo € Vi N W it follows that W C Vi. Consequently,

W C ﬁ Vi
k=1

whence N2, Vi is an («, p)-fine neighborhood of ¢ as desired.
Now we are ready to prove our principal theorem.

3.15. Theorem. If ap > 1, then the (a,p)-fine topology is locally con-
nected.

Proof. Let Uy be an («, p)-fine neighborhood of zo. Choose an (a, p)-finely
regular neighborhood U of zg such that U C Uy. Write

Clop, U ={V CU :29 € V,V is (a, p)—finely open
and U \V is (a,p)—finely open}.

Using the quasi-Lindelof property (Theorem 2.3) we find a sequence Vi € Clop,, U
such that the set

F=|J{U\V: Ve Clop, U}\ G(U\Vk)
k=1

has the («, p)-capacity zero. Then Lemma 3.14 implies that

W= ﬁVk\F

k=1

is an (a,p)-fine neighborhood of zg. On the other hand, W is the (a,p)-fine
component containing zy since

W= {V:V € Clop,U}.
The proof is complete.

3.16. Remark. The example in Remark 3.13 shows that the (a,p)-fine
topology is not locally connected if ap < 1.
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4. Variational capacity and Hausdorff measures

Throughout this section let a = m be a positive integer and p > 1 such that
mp < n. We present some results concerning capacity and measure densities;
these results, mostly known, will be needed in Section 5.

Let U and Q be open sets in R™ with U CC Q. Define the variational
(m, p)-capacity of U in Q to be the number

cap,, ,(U,§) = inf Z /;) |D%p|P dz
|a]=m

where the infimum is taken over all ¢ € C§°(Q) with ¢ > 1in U. If ECCQ is
any set we define

capm,p(Ea Q) = éréf;] Capm,p(U’ Q)

UCCSQ open

Then there are constants ¢; = ¢1(n,m,p, dist(E,8Q)) and c; = c3 (n,m,p,
diam(Q2)) such that

¢1 B p(E) < capmyp(E,Q) < ¢2 B p(E),
see [R2, Section 6].

Let A : [0,00) — [0,00) be a continuous nondecreasing function with A(0) =0
and lim, o h(r) = co. We define the h-Hausdorff measure (or content) of a set
E by

Hh(E) = 1nf{z h(?"i) : EC U B(.’L’,‘,T‘i)}.
i i=1

The following theorem is due to Yu.G. Reshetnyak [R1, Lemma 6] and [R2,
Theorem 4.1]; see also [Mar]. We briefly indicate how to deduce it from Reshet-
nyak’s results.

4.1. Theorem. Suppose that

[ (20" # ) <o

for all 0 < r < rg <1. Then for each open set E C R"™ and z € R"
Hy(ENB(z,r)) < cI(r)? cap,,, (ENnB(z,r), B(z,2r))

for r < rg. Here ¢ = ¢(n,m,p).
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The proof is based on the following lemma [R1, Lemma 6].
4.2. Lemma. If u € L?(B(2r)) is nonnegative, sptu C B(2r) and
oy = [ W,
B2r) |z =yl
then there are constants K; = K;(n,m,p), Ko = Ky(n,p) and K3 = K3(n) such
that
K, I(r _ -
H,,({m: o(z) > -ig(—lu(z rm "/P||u||,,}) < Ky 87ul?

for all § > 0.

Proof of Theorem 4.1. Fix r < . Choose ¢ € C§°(B(2r)) such that ¢ =1
in EN B(r). Then, by [R2, Lemma 6.2],

s <amm [ 3 AL,

B(21) |4 |z — y|n—m

Write
uly)=c1 Y, |D*e(y)|.

. laj=m
Since there is a constant ¢ = ¢(n, m) > 0 such that
et inf/ [u? dm < cap,, ,(E N B(r), B(2r)) < cinf/ |u|? dm
B(2r) B(2r)
where the infimum is taken over all such u, we may assume that
Jull < 357

where K, is the constant of Lemma 4.2.

Now choosing 6§ = 2K;I(r) Lemma 4.2 yields

Hi(ENB() < Ha({e s 9(2) 2 1)) < cln,m, p)I(r)P|ull.

This completes the proof.

4.3. Remark. As well known, the converse inequality for Theorem 4.1 holds
with the function h(r) = r*~™ if mp < n, h(r) = (log(Q/r))l_p if mp =n, see
e.g. [MK], [R2, Theorem 4.2] and [Mar, 4.1]. A survey of comparison theorems
can be found in [Hed].

4.4. Remark. If mp < n it follows from the Sobolev embedding theorem
that for r <1

(4.5) cap,, ,(E, B(2)) < cap,, ,(E, B(2r)) < ccap,, ,(E, B(2))
whenever E C B(r). Here ¢ = ¢(n,m, p), cf. [Maz, Proposition 9.1.1/3]. Hence
(4.6) ¢1Bm p(E) < cap,, ,(E, B(2r)) < ¢;Bm »(E)

whenever E C B(r). Here ¢; = ¢i(n,m,p), i = 1,2.
If mp = n, the assertions (4.5) and (4.6) do not hold.
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5. Comparison between different types of connectedness

Our main result in this section reads: for ap > n — 1 the (a, p)-finely open
set is (e, p)-finely connected, arcwise connected, and (euclidean) connected at the
same time.

We start with two auxiliary results. The first is a consequence of [AH, Theo-
rem B].

5.1. Lemma. Suppose that ap >n — 1. Then there is go > 1 such that
Tav}’ C Tn_l’q

for all ¢ € (1,490)-

Proof. We show that the assertion follows from [AH, Theorem B].
We may assume that ap < n. Then we need only to show that thereis ¢ > 1
such that
(m-Dp-D+n _alg=1+n
P - q '
Since p > 1, the left side of (5.2) is less than n. Hence there is go > 1 such that
(5.2) holds for ¢ < go because

(5.2)

alg—1)+n
q

—n

as ¢ — 1. The lemma is proved.
The next lemma is essential, see [HK3, 3.4], [LM, 3.16] and [MS] for special
cases.

5.3. Lemma. Supposethat ap >n—1. If U is an («, p)-fine neighborhood
of xo, then there is a sequence of radii r; — 0 such that

0B(zg,r;) C U.

Proof. Write B(r) = B(zo,r) for r > 0. In the light of Lemma 5.1 we may
assume that o =n — 1 and that ap < n. Let E = U°. We may further assume
that E is open. Let ¢ = 2(ap+n —1) > n — 1 and write h(r) = r"~9, r > 0.

Then Y
2r P
I(r) = / ( h(t) > ‘i_t = c(n, p)rn=0/p lep=n)/p
0

$n—ap

and hence it follows from Theorem 4.1 and Remark 4.4 that, for r <1,

Hy(ENB(r) 2Py (En B(r), B(2r))

rn—q rn—ap

< c(n,p) Ba,,(ENB(r)) '

rn—ap

(5.4)
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Fix r < 1 and suppose that for each p € [3r,7] the sphere dB(p) meets E. Then
it follows easily, cf. Remark 5.7 (b) below, that

(5.5) Hy(EN B(r)) 2 Ha([zres,rer]) 2 c(n, p)r™*

where e; = (1,0,...,0). Then (5.4) and (5.5) yield
Ba.p(ENB

(5.6) L(W_—;;—(—T—‘)—) > ¢(n,p) > 0.

On the other hand, since E is (o, p)-thin at z¢ we can find an integer j, such
that for r =277, j =730, jo+1,...,

Bay(ENB(r) __

pn—oap
where c¢ is the constant of (5.6). This proves the lemma.

5.7. Remarks. (a) Lemma 5.3 fails to hold for ap < n — 1. In fact, the line
segment E = (0,e;] is of (a, p)-capacity zero [M1, Theorem 21] whence E° is an
(e, p)-fine neighborhood of 0.

(b) To establish (5.5) above we made use of the following simple symmetriza-
tion property of Hausdorff measures: Let E C R™ and write E* = {|z|e; : z €
E}. Then Hyp(E*) < Hi(E).

The main result of this section is

5.8. Theorem. Suppose that ap > n — 1 and that U is an («,p)-finely
open set. Then the following are equivalent.
(1) U is («, p)-finely connected.
(2) U is arcwise connected.
(3) U is (euclidean) connected.

Proof. The implication of (1)==-(2) was proved in [AL, Corollary 2] for alt
ap > 1. Since (2) trivially implies (3) we need only to show that (3) implies (1).
This, in turn, immediately follows from [LMZ, 5.4] and the next lemma.

5.9. Lemma. Let ap >n —1. If V and W are disjoint («,p)-finely open
euclidean connected sets, then

VAW =90.

Proof. Suppose, on the contrary, that 2o € VNW. Let z; € W. In the light
of Lemma 5.3 we can pick a radius 0 < r < |z; — z¢| such that

O0B(zo,r) CV C W°.

Then let z; € W N B(xo,r). Since 0B(zo,r) separates z; and zo in W, W
cannot be connected, and the lemma follows.
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5.10. Remarks. (a) Let U be an (a, p)-finely open and (a, p)-finely con-
nected set with ap > 1. It follows from [AL, Theorem 2] that each two points in
U can be joined by a coordinate path in U.

(b) Suppose that ap < n — 1. Then the statement (2) (and hence (3)) of
Theorem 5.8 does not imply (1). To see this, suppose first that ap > 1. Let E
be the line segment (0,e;]. Since E is of (a,p)-capacity zero we may choose an
open connected neighborhood D of E such that D is (a,p)-thin at 0. Thus D°
is an (a, p)-fine neighborhood of 0. Let V' be the (a,p)-fine component of the
(a, p)-fine interior of D¢ containing 0. Then V is («,p)-finely open and arcwise
connected by Theorem 3.15 and [AL, Corollary 2]. Thus

U=DuV

is (a,p)-finely open and arcwise connected. However, U is not («,p)-finely con-
nected.

Next, using the inclusion relations among fine topologies [AH, Theorem B] we
obtain a counterexample also for ap <1 if n > 3. The plane case follows from a
slightly more careful but similar reasoning.

(c¢) For ap <1 the implication of (1)==(2) in Theorem 5.8 is false as shown
in [AL, p. 62], cf. Remark 3.13.

(d) Theorem 5.8 is known in the plane for the classical fine topology, cf. [F'3,
Theorem 3] and [GL].

6. Asymptotic paths for A-subharmonic functions

In this final section we give an application of Theorem 5.8. We show that
there is a coordinate path along which an entire A-subharmonic function which
is not bounded from above tends to infinity. However, due to Theorem 5.8, we are
confined to the case p>n —1.

Recall that the (1,p)-fine topology, 1 < p < n, is intimately connected
to the (nonlinear) potential theory of A-subharmonic functions. More precisely,
let A:R™ x R®" — R" be a mapping which satisfies the usual assumptions of
measurability, boundedness, ellipticity, coercivity, and homogeneity (that is, the
assumptions (2.1) — (2.5) in [HKM] or in [H]). Continuous weak solutions to the
equation (1.3) are called .A-harmonic, and an upper semicontinuous function u
in an open set {2 is termed A-subharmonic if for each domain D, compactly
contained in Q, and each A-harmonic h € C(D), h > u in 0D implies h > u
in D.

For basic properties of A-subharmonic functions and their potential theory
we refer to [HK 1-3], [K].

It was proved in [H] that if u is an entire A-subharmonic function in R™,
and not bounded above, then there is a path I', I'(t) — oo as t — oo, such that
u(z) — oo as z tends to oo along I'. In the classical theory of subharmonic
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functions it is known that the path I' can be chosen to be polygonal; this was first
proved by L. Carleson. We refer to [F3] for a lucid survey on the subject.

We do not know whether a polygonal path can always be found for general
A-subharmonic functions. However, we apply Theorem 5.8 and show that this is
the case at least for p >n — 1.

6.1. Theorem. Suppose that p > n — 1 and that u is A-subharmonic in
R™, unbounded from above. Then there is a coordinate path I' going to infinity
such that

Jim u(z) = co.
z€el

By a coordinate path we mean a path which is a countable union of (possibly
degenerated) line segments parallel to the coordinate axes.

Before we indicate how Theorem 5.8 can be used to deduce Theorem 6.1 some
remarks about (1, p)-fine topology and .4-subharmonic functions are due.

In [HKM] the A-fine topology 74 was defined to be the coarsest topology in
R"™ making all A-subharmonic functions in R™ continuous. It was then shown in
[HKM] that

TA = Tl,p'

In effect, in [HKM] a seemingly different Wiener criterion was used, namely
f d
(6.2) / (r?~" cap, ,(E N B(zo, ), B(:vo,Qr)))l/(P_l) —;r- < oo
0

However, this integral converges simultaneously with the integral in (1.1). For
p < n this is an immediate consequence of (4.6) and for completeness we provide
a proof in the case p = n (the fact that the two Wiener criteria coincide also when
p = n is evidently part of the folklore). Thus, let p = n and define the capacity

Cin(E) = inf{] (IVol" + [o]") dm : v € C°(R™), v > 1 in E}.
Rn

Then the C ,-capacity is equivalent to the By ,-capacity, cf. [AM] or [Hed]. We
prove

6.3. Proposition. Let E C R™ and = € R™. Then

[e o]
Z (cap; o(EN Bk,Bk_l))l/(n_l) < o0
k=1

if and only if
Y (Cr1a(EN B < oo,
k=1

Here By = B(x,2_k).
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Proof. The “only if” part being a trivial consequence of Poincaré’s inequality,
we only prove the converse. For k € N let ui be the Ci n-capacitary potential of
ENBy. Let dy =supyp,_, uk. We show that limg— oo di = 0. This will complete

the proof since then for k big enough di < 3, and it follows that
C1,n(EN By) > 27" capy ,(E N Bg, Bg-1)

which implies the assertion.

To this end, suppose that d = limsupdy > 0. Then using the Harnack
inequality for uj outside Bj and the minimum principle (see [S]) we obtain an
infinite set I C N such that

Jinf uy > ¢(n)d
k=1
for every k€ I.
Write
S = U aBk_l.
kel

Fix k € N and pick the least j € I such that j > k. Then

Clyn(E n Bk) Z Cl,n(E n B]) _>_ (cd)"Cl,n(Bj_l)
> (cd)"Cyn(S N By).

Then the set S is (1,n)-thin at z, contradicting Lemma 3.12. Thus d = 0 and
the proposition is proved.

Proof of Theorem 6.1. Let u be an A-subharmonic function in R", un-
bounded from above. Then there is a number Lg > 0 such that for each L > Ly
u is unbounded in the set K(z,L), where IK(z,L) is the union of all continua
which contain z and on which u is > L, see [H, 4.5]. Pick points z; in R"
inductively as follows. Let z; be any point such that u(z;) > 2Lg, and suppose
that z,, ..., ¢; have been chosen. Let z;4; be a point in K(xj,u(xj)) such that
u(zj41) > 29t1Ly. Then z; and ;41 can be joined by a continuum in the finely
open set {u > 2/Lg}. Since p > n — 1, Theorem 5.8 implies that z; and z;41
belong to the same fine component U; of {u > 2/Lo}; in particular, there is a
coordinate path I'; joining z; and 4, in U; [AL, Theorem 2]. Then T' = UT)
is the required path, and the theorem is proved.
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