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LOCAL REGULARITY OF SOLUTIONS TO
TrME-DEeENDENT s cHnöDTNGER EeuATroNs

\MITH SMOOTH POTENTIALS

Peter Sjögren and Per Sjölin

Abstract. Consider solutions to the Schrödinger equation i0u/0t = -Pu*Vu in a
half-space {(c,l) € R" x R,1} with given boundary values u -.f on Rn. Here P is an elliptic
constant-coefficient operator in c, and Y = l/(r) is a suitable potential. We prove several results
about local regularity and boundary behaviour which were known in the case V = 0. In particular,
if / belongs to a Sobolev space, then u is locally in a mixed Sobolev space. Moreover, u converges

to its boundary values along quasi-every vertical ray, and the corresponding maximal function can
be estimated.

1. Introduction

We define the Fourier transform in R" by setting

^t/(O: I e-ie''7@1ax
JR,

and also introduce Sobolev spaces H": H"(R ), s 6 R, by defining the norm

ll/lla,- (l*,(r+

Let p be a polynomial in R" which is real and elliptic, i.e. its principal part
does not vanish in R" \ {0} . We assume that the degree m of. p is at least 2.
Then set p : p(D), where D : (Dt,...,Dn) and D* : -i?l1xx.

Let V be a real-valued function in C-(R") with D"I/ bounded for every
a. We define an operator H : -P *V by setting Hf : -Pf +Vf for f e H*.

Then ä is a self-adjoint operator on Z2(R") and "-itH i" a unitary operator
for t € R. We set u(.,,t) - e-itilf , f e L'(R). Then u is a measurable
function in Rn*1, and it is well known that u satifies the Schrödinger equation
i0u/0t = Hu for / e ä-, where the derivative is taken in the Z2 sense. Taking
the derivatives in the distribution sense, one also has i?ul?t : -Pu *Vu for
feL'.

l€l')'li(o l' de)'
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We shall here study the regularity of u when the initial value / belongs to
Sobolev spaces är. Also the pointwise convergence of u(.,r) to / as t + 0 will
be discussed.

To formulate the results, we introduce mixed Sobolev spaces He,, for p ) 0,
r ) 0. We set He,, = äc,"(R" x R) = (Gr 8 G,)* L2(fu'+1), where Go and G,
are Bessel kernels in R" and R, respectively. The Bessel kernel is given by the

formula C"(€) : (r + lel\-"|', and the norm in Ho,, is the obvious one.

We introduce the class

and set

S f (*, t) : e@)$(t)u(x, t),

where v/e assume that p € ,4 and r/' € Cf (R). Let § denote the Schwartz class.

We then have the following result.

Theorem 1. If p ) 0, r 2 0, tåen

A - {, a C*(R"); there exists €, > 0 such that

lo"p(r)l s c,(1 + lrl)-L/2-e for every ")

Herc the constanf C depends on g and tl.t .

Theorem 1 expresses a local smoothing property for the Schrödinger equation.
For instance, taking Q = r :0 in (1) we obtain

(1)

(2)

(3)

llS/llr,,(R,+r; S C llfll ru_(m_ L)tz,

and I : @- l.)12, r : 0 yields

lls/llr1,- -L\tz,o 
< c ll/ll;z(rn) '

FYom (3) it then follows that gu(., t) e H6-tllz(R") for almost every f if / €
,'(R").

Setting

,*(r):esssupo<r<l l"@,f)l ) n€R", f€§,

we have the followirrg maximal inequality:
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Theorem 2. If s then for any ball B C Rn

Calllll,,,, f €§.

To formulate o

set

C"(E):inf { llgll?;o 1g e L'(R"),G"*e > 1on E}, .E c R".

By C" -q.e. we mean everywhere except on a set of C" -capacity 0, and similarly
for C"-q.a.

Afunction f €H, canbewrittenasaconvolution/:Gc+g withg eL2. At
C 

"-j.a. 
points r , this convolution is well-defined in the sense that G" 'r lgl(c) < m '

These well-defined values of / can be recovered if one knows / almost everywhere.

In fact, the means of / in small balls centered at c converge to G" * g(r) if.

G"*lel(r) <m.
We shall now describe how to make the solution z to the Schrödinger equation

precise by defining it at sufficiently many points. Let f e Lz(R). The function
, i, *""r,rrable and defined a.e. in R'+r. Let 811(6) be the baII in R"*1 with
center (c,t) and radius 6 and let 8',,r(6): {(r',t);l*'- rl < 6} be ahorizontal
disc. We define the value u(x,t) as the limit as 6 --r 0 of the mean value of u over

either 8,,r(6) or 8'r,r(6), at all points (c,t) where this limit exists. We speak of
the ball and the disc method.

Theorem 3. Let s ) L, *dtake f € H". Define u- as above andmake
u precise by the ball or the ösc method. If 0 < p < s - *, th"n the following
holds for C c-e.a. x: The function u is defined at every point of the vertical line

{r} * R, its restriction to this fine is continuous, and its vaJue at (c,0) is /(c).
We shall also prove that the local smoothing inequality (2) is best possible in

the following sense.

Theorem 4. Assume P: A andV = 0. Define Sf as above artd assume

that

(4) ll.S/ll;,1p"+\<Clllllr,, .f€§,

for all p € Co-(R") *d ?, € C,""(R). Then r 2 -å.
In the cases n = 1 and n = 2, Theorem 2 can be improved in the following

way.

and

u* (*)' a*)'l' SU,
urn

Theorem 5. Assume n- 1 or n- 2. Let P-
define Lt* as in Theorem 2. Then for any ball B C

Uru*(*), 
a*)'/' s cnlllll Hnt+,

extresult,W€sha1IintroducecapacitiesC,fors>

Ak, where k: 1,2,3,...,
Rn

f€§.
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In the case tr/ : 0 (and p e Cf; in Theorem 1) Theorems 1-3 were proved
in P. Sjögren and P. Sjölin [5] and Theorem 5 in P. SjöIin [7].

We remark that local smoothness for solutions to Schrödinger equations has
also been studied by P. Constantin and J.C. Saut [1], [2].

We also remark that an important tool in the passage from the case I/ : 0 to
the case of general V is Duhamel's formula for solutions to Schr<idinger equations

'('rt) 
: ei(t-r)P( _iVu(.,r))dr, f € H*

(cf. [t], [2]).
In [6] we proved Theorem 2 in the case when n ) 3 is odd, P : A and

V e Cf; is small, with a different method. The proof in [6] was based on results
of A. Melin [3], [4] on intertwining operators. Set H : -L, *I/ and äo : -4.
Melin constructed a bounded linear operator A on L2 such that H A : AHo .

One has
e-itH _ a"-itHo n-r ,

and a combination of properties of A and results in [5], [7] for 
"-itHo 

gave Theo-
rem 2 in this special case.

2. Proof of Theorem 1

We set

Ssf(a,t)-?(*)rl,U)""'f(*), n € R', teR, f €s(R"),

p € A and ,b € Cf(R). With ot : i@ - 1) one then has

eitP f + lr,

where

(5)

In the case g € Cf(R), (5) was proved in [5]. It is also easily seen that the
argument in [5] gives (5) with Q: r:0 in the case p: d" with s > ]. tt is
then clearthat (5) with p : r :0 holds for all I e A, sin"" lf(r)l < CC"1r; fot
some s > | . ttris result carr now be extended as in [5] and gives (5) for all p ) 0,
r)0.

The conditions on V imply that I/ is a multiplier on H", i.e.

(6)

Itlext we prove that

s€R.

(7) llr-it, fllr, teR, s€R,.
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To begin with, it follows from the ellipticity of P that 9 € H- if and only if
g e L2 and (-P + V)g € .L2 . More generally,

(8) s € Hi* if and only if s,(-P *V)g,...,(-P *V)i g e L2,

with a corresponding norm eguivalence. Here J :0,Lr2r.... The ttonly if" part
in (8) follows directly, and we shall prove the "if" part by induction.

Assume that g, (-P +V)g, ..., (-P +V)id e L2. Using an induction
assumption, we then conclude that g and (-P +V)g e H6-g*. It follows that
Pg € H6-r)rn and g e Hi^. Hence (8) is proved.

For / € Hi^ we have

(-.P + v)x"-;tn, - "-;tH(-p +v)ky e L2, 0 < k < i,

since (-P +V)kf € L2 and r-itlr ir unitary on L2. It follows that

ll"-"' fllr,^ s c ll/ll,,,- , j : 0, 1, 2, "' ,

and interpolation and duality now give (7).
We shall also verify that the mapping t - u(.,t): 

"-;tn 7 is continuous from
R, to ff" if / € ä". Because of (7), it is sufficient to assume that / e §. We set
ut: u('rr) - r(',te) and may assume that s ) 0. One has

and

llr, ll, + 0, t --+ ts.

We also have

ll,,llä. = I O+ lfl,)"10,(Ol'a€

= /r,=.(r 
+ E2)"10,(€)l'a€ + 

/r,rr(r 
+ l€l')-'(r + l€l')"*'lo,(ol'a(

< c(1 + R')" llr'll3 + (r + R2)-1 llr,ll?r.*, ,

and it follows that lluslls. * 0 as t + to. The continuity is proved.
We shall now prove (1). Duhamel's formula gives

u(.,f): eitPf + 
lr'ei(t-r)P( - iVu(.,r))dr, f€ H*.
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For / € §, we multiply by p € A andtake norms in H", s ) 0, getting

llp u (.,r) 
I I n. S ll,e "i' 

P f ll *, * l r,ll, "u, 
-,) p 

(v u(., r))ll r, or,

where 4: [0,t|, t>_ 0, and 11:1t,0], t < 0. Hence,

U:,ilpu|'*. or)"' 
= 

( [,llv""P rll',, or)'''

. (l:,( l,,llr"'u-')P 
(vu( ,.))11,. o')' o')''' '

We invoke (5) with p : s, r : 0 to estimate the first term on the right-hand side.
Using an obvious notation, we have

lleull.zsr,r;H,) 1 c llfllx,-,-(l:r,,l( l,,ll,c",r,-,t, tvu(.,r))[", *) or)''' ,

where we have also used the Cauchy-Schwarz inequality in the last term. The
square of.this term can be majorized by

, 
l:,1:,llv"i,,P (vu(,,))ll1. dtr d,r.

Invoking (5) again, one finds that this is less than

1T, 
J _rllv "(., 

r)ll2r, _. dr

(where C depends on ?). Hence,

lleull 7, 6r,r; H ; S C ll f ll u, -. + C llv ull 12 (-r,r ; H, - o1 t

and from (6) and (7) we obtain

(9) lleullp6r,r;H,)lCllflln"-..

This estimate yields (1) in the case r :0.
We shall now extend this to the case r ) 0. An easy consequence of (g) is

that

(10) lleol"llr,"1-r,r;H,)<Cllfllu,*1u1-..
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Indeed, Leibniz' rule shows that

sDeu=oq(pu)+ » ptD1u,
lrlSlFl-t

for some p, € A.A simple induction argument gives (10)'
It follows from the Schrödinger equation that for I e A

0u r-e#: I v,D'u,
lrl<-

where gt € A.Differentiating with respect to t and using the Schrödinger equa-

tion again, one obtains more generally

,#: 
,ä* 

etD1u, /c : o, 1,2,. . . ,

where gt € A.
The above equality combined with (10) now gives

llr*ll <cvlla,*mh-ai e€A,k:0,\,2,....
ll "u llL2(_T,T;H,)

It follows that

llprbullu,,r < Cll/lls.*mh_a) s ) 0, /c:0,1,2,...

for tp € A, rlt e Co-(R).
Theorem 1 now follows from the above inequality and interpolation.

3. The remaining proofs

Prcof of Theorem 2. Herc we use the notation

ll^9/111,,1a,y = (f. lls/(r,')ll'r,r*r o*)''' ,,

sothat L'(Hr):Ho,,. Fors>| definet> å by rnr-d:s. ThenTheoreml
implies that

llS/ll1,1r,y S C ll/llr, .

Since r > | tte .t-(R) norm is majorized by the fI'(R) norm. We obtain

( lr'.1'1'o*)''' 
< callflln,

for every ball B, if we choose g and r/ suitably. Theorem 2 is proved.
We omit the proof of Theorem 3, since it is the same as the last part of the

proof of Theorem 2 in [5].
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ProofofTheorem4. Set

u(x,t): 
I*^"ix'€"itl€12 

i(€)d€, c € R',, € R,/ € s(R").

It is sufficient to prove that if

(11) llerltullp6"+\1Clllll.,., .f€§,

for all 9 e Cf(R"), ,1, e Cf(R), then 
" ) -å.

Choose 9 € C6-(R) so that 0 / suppg, 9 is even, ulrd g(å):1. We first
assume n:1 and define / by f(O : gG/N) where N > 1. Then

llfll'u,: I*O+ lfl')" lså/r,Dl'ae : I*O + w'lnl')"lsot)l'anr,r 3 cNz"+r,

so that

(12) ll/llr, < 9117e+t/2.

The function ei€2 has Fourier transform 
""-ia2/4 

for some constant c * o,
and one finds that

u(x,t) - ct-rlz I e-;t'-il" /n'Ng1lil ay
"/R

- ct-r/z [ "-rr" 
/n, 

"2iry/4t 
e-iy2 ln W getil ay

JR

F(o,p) : [ ,;o'/z "-io"' 
g1z) dz

./n

is a continuous function of (o,B), .rrd r.(1,0) : Z"g(i) :2tr. It follows that
thereexists a 6 > 0 sothat lp@,p)l> 1 if 1 ( o S 1+6 and O < B( 6. We
conclude that lu(r, t)l> c1-r/z for f ) 7/4N26 and lft I a 1If, + 6lfr. When
1lN6 <t <21N6, one then has lu(c,t)l> cNrlz for c in an interval of length
6N, > 1. Hence, lu(r,t)l 2cNr/z for (c,t) in a set of measure > c/N.

It follows that

for t ) 0. Hence,

lu(r,t)l : lclt-r/21 l*""',*')z/2"-i(r/aN"n"' OQ)dzl,, > 0.

The function

llvrhulltr(R,.+r; ) clfl l'? (*)''' : ct
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and (11) and (12) yield Jlf"+l12 ) c for N ) 1, so that s ,- -;.
When n) 2, the argument is similar. One chooses g as above and sets

f(€) :g(€rliv)g((zlN)... sc"lN), ( : ((',...,(,).
Proof of TheoremS. Set us(x,t): (eitP f)(x) and ufi(o) : supo<t<r lus(r,t)1.

It was proved in [7] that

(18) (lr";Af o,)''' 3cellfllu,, .r € §,

and the proof is complete.

where I - "14.Since (ei'P(V"(.,")))(") is a continuous function of (r,t,r) if / e §, it
follows from Duhamel's formula that

u(r,t): uo(n,q * I:(";«r-'lr1 - ivu(.,r1))p1ar.

Hencefor0<J<1

lu(c, t)l < ,ä(,) * / .:,1!, l(""'"-*' (v,(.,,)))(,)l d,.

Using (13) twice we obtain

( t r,. 1*1' o*)''' 
= U 

"u* 
1*1' a*)' 

t'

* l,' (1,(,ä1, l("n' "-n' (v,(.,,11) r,l l)' o*)''' o,

1l
s c llflln, * , J, ll"-"* (v"(.,r))llu, dr

17

S c llflln, * , J, llr(., r)llr, dr < c ll/llr, ,
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