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COMPLETIONS OF H-CONES

Sirkka-Liisa Eriksson-Bique

Introduction

H -cones ([2]) and hyperharmonic cones ([5]) are ordered convex cones possess-
ing order properties similar to those of positive superharmonic and hyperharmonic
functions, respectively, on harmonic spaces. An H-cone can always be extended
to a hyperharmonic cone by adjoining to it an element co. This extension does not
generally have potential-theoretic properties. In this paper we construct a com-
pletion of an H -cone which resembles a set of positive hyperharmonic functions
on an S-harmonic space. We recall that a harmonic space X is S-harmonic if for
any = € X there exists a positive superharmonic function on X which is strictly
positive at z.

In S-harmonic spaces every positive hyperharmonic function is a pointwise
supremum of an upward directed family of positive superharmonic functions 3,
Corollary 2.3.1]. In our completion of an H-cone S, every element is a supremum
of an upward directed family of elements in S.

We present three characterizations of a completion. A completion of an H -
cone S is a set of some functions in S (Theorem 2.7). This idea of a completion
is stated in [4, p. 18]. Moreover, a completion is a set of upward directed families
for which an equivalence relation is defined (Theorem 2.8). This extension was
considered in [6, Proposition 2.2.]. Lastly a completion of an H-cone S is a set
of some subsets of S (Theorem 2.9).

I infima of pairs of functions and suprema of upward directed families are
pointwise in an H-cone S of functions, then its completion is a set of functions
that are pointwise suprema of upward directed families of functions of S. It is an
open question whether this fact holds without the assumption that infima of pairs
of functions are pointwise. A completion of the dual of an H -cone is given in [4,
Proposition 2.6].

1. Preliminaries

Our basic structure is a partially ordered abelian semigroup (W, +, <) with
a neutral element 0 and having the properties

(1.1) u>0
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and
(1.2) u<v = utwlv4w

forall u, v, we W.
Along with the initial order (<), we use another partial order <, called
specific order, defined as follows:

u=<v if v=u+u for some u' € W.

A structure (W, +, <) satisfying (1.1) and (1.2) is called an ordered convex
cone if it admits an operation of multiplication by strictly positive real numbers

such that for all o, S € R4 \ {0} and z, ye W
a(zt+y)=azr+ay, (a+p)z=az+pfz
(@B =a(fe), lo=z,
z <y = azr < ay.

A mapping ¢ from an ordered convex cone C' onto an ordered convex cone
D is called an isomorphism if it satisfies

s<t = p(s) < p(t),

e(s+1) =o(s) + o(2),
olas) = ag(s),
for all s, t € C and a € Ry \ {0}. Ordered convex cones C and D are called
isomorphic if there exists an isomorphism ¢ from C onto D.

Definition 1.1. An ordered convex cone (W, +, <) is called a hyperharmonic
cone if the following axioms hold:

(H1) for any non-empty upward directed family ' C W there exists a least upper

bound \/ F satisfying
\V@+F)=z+\/F

for all z € W,
(H2) for any non-empty family F' C W there exists a greatest lower bound A F

satisfying
Nez+F)=z+ \F,

(H3) for any u, v; and vy € W such that u < vy + vy there exist u; and uy € W
satisfying the properties u = u; + u2, u; < vy and ups < vy.
The theory of hyperharmonic cones is developed in [5], [6], [7] and [8]. We
need the following result:
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Theorem 1.2. Let (W,+,<) be an ordered convex cone. The structure
(W, +,<) is a hyperharmonic cone if and only if axiom (H1) and the following
properties hold:

(a) for any u and v in W, the set {w € W : u < v+ w} has a least element
denoted by S,u and S,u Xu,
(b) every non-empty subset E of W has a greatest lower bound.

([5,Theorem 2.3]).

A partially ordered abelian semigroup with a neutral element 0 andsatisfying
(1.1), (1.2) and (a) is called a hyperharmonic structure by Arsove and Leutwiler
in [1].

Note that (H3) leads to the inequality

(1.3) uA(v+w)SuAv+uAw
for all u, v and w in a hyperharmonic cone W.

An element u € W is called cancellable if z + u < y + u implies ¢ < y
for all z, y € W. Cancellable elements in hyperharmonic cones are the same as

cancellable elements with respect to the specific order [5, Theorem 3.9]. A useful
characterization of cancellable elements is the condition

(1.4) u is cancellable <= u= /\ 2o

The element u (u € W) satisfies the following properties:

(1.5) utu=u,
(1.6) v<u <= v+tu=u,
(1.7) v<u = v<u —= vu = vtu=u.

The proof of the above mentioned properties is stated in [5, Theorem 3.9].
The next result is helpful for handling uncancellable elements

Proposition 1.3. If (W, +, <) is a hyperharmonic cone and v an element of
W then (u+ W,+,<) is also a hyperharmonic cone. Moreover, u is cancellable
in u+ W ([5, Proposition 4.1]).
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Definition 1.4. The set of cancellable elements of a hyperharmonic cone is
called an H -cone.

Referring to [5, Remark 2.6 (a)] and [5, Theorem 3.13] our definition of an
H -cone is equivalent to one given by Boboc, Bucur and Cornea [2, p. 27]. In the
theory of H -cones the notation R(u — z) is used for the greatest lower bound of
the set {s:s>u—=z} (see [2, p. 40]). We prefer the notation S,u, since the
subtraction is not generally defined in a hyperharmonic cone. If S is an H -cone
then R(u —z) = S,u forall u, z € S.

Let W be an ordered convex cone. A subset S is called solid in W if for any
elements u in W and s in S the condition u < s implies u € S. A subset S is
called order dense in W if for any u in W there exists an upward directed subset

F of S such that u =\/ F.

Theorem 1.5. If an ordered convex cone W satisfies (H1) and (H2) and has
a solid and order dense subset possessing property (a) of Theorem 1.2 then W is
a hyperharmonic cone.

Proof. Let W be an ordered convex cone satisfying (H1) and (H2). Denote by
S a solid and order dense subset of W enjoying property (a) of Theorem 1.2. Let
u and z be arbitrary elements of W. In order to prove that W is a hyperharmonic
cone it is enough by Theorem 1.2 to show that theset E={weW :u<w+z}
has a greatest lower bound and A E <u. Write u = \/ F for an upward directed
subset F' of S. We verify that

(1.8) NE=\ Sirst.

teEF

Note that Sia,t exists for all ¢t € F and ¢ € W since S is solid and (a) holds
in S. The set {Sia,t:t € W} is directed upwards. Indeed, let s, ¢t and r be
elements of F such that r > s and r > ¢. From the inequalities s < Spazr + s
and r < Syaer + 7 Az we infer that

$=8AT < (Spper +8)A(Srazr + 7 Az) = SppeT + s A .
Hence we have S,.az7 > Ssazs. Similarly we see that Spazr > Siagt. Thus the
family {Ssaes : s € F} is directed upwards and by (H1) has the least upper
bound denoted by wq. The element w, belongs to E since

T+wo > At+ Siagt 2t

for all t € F' and therefore z + wy > u.
Let w be an arbitrary element of W satisfying x + w > u. Then

wtzAt=(w+z)A(w+t) >2uA(w+t)>t
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for all t € F. There results w > Sia,t for all t € F and further w > wg. Hence
wo is the least element of E, verifying (1.8).
Lastly we show that wo <u. From Siast <Xt it follows that t = Sia.t + wy
for some m; € S. Put
vy = /\ my

t>s
teEF
for s € F. Let s, t and r be elements of F such that »r > s and r > t. Then we
have
vg + St/\zt <m,+ Sr/\xr =r<u.

By taking the least upper bounds we obtain
wo + \/ vy S u.
SEF
On the other hand,
wo+my > Siagt +my=t2>s

for all t € F with t > s. This result implies wg + vs > s for all s € F, yielding
wo + VseF”S > u. Hence the equality wo + \/seF vy = u holds and therefore
wo = u, completing the proof.

Corollary 1.6. If an ordered convex cone W satisfies (H1) and (H2) and
has a solid order dense subset S which is an H -cone then W is a hyperharmonic
cone.

This Corollary follows from [2, Proposition 2.1.2] and Theorem 1.5.

2. Completion of an H-cone

Let S be an H-cone. A hyperharmonic cone W is called a completion of an
H-cone S if S is isomorphic with a solid and order dense subset of W and W
satisfies the axiom

(H4) \ wAf=wn(\/F)
feF

for all upward directed families F C W and w € W.
Note that (H4) does not generally hold in hyperharmonic cones. A counter

example is given in [5, Remark 4.18]. However, we can prove the following version
of (H4):

Lemma 2.1. Let W be a hyperharmonic cone. Then the identity
VE+\ waf=(\F)A(w+\/F)
—  eF A

holds for any upward directed subset F' of W and we W.
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Proof. Let F be an upward directed subset of W and w be an element of
W . Without loss of generality we may assume that w < \/ F. Indeed, we have

V faw=\/ (fAr(wA\/ F))
feF fEF

and further by (1.5)

(\/F)/\(w+E)=(\/F)/\(w+£)/\(\/F+\_/ﬁ)
=(\/F)A((wA\/F)+y5).

The inequality
w +\/F >w > \/ wAf

is clear. On the other hand w < \/ F' implies that

VFE+\Vwonrnf=\((F+VPOAw+\/F)>w+f

feF feEF

for all f € F. Hence we have \/ F +\/;cpwA f > w+\/ F. Applying now (1.5)

we obtain
VF+\ wafzw+\/F.
—  jer LA

This completes the proof.
Corollary 2.2. Let S be an H -cone. Then

(2.1) V fas=(\/F)rs

feEF

for any upward directed bounded subset F of S and s € S.

Proof. If F C S is bounded then \/ F' is cancellable. This assertion follows
from the preceding lemma.

Applying an observation stated in [4, p. 183], we will show that a completion
of an H -cone is a set of mappings given below:

Definition 2.3. Let S be an H-cone. Denote by S the set of mappings
p: S — § satisfying

(2.2) e(u Av) =p(u)Av

forall u,ves.
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Proposition 2.4. Let S be an H -cone and ¢ a mapping from S into itself.
Then the following statements are mutually equivalent:

(i) ¢ satisfies (2.2);
(i1) ¢(u Av) = p(u) A p(v) for all u, v € S and if s < ¢(u) for some s, u € S
then ¢(s) = s;
(i) ¢(u) =V,esuAp(s) forallu e S.
Proof. Assume that ¢ satisfies (2.2) and u, v € S. Then p(uAv)=uAp(v)
and ¢(u Av) = v A ¢(u), which yields

e(uAv) =uAe(v) AvAp(u) = e(u) Ae().

This completes the proof of the first part of (ii). Suppose now that s < ¢(u) for
some s and u in S. Since

p(u) = p(u) A p(u) = p(p(u) A u) = p(p(u Au)) = p*(u)
we obtain
e(s) = (s Ap(u)) = s Ap*(u) = s Ap(u) = s.

Hence (ii) holds.

Assume next that (ii) is true. Since uAp(s) < p(s) and ¢(s) < ¢(s) we have
uAp(s) = o(uAp(s)) and ¢(s) = ¢%(s) by the second part of (ii). It follows
that

Vures) =\ eunre(s) =\ o) Ap(s) = \/ o(u) A p(s) = o(u).

SES sES sES sES

Lastly assume that (iii) holds. Using Corollary 2.2 we notice that

e(uAv) = \/u/\v/\cp(s):v/\ \/u/\cp(s):cp(u)/\v,
s€ES SES

completing the proof.
A function ¢ satisfying (2.2) possesses the following properties:

Proposition 2.5. Let S be an H -cone. If a mapping ¢ : S — S satisfies
(2.2), then the following properties hold for all w and v in S:

(2.3) o(u) < u,

(2.4) u <o = p(u) < p(v),

(2.5) *(u) = p(u),
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(2:6) e(u +v) < o(u) + ¢(v),
(2.7) p(u+v) = p(p(u) +¢(v),

(2.8) 4,9(\/ F)= \/ @(f) for all upward directed bounded subsets F' of S.
feFr

Proof. The properties (2.3)~(2.5) are obvious. Applying (2.2) we see that
o(u) =¢((u+v)Au) = @(u+v)Au and ¢(v) = ¢(u+v) Av. Hence by (1.3) we
have

uAho(u+v)+vAp(utv)>(utv)Ap(u+v)=p(u+v).
This result gives (2.6).

The inequalities ¢(u) < u and ¢(v) < v lead by (2.4) to p(u+v) > ¢ (p(u)+
¢(v)). Since the converse inequality follows from (2.4)(2.6), the property (2.7) is
true.

Lastly Corollary 2.2 and Proposition 2.4 ensure that

VP =\ F)re) =\ V Faes) =\ o)
SES SES fEF feEF

finishing the proof.
Increasing mappings from S into S induce mappings satisfying (2.2).

Lemma 2.6. Let S be an H -cone and denote by F the set of increasing
mappings ¢ : S — S. Define a mapping “: F — F by
sw) =\ ¢()Au (ueS).
SES

Then the mapping ~ possesses the following properties:

(2.9) p €S,

(2.10) ¢ =¢,

(2.11) pse = p<,
(212) @p(u) = ap(u/a) = ag(u),
(2.13) (P F W) = (B(w) + ) Au,
(2.14) erp=¢+0,

forallu € S, ¢, p € F and a € Ry \ {0}.
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Proof. Property (2.9) follows from Corollary 2.2, and (2.10) from Proposi-
tion 2.4 (iii). Properties (2.11) and (2.12) are clear. To prove (2.13), let  and p
be elements of F. Since ¢ is increasing we infer

(@(w) + f(w)) Au=\/ (p(s) Au+ pu(t) Au) Au
sES
teS

=V (p(s) + u(®) A

SES
teS

V (p(s) + 1(s)) Au = (o + p)(w).

sES

Property (2.14) follows directly from (2.13) and (2.10).
Let us define in S multiplication by strictly positive real numbers and addition
as follows:
Q- = @7

eOu=p+u,
for a € Ry \ {0} and ¢, p€S.

_ Theorem 2.7. Let S be an H -cone and < the pointwise order in S. Then
(S,®,<) is a completion of S.

Proof. Using Lemma 2.6 it is easy to check that (S,®,<) is an ordered
convex cone. We apply Theorem 1.5 to prove that S is a completion of S. Let
F be an upward directed family in §. The mapping p : S — S defined by
u(s) = cheF ©(s) belongs to S by Corollary 2.2 and \/ F = u. Hence the least
upper bound is translation invariant, and so (H1) holds in S.

Let F be a subset of S. Then the mapping u : S — S defined by u(u) =
Aer ¢(s) belongs to S and A F = p. Thus (H2) holds in S.

Let us define the mapping ¢ : $ — S by i(s)(u) = s Au for u and s in S.
Obviously the mapping ¢ is well-defined. We show that ¢ is a one-to-one mapping
from S onto i(S). If i(s) < i(t) for s, t € S then sAu <tAu forall ueS.
Hence s <t As <t. There results

i(s) <i(t) <= s<t.

Thus ¢ is a one-to-one mapping from S onto #(S). Since (sAu+tAu)Au=
(s+t)A(u+s)A(t+u)A2uAu = (s+1t)Au, the mapping ¢ is also additive.
Using (2.12) we easily see that a -i(s) = i(as). Consequently (i(S),®,<) is an
H -cone which is isomorphic with (5, +, <).
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The cone i(S) is solid in S. Indeed, assume that 1 € S and u € i(S) such
that ¢ < u. Then p(t) = sAt for some s € S and Y(t) < sAt<sforallteS.
Hence \/,cg%(t) exists and

P(u) = (\/ $(1) Au

tes

for all u € S which means 1 = i(\/,cs%(t)). To prove that i(S) is order dense,
suppose that 1 € S. Then (u) = Vies®(t) Au for all u € S by Proposition
2.4(iii) and further ¢ = \/,cgi(¢(t)).

Collecting the material proved above we establish by Theorem 1.5 the asser-
tion that _§ is a hyperharmonic cone. We still have to show that (H4) holdsin S.
Let F C S be directed upwards. Using the results stated earlier we notice

@A F)@) =) A\ F)w) =g A\ pw).

LEF

Since ¥(u) < u by Proposition 2.5 we obtain by Corollary 2.2

WA\ P)w) =\ uu)Apu).
HEF
Thus
s AP =\ @A w@ =\ ¢ A,

HEF HEF

completing the proof.
A different type of an extension of an H -cone is constructed in [6, Proposi-
tion 2.2]. Next we shall show that it is also a completion.

Theorem 2.8. Let S be an H-cone. Denote by Q a family of upward
directed subsets of S. An equivalence relation ~ in  is defined by

FrG <= \/sanf=\/srg forallses
feF 9EG

The equivalence classes of the relation ~ is denoted by [F| for F € Q and the set
of all equivalence classes by W. Addition, multiplication by strictly positive real
numbers and partial ordering are given in W as follows

[F]+[Gl=[F+G], ofF]=[aF],

[F1L[G] <= \/s/\fﬁ\/s/\g forall s € S.
fEF geEG

Then (W, +,<) is a completion of S.
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Proof. We show that W and S are isomorphic. Define a mappingT': S — W
by
T(p) = [¢(S)], ¢€S5.

The mapping I’ is well-defined, since ¢(S) is directed upwards for all ¢ € S.
Indeed, if s and t belong to S then ¢(s +t) = ¢(¢(s) + ¢(t)) by (2.7). Hence
@(s+1) € p(S). Moreover, by (2.4) and (2.5), p(s+1t) > ¢(s) and p(s+1) > p(t).
Thus ¢(S) is directed upwards.

Assume that u <1 for pu, ¥ € S. Then Proposition 2.4(iii) leads to

\/ i) A = () < bCas) = \/ h(s) A

SES SES
for all u € S. Therefore we have [u(S)] < [4(S)]. The implication
(W) < [w(S)] = n<y
can be proved similarly. Hence we have established the relation

p<tp = T <T([H)

for all u, » € S. Let now F € Q and define ¢ : S — S by o(u) = Vier fAu.

Corollary 2.2 results in ¢ € S. Hence the mapping I' is a one-to-one mapping
from W onto S.
The mapping I' is also additive, since

P(u+ ) = [{ (u(w) +p() Auiues}]
= [{(\/ ,u(s)/\u+\/¢:(t)/\u)/\u:u€$’}

SES teS

- [{ \/ (u(s) +¥(®) Ausues }} = [W(S)] + (5]
3E€ES
teS

Using Lemma 2.6 we notice that

L(a-p) = [ap(S)] = [{ap(t/a):t € S}] = al(p).

Consequently, W is a hyperharmonic cone satisfying (H4) and isomorphic with
S. It is obvious that W is a completion of S.

Popa has found a presentation for the preceding set W in terms of solid
subsets A of S satisfying the following property:

(2.15) If BC Aand \/ B exists in S, then \/ B € 4.

Now we will state and prove this result differently.
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Theorem 2.9. Let S be an H -cone. Denote by W, the set of solid subsets
of S satisfying (2.15). Addition, multiplication by strictly positive real numbers
and partial order in W, is given by

A+B={a+b:ac Abe B},

aA={aa:a€ A},
A<B <+ ACB.
Then (W1, +, <) is a completion of S.

Proof. Notice that + is well-defined in W; by (H3). We show first that S
and W; are isomorphic. Define a mapping I': S — W, by

T(p)=»(S), peS.

To show that I' is well-defined, let F' C ¢(S) such that \/ F exists in S. By

Proposition 2.5
VEzo(\/F)2 \ o).
feF

Proposition 2.4(ii) results in ¢(f) = f for all f € F', which yields ¢(\/ F) >/ F.
Thus we have ¢(\/ F)) = \/ F, and so \/ F belongs to ¢(S). Hence ¢(S) satisfies
(2.15). Since the set ¢(S) is also solid by Proposition 2.4(ii), the mapping I' is
well-defined.

Let 1 and ¢ be mappings in S such that u < ¢. Then u(u) < t(u) for all
u € S and further by Proposition 2.4(ii), % (u(u)) = p(u). Hence u(S) C ().
Suppose that pu(S) C 9(S) for some p, ¥ € S. Using (2.3) we notice that

w(u) =9 (u(u)) < o(u)
for all u € S. There results y < 3. Now we have established the result
p<yp <= T(p) <T).

Assume that A is a solid subset of S satisfying (2.15). Then evidently the
set A is directed upwards. Define a mapping ¢ : $ — S by

e(s)=\/ frs, s€S.

fEA

Proposition 2.4(iii) assures that ¢ € S. Since A satisfies (2.15), ¢(s) € A for all
s € S and therefore p(S) C A. On the other hand, ¢(f) = f forall f € A, which
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leads to A C ¢(S). Hence ¢(S) = A. Thus we have shown that I is a one-to-one
mapping from S onto Wj.

It is easy to check using Lemma 2.6 that I'(a - ) = aI'(u). Let p and ¢
belong to 5. Then T'(p @ ¢) = { (p(u) +¥(u)) Au:u € S}. Since pu(S)+ ¥(S)
is solid, we have T'(u @ ¥) C u(S) + ¥(S). But applying Proposition 2.5 we infer

(1) + () + 9 () + () ) A (1) + (w))
> (1 (u) + 9%(w)) A ((u) + $(v)) = n(w) + $(u).
Hence p(S)+ ¥(S) C I'(x @ ). We have shown that T' is additive. Altogether

we have verified that T' is an isomorphism from S onto W;. Consequently, W;
is a hyperharmonic cone satisfying (H4) and evidently a completion of S.

Theorem 2.10. Let an H -cone S be a cone of extended real-valued functions
on a set X such that

(a) fAg=inf(f,g) forall f, g€ S,
(b) V F(z)=supsecp f(z) for any dominated upward directed family F'.

Then the completion of S is the set

C ={sup f: FC S is directed upwards }.
feF

Proof. We show that C' and S are isomorphic. Define a mapping I' : § — C
by
I(p) = sup ¢(f).
feF

Clearly if ¢ < p then I'(¢) < I'(u). Conversely, assume that I'(¢) < T'(u) for ¢
and p in S. Then we have

sup ¢( f) = sup ¢(f)
fEF f€Ss
and further
sup inf = inf(su inf (su = sup in
up (e(f),9) = in (;eg o(f),9) < (fegﬂ(f),g) sup £(u(£),9)

for all g € S. This implies by (2.2) and (a) that ¢(g) < u(g) for all g € S. Hence
we have proved that
p<p =  I(e)<T(w.

Let F' be an upward directed subset of S. Define a mapping ¢ : S — S by
©(9) = supsep f A g. Then we have

I'(¢) = sup (f) = sup f.
fEF JEF
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Hence the mapping T is a one-to-one mapping from S onto C.
Using Lemma 2.6 we easily notice that I'(a - ¢) = aI'(¢). To prove additivity
of T', let ¢, p € S. Applying the definitions we obtain
D(p @ @) = sup(p @ ¢)(f) = sup(u(f) + () A f
feF fes

< sup p(f) + ¢(f) = T(1) + T(p).
fEF

To show the converse, we first note that

sup (u(f) + ¢(f))

fEF
A f 2 sup () +0(1) + @ () + 2(H) A (W) + ()
> igg(uz(f) + @ () A () +¢(F))-

Since by Lemma 2.6 u?(f) = p(f) and ¢*(f) = ¢(f) we have

(k@ ¢) 2 T(p) + T(p).

Hence T is an isomorphism from S onto C. It is therefore obvious that C is a
completion of S.
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