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LOCAL REGULARITY OF SOLUTIONS TO
TIME-DEPENDENT SCHRODINGER EQUATIONS
WITH SMOOTH POTENTIALS

Peter Sjogren and Per Sjolin

Abstract.  Consider solutions to the Schrodinger equation i0u/dt = —Pu + Vu in a
half-space {(z,t) € R" x Ry} with given boundary values u = f on R™. Here P is an elliptic
constant-coefficient operator in z, and V = V(z) is a suitable potential. We prove several results
about local regularity and boundary behaviour which were known in the case V = 0. In particular,
if f belongs to a Sobolev space, then u is locally in a mixed Sobolev space. Moreover, u converges
to its boundary values along quasi-every vertical ray, and the corresponding maximal function can
be estimated.

1. Introduction

We define the Fourier transform in R™ by setting
for= [ e @)do

and also introduce Sobolev spaces H, = H,(R"), s € R, by defining the norm

I, = ([ @+ iee)Ifora)™.

Let p be a polynomial in R™ which is real and elliptic, i.e. its principal part
does not vanish in R" \ {0}. We assume that the degree m of p is at least 2.
Then set P = p(D), where D = (D,,...,D,) and Dy = —i9/0zk .

Let V be a real-valued function in C*°(R"™) with D*V bounded for every
a. We define an operator H = —P+V by setting Hf = —Pf+V f for f € Hp,

Then H is a self-adjoint operator on L?(R") and e~ ¥ is a unitary operator
for t € R. We set u(-,t) = e”Hf f € L?(R"). Then u is a measurable
function in R™*!, and it is well known that u satifies the Schrodinger equation
i0u/8t = Hu for f € H,,, where the derivative is taken in the L? sense. Taking
the derivatives in the distribution sense, one also has i0u/dt = —Pu + Vu for
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We shall here study the regularity of u when the initial value f belongs to
Sobolev spaces H,. Also the pointwise convergence of u(-,t) to f as t — 0 will
be discussed.

To formulate the results, we introduce mixed Sobolev spaces H, , for ¢ > 0,
r>0. Weset H,, = H,-(R" xR) = (G, ® G;) * L*(R"*!), where G, and G-
are Bessel kernels in R™ and R, respectively. The Bessel kernel is given by the

formula G,(¢) = 1+ |§|2)—’/2 , and the norm in H, , is the obvious one.
We introduce the class

A= {go € C*°(R"); there exists € > 0 such that
|D¥p(z)| < Ca(l+ |x|)_1/2_€ for every a}
and set
Sf(z,t) = e(z)¥(t)u(z,1),

where we assume that ¢ € 4 and ¥ € C§°(R). Let S denote the Schwartz class.
We then have the following result.

Theorem 1. If o >0, r >0, then

(1) 1Slls, . < ClIfllx . fes

etmr=(m=1)/2

Here the constant C depends on ¢ and 3.

Theorem 1 expresses a local smoothing property for the Schrédinger equation.
For instance, taking ¢ =r =0 in (1) we obtain

@ 1l pagamssy < C Il
and o= (m —1)/2, r =0 yields
(3) IS e 1yya0 S CNFlL2 R -
From (3) it then follows that u(-,t) € H(m_1)/2(R") for almost every t if f €
L*(R™).
Setting
u*(z) = esssupgcscy |u(a:,t)|, zeR", feS,

we have the following maximal inequality:
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Theorem 2. If s > %, then for any ball B C R"

([ wera)" <cslsln,. ses.

To formulate our next result, we shall introduce capacities C, for s > 0. We

set
Cy(E) = inf { ||g||§ :0<geL*R"),G,+g>1on E}, ECR".

By C,-q.e. we mean everywhere except on a set of C,-capacity 0, and similarly
for C,-q.a.

A function f € H, can be written as a convolution f = G,*g with g € L%, At
C,-q.a. points z, this convolution is well-defined in the sense that G,*|g|(z) < co.
These well-defined values of f can be recovered if one knows f almost everywhere.
In fact, the means of f in small balls centered at z converge to G, * g(z) if
G, *|g|(z) < o0.

We shall now describe how to make the solution u to the Schrodinger equation
precise by defining it at sufficiently many points. Let f € L*(R"). The function
u is measurable and defined a.e. in R®*1. Let B, ¢(6) be the ball in R™t! with
center (z,t) and radius § and let B ,(6) = {(z',t);|¢' — 2| < 6} be a horizontal
disc. We define the value u(z,t) as the limit as § — 0 of the mean value of u over
either By ¢(6) or B, ,(6), at all points (z,t) where this limit exists. We speak of
the ball and the disc method.

Theorem 3. Let s > ,i—, and take f € H,. Define u as above and make
u precise by the ball or the disc method. If 0 < o < s — %, then the following
holds for C,-q.a. z: The function u is defined at every point of the vertical line
{z} x R, its restriction to this line is continuous, and its value at (z,0) is f(z).

We shall also prove that the local smoothing inequality (2) is best possible in
the following sense.

Theorem 4. Assume P = A and V = 0. Define Sf as above and assume
that

(4) IS fll2mnsry S C I, » fes,

for all p € C°(R™) and ¢ € C°(R). Then s > —3.

In the cases n = 1 and n = 2, Theorem 2 can be improved in the following
way.

Theorem 5. Assume n =1 or n = 2. Let P = A¥, where k = 1,2,3,...,
and define u* as in Theorem 2. Then for any ball B C R"

. 2 1/2
([ w@ra)” <csifly,, fes
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In the case V =0 (and ¢ € C§° in Theorem 1) Theorems 1-3 were proved
in P. Sjogren and P. Sjolin [5] and Theorem 5 in P. Sjélin [7].

We remark that local smoothness for solutions to Schrédinger equations has
also been studied by P. Constantin and J.C. Saut [1], [2].

We also remark that an important tool in the passage from the case V =0 to
the case of general V' is Duhamel’s formula for solutions to Schrédinger equations

t
u(-,t) = etf f +/ ei(t_r)P( - iVu(-,T)) dr, feH,
0

(cf. [1], [2]).

In [6] we proved Theorem 2 in the case when n > 3 is odd, P = A and
V € C§° is small, with a different method. The proof in [6] was based on results
of A. Melin [3], [4] on intertwining operators. Set H = —A +V and Hy = —A.
Melin constructed a bounded linear operator A on L? such that HA = AH,.

One has
e—th — Ae—thOA—l,

and a combination of properties of A and results in [5], [7] for e~**Ho gave Theo-
rem 2 in this special case.
2. Proof of Theorem 1
We set

Sof(z,t) = ‘P(x)d’(t)citpf(m)’ ze€R", teR, feSR"),
where ¢ € A and ¢ € C§°(R). With a = 2(m — 1) one then has

() ISoflla,, < Clifla , 20,720

e+mr—a
In the case ¢ € C§°(R), (5) was proved in [5]. It is also easily seen that the
argument in [5] gives (5) with o = r = 0 in the case ¢ = G, with s > 7. It is
then clear that (5) with ¢ = r = 0 holds for all ¢ € A, since |p(z)| < CG,(z) for
some s > 1. This result can now be extended as in [5] and gives (5) for all ¢ > 0,
r>0.

The conditions on V' imply that V' is a multiplier on H,, i.e.

(6) IVAllg, <Csllflg,, s€R.

Next we prove that

(7) e ¥ flly, < Collflly,, teR,seR.
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To begin with, it follows from the ellipticity of P that g € Hy, if and only if
g € L? and (=P + V)g € L%. More generally,

(8) g € Hjm if and only if g,(—P+V)g,...,(—P+V)jg€L2,

with a corresponding norm equivalence. Here j = 0,1,2,.... The “only if” part
in (8) follows directly, and we shall prove the “if” part by induction.
Assume that g, (=P + V)g, ..., (=P 4+ V)ig € L?. Using an induction

assumption, we then conclude that g and (—P + V)g € H(j_1)m . It follows that
Pg € Hij_1)m and g € H;m . Hence (8) is proved.
For f € Hjm we have

(_P+V)ke—itHf=e—itH(_P+V)kfEL2, OSkS],
since (—P 4+ V)*f € L? and e ¥ is unitary on L?. It follows that
||e_itHfHHjm SC“f“Hjms j=0a132a"'a

and interpolation and duality now give (7).

We shall also verify that the mapping t — u(-,t) = e 7**¥ f is continuous from
R to H, if f € H,. Because of (7), it is sufficient to assume that f € S. We set
ve = u(-,t) — u(+, o) and may assume that s > 0. One has

loell,,, SC,  teR,

and
|lvell, — O, t—to.

We also have

MM&;=/@+Kﬂ1MﬂV&
s/ U+RWm@W%+/ (14 [6P)72 (1 + [62)* oe(6)|Pde
[€I<R |€|>R

< C(1+ R |luell; + (1 + B2 |Jue||%

a41 ’

and it follows that [|v¢||;;, — 0 as ¢t — to. The continuity is proved.
We shall now prove (1). Duhamel’s formula gives

t
u(-,t) = etP f +/ ei(t_')P( - iVu(-,T)) dr, feH,.
0
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For f € §, we multiply by ¢ € A and take norms in H,, s > 0, getting

dr,

e IP(Vu(, )|

lou( Dz, < lloe™ fll 5, + /, |

where I; = [0,t], t >0, and I; = [¢,0], ¢t < 0. Hence,

(/_i lpull?, dt)1/2 < (/_illw“Pflli,, dt)1/2
. 1/2
(Lo, wya)”

We invoke (5) with ¢ = s, r = 0 to estimate the first term on the right-hand side.
Using an obvious notation, we have
, 1/2
dT) at)
H,

vl ez < © 'lf“H‘-an(/_TT (|

where we have also used the Cauchy-Schwarz inequality in the last term. The
square of this term can be majorized by

T ,T
P “T 2 1dT.
T[T/_T lee™ ® (Vu(-, ))HH‘ dt: d

Invoking (5) again, one finds that this is less than

e P (Vu(, )|

T
¢ [ Wut,l,, dr
-T
(where C' depends on T'). Hence,

levullz—rrm,) < Clifllg,_, +C IVullpe—rrm, .y

and from (6) and (7) we obtain

9) “‘Pu||L2(-T,T;H.) <C ”f“H,_a .

This estimate yields (1) in the case r = 0.
We shall now extend this to the case 7 > 0. An easy consequence of (9) is
that

(10) ”‘PDEUHU(—T,T;H.) < C”f”Hc-Hﬁl—a '
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Indeed, Leibniz’ rule shows that
¢DPu=DP(pu)+ Y 4Dy,
[vI<18]-1

for some . € A. A simple induction argument gives (10).
It follows from the Schrodinger equation that for ¢ € A

Ou
bgp = 2 PP

[v]I<m

where ¢., € A. Differentiating with respect to ¢ and using the Schrédinger equa-
tion again, one obtains more generally

o*u .
P = Z pyD7u, k=0,1,2,...,

[v|<km
where ¢, € A.
The above equality combined with (10) now gives
oFu
“SOW ScllfllH,+mk_aa SOEAa k:0a1’2,""
L*(-T,T;H,)
It follows that
Hgm/m“H‘_k SCI'f‘IH,+mk_aa 320, k:0’172)"'

for p € A, ¥ € Cg°(R).

Theorem 1 now follows from the above inequality and interpolation.

3. The remaining proofs

Proof of Theorem 2. Here we use the notation

1/2
IS grcsy = ([ 157 i my d2)

so that L%(H,) = Hp,r. For s > % define r > % by mr —a = s. Then Theorem 1
implies that

IS fll2ar,y < Cllfllm, -
Since r > 1 the L°°(R) norm is majorized by the H,(R) norm. We obtain

1/2
([ w@ras)™ <Califlln,
B
for every ball B, if we choose ¢ and 3 suitably. Theorem 2 is proved.

We omit the proof of Theorem 3, since it is the same as the last part of the
proof of Theorem 2 in [5].
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Proof of Theorem 4. Set
o(z,t) = /R €l fe)de,  zeR™teR,feSRM).
It is sufficient to prove that if
(11) levvllLzmnsry £ Clifllg, fESs,
for all p € Ci°(R"), ¥ € C°(R), then s > —1.

Choose g € C5°(R) so that 0 ¢ suppg, g is even, and g(3) = 1. We first
assume n = 1 and define f by f(¢) = g(¢/N) where N > 1. Then

I£11%, =/ (1+l£|2)’lg(€/N)|2df=/ (1+ N2[n|?)°|g(n)| dnN < CN?*H1,
R R
so that
(12) Iz, < CN°H/2.

The function e’ has Fourier transform ce~##*/4 for some constant c # 0,
and one finds that

v(z,t) = ct"'l/z/ e‘“’"””“Nﬁ(Ny) dy
R
:ct—-l/Z/ e—ia:z/4te2i:y/4te—iy2/4tN§(Ny)dy
R
for t > 0. Hence,

lv(:c,t)' = ]c|t"1/2l/ eiu/Nt)zﬂe"‘(1/4N2t)12§(z) dz|, t>0.
R

The function

F(a,ﬂ) ____/ eiaz/Ze—iﬂﬁg(z) dz
R

is a continuous function of (e, ), and F(1,0) = 2rg(3) = 2r. It follows that
there exists a § > 0 so that IF(a,ﬂ)l >21ifl<a<l+é6and 0B <. We
conclude that |v(z,t)| > ct~1/2 for t > 1/4N?6§ and Nt < z < Nt + §Nt. When
1/N§ <t < 2/N§, one then has |v(:c,t), > ¢N'/2 for z in an interval of length
6Nt > 1. Hence, Iv(:c,t)[ > c¢N'/? for (z,t) in a set of measure > ¢/N.

It follows that

1\1/2
||¢¢U||L2(Rn+1) > cN1/? <N) =c,
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and (11) and (12) yield N*t1/2 > ¢ for N > 1, so that s > —3.
When n > 2, the argument is similar. One chooses g as above and sets

(&) = 9(&1/N)g(&2/N) -+ 9(6n/N), €= (&1s---s6n).
Proof of Theorem 5. Set ug(z,t) = (¢'F f)(z) and u§(z) = supy<i<q |vo(z,1)|.

It was proved in [7] that

/
(19) ([ w@ra)" <Cslfl,. ses.

where v = n/4.
Since (e*P(Vu(-,7)))(z) is a continuous function of (z,t,7) if f € S, it
follows from Duhamel’s formula that

u(z,t) = uo(z,t) + /t (ei(t_T)P( - iVu(-,T)))(x) dr.

0

Hencefor 0 <t <1

lu(z,t)| < ug(z) + /l sup (eitpe_iTP(Vu(-,T)))(x)l dr.

0 0<t<1

Using (13) twice we obtain

(/Bu'(:v)2dz)l/2 < (/Bu*(xfdz)m
+ /0 1 ( /B (oi‘iﬁl \(e“Pe-"P(vu(.,T)))(x)|)2dz>1/2 dr
< Clfl, +© [ 17 (Vatr) g,
<Cllflls, + | )l dr < Sl

and the proof is complete.
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