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ISOLATED POINTS IN THE BRANCH LOCUS OF THE
MODULI SPACE OF COMPACT RIEMANN SURFACES

Ravi S. Kulkarni

1. Introduction

Let g be an integer at least 2 and let M, denote the moduli space of compact
Riemann surfaces of genus ¢g. Each of these Riemann surfaces has a canonical
hyperbolic metric. All geometric notions will be tacitly with respect to this metric.
For the generalities on these spaces cf. [Be], [H]2. For g > 3 set

By = {X € My| Aut X #e}.

This is called the branch locus of M,. This is not a good definition for g = 2,
since every surface of genus 2 admits a hyperelliptic involution. So in this case set

By = {X € M2| Aut X Sé Zz}.

It is known that M, is a normal quasiprojective complex algebraic variety and is
nonsingular outside B;. The geometric structure of B, is of substantial interest
in many contexts. In this note we shall consider the isolated points of B, .

We show that B, contains isolated points only if 2g + 1 is a prime and the
converse also holds if this prime is # 7. Let ¢ = 2g + 1 be a prime. It turns out
that if X is an isolated point in B, and ¢ = 2g + 1 is a prime then Aut X ~ Z,
if g>3,and = Zyo if g =2. Let G = AutX if ¢ > 3, and a subgroup of
Aut X isomorphic to Zs if ¢ = 2. Then X/G must have genus 0 with three
branch points each of index ¢. A main point is to determine which X in M,
with this type of structure are actually isolated points in B,. Fix a generator u
of G. Let p: X — X/G be the canonical projection. The set S consisting of
those z in X with G, # e is called the singular set and B = p(S) the branch
set of the G-action. Now u acts as a rotation at each point z in § by an angle
2rn/q where 1 < r < ¢ — 1. The number r depends on the choice of u but
since G is abelian it is constant on the G-orbit of z. Thus from the three orbits
of G in § we can construct a characteristic symbol [r,s,t] of the G-action, cf.
Section 2 for a precise definition. The necessary and sufficient conditions for X

Partially supported by an NSF grant, and a PSC-CUNY award.

doi:10.5186/aasfm.1991.1614


koskenoj
Typewritten text
doi:10.5186/aasfm.1991.1614


72 Ravi S. Kulkarni

to be an isolated point of B, are given in terms of the characteristic symbols, cf.
Theorem 3.6. Finally we show that the number of isolated points in By is 1 if
9=2,[(¢9 —2)/3] if 2g+ 1 is a prime # 7, and 0 otherwise. Here for a real
number z, [z] denotes the greatest integer < z.

In Section 4 we construct hyperbolic-geometric models of these surfaces rep-
resenting isolated branch points. Actually we describe models for all cyclic group
actions with fixed points so that the quotient has genus 0 and three branch points.
These models are built out of hyperbolic polygons by identification of its sides in
pairs. Among these are included the models for the famous surface of genus 2 ad-
mitting a group of order 48 and the Klein’s surface of genus 3 admitting a group
of order 168. Fricke and Klein, cf. [FK], p. 280 exhibit in principle a model for
the latter surface which seems to have been reproduced at several places in the
literature, cf. also Burnside [Bu], p. 420, and [RL]. We believe that the models
constructed here are new and substantially simpler than the ones which have ap-
peared in the literature. The details of the underlying topological idea in these
constructions are given in Theorem 1 of [K] and works for any cyclic group action
with a fixed point. It could be profitably used in some other contexts.

2. Preliminaries

2.1. Suppose g > 3. Let X denote an isolated point in B, and let G =
Aut X . In [H]; it is described how a topological type of an orientation-preserving
action of a finite group H on a compact oriented surface of genus g leads to a
subvariety Vg in B, . That description shows that the dimension of Vg is positive
if either the orbit space has positive genus or it is of genus 0 with at least 4 branch
points. It follows that in our case for every nonidentity subgroup H of G we must
have X/H = the Riemann sphere with three branch points. Let H be a subgroup
of order ¢ where ¢ is some prime divisor of |G|. The branching indices of the
action must be ¢. So by the Riemann-Hurwitz formula it follows that

1 1 1
2g—2=q{1-— ————— }
9 9 g

Or ¢ =2g+1. Sofirst of all 2g +1 must be a prime, and if this prime is denoted
by ¢ then g is the only prime divisor of |G|. In other words G must be a g-group.

2.2. Suppose if possible that G# Z,. Then being a g-group G must contain
a subgroup H isomorphic either to Z; x Z; or to Z,2. In the first case the
Riemann-Hurwitz formula applied to the H -action would show that

29 —-2= 2{l—l--l—l},

which is inconsistent with ¢ = 2g + 1. In the second case since Zg is cyclic at
least two of the branching indices would have to be ¢ and the third may be ¢ or
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¢?, cf. [H];. In either case one easily checks that this data is inconsistent with
g=2g9+1. So G~ Z,.

2.3. Let p: X — X/G be the canonical projection, S the singular set and
B = {A, B,C} the branch set of the G-action. Fix a generator u of G. Since G
is abelian it is clear that at each point in a G-orbit in § the action of u in a small
neighborhood is by a rotation through an angle which is a fixed multiple of 27/q.
Let a, b, ¢ be these multiples determined mod g over p~1(4), p~}(B), p~}(C),
respectively. It follows by the Hurwitz’s theory that

(2.3.1) a+b+c=0 modg.
Also
(2.3.2) each of a,b,cis #0 modg.

Note that changing a generator u by some power A of it replaces a, b, ¢ by Aa,
Ab, Ac where A is # 0modg.

2.4. Let N denote the set of unordered triples {r,s,t} of numbers counted
mod ¢ such that each is # O0mod g and r+ s+t = 0mod ¢g. Now the multiplicative
group Z; = Zg — {0} acts on N by componentwise multiplication. An orbit of
{r,s,t} under this action will be denoted by [r, s,t]. A standard consequence from
Hurwitz’s general theory in this setup is that there is a canonical surjective map
from N/Z7 onto the set of all Riemann surfaces admitting a Z,-action with quo-
tient the Riemann sphere with 3 branch points. It is a special case of a wellknown
theorem of Nielsen on cyclic group actions on compact orientable surfaces that
in our setup this map is actually a bijection, cf. [N], [Sm], [E]; 2, cf. also [H],
Theorem 14 where however a different equivalence relation is used. (In terms of
Fuchsian groups this amounts to the fact that there is a bijection of N/Z7 onto
the set of PSL;(R)-conjugacy classes of normal subgroups ~ m;(X) of the triangle
group A = Ay, .43 With quotient ~ Z;.) Consequently we can associate symbols
[r,s,t] in a one-to-one manner to the Riemann surfaces admitting a Z,-action
with quotient of genus 0 with 3 branch points. A symbol of this type will be
called the characteristic symbol of the corresponding Riemann surface.

2.5. The following consequence of a crucial theorem of Singerman, cf. [S]
Theorems 1 and 2, will also be used in the sequel. The only Fuchsian groups which
contain the triangle group Ay, ..}, up to conjugacy in PSLy(R), are the triangle
groups A(z 424}, A(3,3,¢) and A( 324}, containing Ay, .0y as a subgroup of
index 2, 3, 6 respectively, except for ¢ = 7 in which case in addition to the above
inclusions A7 77} is also contained in Ay, 37} as a subgroup of index 24.
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3. Isolated points of B,

3.1. We shall now derive necessary and sufficient conditions for a Riemann
surface to be an isolated point in B,. First

Lemma. Let ¢ > 3. Let G ~ Z,, ¢ = 29 + 1 a prime, and let X be
a compact Riemann surface of genus g admitting a Z,-action with quotient of
genus 0 with 3 branch points. Let [r,s,t] be the characteristic symbol of X . If
X is an isolated point in B, then no two of r,s,t can be equal.

(Note: Although the individual values of r,s,t in a characteristic symbol are
defined only up to an action by Aut Z, the notion that two of r,s,¢ are equal or
not is welldefined.)

Proof. It is known that (even for g not necessarily a prime) there is a unique
compact Riemann surface Y of genus ¢ > 2 admitting an action of a cyclic group
A of order 2¢ = 4g + 2. It is hyperelliptic with equation w? = 229+1 — 1, ¢f. [K].
Moreover Y/A is the Riemann sphere with three branch points with branching
indices {2,¢,2¢}. Let p:Y — Y/A be the canonical projection. The two points
in Y lying over the branch point of index ¢ and the one lying over the branch
point of index 2¢ are fixed by the subgroup B = Z, of A. It is easy to see from
the Riemann-Hurwitz formula that Y/ B is the Riemann sphere with three branch
points. Since the two points in Y lying over the branch point of index ¢ in Y/A are
permuted by the element of order 2 in A it is clear that the characteristic symbol
of ¥ with respect to the B-action has the form [r,r,¢]. Notice also that there is
only one characteristic symbol [r,s,¢] with two of r, s, ¢ equal. So by Nielsen’s
theorem Y is the only Riemann surface up to biholomorphic equivalence which
admits a Z,-action with the characteristic symbol [r,r, t]. But by construction
AutY has at least 49 4 2 elements. So by (2.2) Y cannot be an isolated point in
By. o

3.2. Lemma. Let G, X, [r,s,t] be as in Lemma (3.1). Fix a generator u
of G, and w.r.t. u let {r,s,t} be an element in N (cf. (2.4)) which represents
[r,s,t]. If X is an isolated point in B, then the following holds: If {r,s,t} =
{Ar,As, At} for X\ in Zy then X = 1. If q is congruent to —1mod3 then this
condition is automatic. If ¢ is congruent to 1mod3 and {r,s,t} = {Ar, As, At}
for A # 1 then X is a cubic root of unity and [r,s,t] = [1, ), A?]

Proof. Suppose we have {r,s,t} = {Ar,As, At} for A\ # 1. This means that
as unordered triples of elements in Z, the two triples are equal. So we may take
Ar =s,As =t,At =r. So Mr =r or A = 1. In particular the multiplicative
group Z; contains an element of order 3. So ¢ must be congruent to 1mod3.
This proves the last statement in the lemma.

Now assuming ¢ to be congruent to 1 mod 3 we form the group H = ZgxZs,
L.e. the semidirect product of Z, by Z3 where Z3 acts nontrivially on Zg. fX#£1
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is a cube root of unity mod ¢ then a presentation of H may be taken as
(3.2.1) H={(z,ylz? =y’ =e,yzy~' = :c").

In this group zy has order 3. There is an obvious map of the triangle group Az 3 4
onto H with a torsionfree kernel. Correspondingly we get an action of H on a
Riemann surface Y such that Y/H has genus 0 with three branch points with
branching indices 3, 3, ¢. If A is the genus of Y the Riemann-Hurwitz formula
gives

This implies that h = g. So we have an H -action on a Riemann surface of genus
g. Let K = (z). Over the branch point of index ¢ in Y/H there are three
points in Y which are all fixed by K since G is normal in H. Moreover the
intersection of K with the stabilizers of all points in Y lying over the branch
points of index 3 must be {e} since 3 and ¢ are relatively prime. It follows that
the K -action has exactly 3 branch points. Another application of the Riemann-—
Hurwitz formula shows that ¥Y/K has genus 0. Now the presentation (3.2.1) of
H clearly shows that the characteristic symbol of this K -action is [1, A, A?]. By
construction AutY has at least 3¢ elements, so Y is not an isolated point of B,.
An appeal to Nielsen’s theorem shows that Y is the only element of B, which has
the characteristic symbol [1, A, A%]. So the lemma follows. o

3.3. Now let g, ¢, G, X be as in Lemma (3.1) and let [r,s,t] be the
characteristic symbol of X . Suppose that no two of r,s,t are equal and if ¢ =
1,mod 3 then [r,s,t] # [1,A, \%] where A # 1 is a cubic root of unity modq. We
claim that X must be an isolated point in B,. Suppose not. Then G is a proper
subgroup of H = Aut X. Correspondingly we have a proper inclusion of Ay, .0y
(which uniformizes the G-action) in some Fuchsian group Ay (which uniformizes
the H-action) as a subgroup of index (H : G). Now the possibilities for Ay
are classified by Singerman, cf. (2.5). Among these possibilities one need not
consider Ay, 324}, since this inclusion factors through the inclusions in A(; 424},
or A3 3,)- Similarly for ¢ = 7 one need not consider the inclusions in A, 37y,
since this inclusion factors through an inclusion in Ayz37). Now the inclusions
in A(z,42¢}5 OF Ags3,4) are of index 2 and 3 respectively. In the first case H
would be cyclic since 2¢ is one of the branching indices, and we are exactly in
the situation encountered in the proof of Lemma (3.1). We saw there that in this
case two of r,s,t are equal. In the second case H is a group of order 3¢. By
Sylow’s theorem one sees that there is only one g¢-Sylow subgroup of H and so
it is normal, and H is isomorphic to a semidirect product of Z; by Zs. If Z;
acts trivially on Z,; then H would be cyclic and this would be inconsistent with
the branching {3,3,7}. (In a cyclic group action with quotient of genus 0 and &
branching indices the I.c.m. of any k — 1 branching indices equals the order of the
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group.) Since Aut Z, contains a unique subgroup of order 3 it follows that H is
uniquely determined up to isomorphism. It is as given by the presentation (3.2.1)
and we are exactly in the situation encountered in the proof of Lemma (3.2). As
we saw there in this case the characteristic symbol would be [1, A\, A?] where X # 1
is a cubic root of unity modg. These contradictions show that X must be an
isolated point in By .

3.4. The case of genus ¢ = 2 needs a special consideration in view of the
different definition of Bj, cf. Section 1. If X is an isolated point in B, then for
every subgroup H of Aut X, H # ( the hyperelliptic involution ) we have X/H
of genus 0 with three branch points. If the order of H is divisible by a prime ¢ # 2
then as in (2.1) ¢ must be 5. As in (3.1), it then follows that Aut X contains a
subgroup isomorphic to Z;o and X is the hyperelliptic surface w? = 25 —1. From
(K], Theorem 3 it follows that in this case Aut X is not larger and X is indeed an
isolated point in Bz. On the other hand if Aut X is a 2-group of order at least
4 then it contains a subgroup isomorphic to Zz X Z; or Z4. In either case by
Riemann-Hurwitz formula it already follows that for some subgroup H # ( the
hyperelliptic involution ) X/H is not of genus 0 with 3 branch points, and so X
is not isolated.

3.5. Now for ¢ > 3 we compute the number of isolated points in B;. We
have already observed that if this number is nonzero then ¢ = 2g 4+ 1 is a prime.
Moreover if X is isolated then Aut X is isomorphic to Z, and the characteristic
symbol [r,s,t] of X satisfies

i) None of r, s, t is 0, and their sum is 0.
i1) No two of 7, s, t are equal.
iii) If ¢ =1mod3, and A is a cubic root of unity mod g then [r,s,#] # [1,, \?].

So we need to compute the number of the characteristic symbols satisfying
these conditions. Now in the triples (r,s,t) satisfying i) there are ¢ — 1 choices
for r. With r fixed s cannot be 0 nor —r, for the latter would imply ¢t = 0. So
there are ¢ — 2 choices for s. Now t is fixed. So the number of such triples is
(¢ —1)(g —2). Now the condition ii) further removes 3(g — 1) triples of the form
(r,r,=2r), (r,—2r,r), (=2r,r,7) leaving the number (¢ — 1)(¢ — 5) of triples.
Since the components in these triples are pairwise distinct it follows that there are
(¢ —1)(¢ — 5)/6 corresponding unordered triples. Now consider the Z;-action by
componentwise multiplication on this set. If ¢ Z 1mod 3 this action is free and so
there are (¢—5)/6 orbits which is the required number of characteristic symbols in
this case. If ¢ = 1mod 3 and A is a cubic root of unity mod ¢ then the action is free
outside the orbit of [1, A, A\?] which contains (¢ — 1)/3 elements. So the required
number of characteristic symbols in this case is ((¢ — 5)/6) — (1/3) = (¢ — 7)/6.
In either case one sees that there are [(¢ — 2)/3] characteristic symbols.

Summarizing we have proved the following theorem.

3.6. Theorem. The number of isolated pointsin By is 1 if ¢ = 2, [(g—2)/3]



Isolated points in the branch locus of the moduli space 7

if ¢ =2g+1 is a prime > 7, and 0 otherwise. The isolated point in B is the
hyperelliptic surface w? = 2% — 1. For g > 5 the isolated Riemann surfaces are
precisely those X ’s for which Aut X is isomorphic to Z, and such that in their
characteristic symbols [r,s,t] notwo of r, s, t are equal and if ¢ = 1mod 3, and
) is a cubic root of unity mod g then [r,s,t] # [1,A, A?].

3.7. Examples. i) For ¢ = 3 the only characteristic symbols are [1,1,5] and
[1,2,4]. The latter does not correspond to an isolated point since 28 = 1mod?7,
and by (3.2) nor does the first. So there are no isolated points in Bj.

ii) For ¢ = 5 the characteristic symbols are [1,1,9] and [1,2,8]. The first
does not correspond to an isolated point by (3.2), the second does. So there is
exactly one isolated point in Bs.

ii) For g = 6 the characteristic symbols are [1,1,11], [1,2,10], [1,3,9]. Only
the second corresponds to an isolated point.

4. Geometric models

4.1. In this section we construct a model for a Riemann surface X, admitting
a Zj-action with a fixed point and with quotient of genus 0 with three branch
points. We may take its characteristic symbol in the form [1,a,b]. We fix a
generator z of Z; so that on each of the points of the three orbits of singular points
z, =%, =% act by a rotation by an angle (27)/I, (27)/u, (27)/v respectively.
Then the order of z*, respectively z° is u = I/(l,a), respectively v = 1/(l,b).
Notice that l.c.m.(u,v) must be I, and 1+ a+ b = Omod!. Also 29 — 2 =
Hl—ul—p71 —[71},

4.2. Let T be a hyperbolic triangle with angles n/l, 7w/u, 7w/v. Take 2I
copies Ty, Ty, ... Tz;. The vertices of T; are N;, U;, V;, with angles 7/l, w/u,
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7 /v respectively and their opposite edges are denoted by n;, u;, v;, respectively.
The polygon P is obtained from the union of the T’s by identifying all N;’s to
a single vertex Ny, and further identifying u2;—1 with uz;, and vy; with vgiyq,

where the subscripts are counted mod2!. The sides of P are n;, n,, ..., na.
We also have the identification of the vertices Ua; with Usj;yq, and Vai—; with
Vai. For convenience we may take the vertices of P as Uy, Va, Us, Vi, ..., Va.

4.3. Let the generator z of Z; act on P as a rotation through an angle 27 /1
fixing the center Ny. On the sides of P it induces the permutation n; — n;4o
and on the vertices U; — Utz and V; — V;4,. Now consider the sidepairing o :
N2i—1 M N2it+24, and let X denote the surface obtained by isometrically identifying
n2i—1 With n2;12, in an orientation-reversing manner. Since z commutes with
o we obtain a Z;-action on X. Since P/Z; is clearly isometric to the space
obtained from Ty UT:; by glueing u; with u; and v; with v, it is clear that X/Z;
is isometric to the space obtained from Ty UT; by glueing u; with uq, v; with vy,
and n; with n,, i.e. X/Z; has genus 0 and three branch points with branching
indices u, v, l. In particular the genus of X is determined from the equation
29 -2=1{1-u"t—v7l 71},

4.4. Now we claim that the characteristic symbol of this Z;-action on X is
(1,a,8]. It is convenient to do a computation on P and interpret it in X . For any
point or subset in P we shall denote its image in X by a bar overhead. Consider a
small arc a starting from V; lying in u, and oriented towards N,. See the figure
below. Since n; is identified with ng,42 we see that V, = Vaas2. Also z%(a) is
an arc starting from Vi,4, lyingin uz,42 and oriented towards Ny. It is easy to
see that the angle between & and z%(a) is 27/v. In other words on X we see
z* fixing V, and inducing in its neighborhood a rotation through 27 /v. Similarly
it is seen that z°*! fixes U; and induces there a rotation through —27/u. So
7%~ = g fixes U; and induces there a rotation through 27 /u. This shows
that the characteristic symbol of this action is [1,a,b]. By the arguments in the
previous section X is the unique Riemann surface admitting a Z;-action with

quotient of genus 0 with three branch points and with the characteristic symbol
1,a,b].
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4.5. We describe three examples of the above procedure. First as noted in
(3.7) there is a unique isolated branch point in Bs. It admits a Z;;-action with
the characteristic symbol [1,2,8]. The corresponding Riemann surface may be
represented by a hyperbolic 22-gon with all the internal angles 27/11 so that if
its sides are cyclically labelled ny,...,n2; then the sidepairing is ng;—; + nojyq.

Next we describe the famous surface of genus 2 which admits a group of order
48. This group is isomorphic to Gl3(Z3), i. e. the group of all nonsingular 2 x 2
matrices with entries in a field with 3 elements. It contains an element of order 8.
The Riemann-Hurwitz formula easily implies that the Zg-action on a surface of
genus 2 must have the quotient of genus 0 with branching indices 2, 8, 8. It
is a fortuitous circumstance in this case that this data uniquely determines the
characteristic symbol. It is [1,4, 3]. So the surface is completely determined by the
fact that it is of genus 2 and that it admits a Zg-action! By the above procedure
it is obtained from a 16-gon whose internal angles are alternately 27/8 and .
The sidepairing is ngz;—; — n2i+s. It is easy to see that if we agree not to count
the vertices with angle 7 as vertices then we have an octagon with all the internal
angles 27/8, and the sidepairing is a standard one, namely abcda=1b"lc=1d1!

Finally we describe the famous Klein’s surface X of genus 3 which admits a
group of order 168. This group is isomorphic to PSL2(Z7). It contains a cyclic
subgroup of order 7 which is unique up to conjugacy in PSL2(Z7). Again it is easy
to see that the Riemann-Hurwitz formula implies that the Z;-action on a surface
of genus 3 must have the quotient of genus 0 with branching indices 7, 7, 7.
There are however two possibilities for the characteristic symbol, namely [1,1, 5]
and [1,2,4]. Which is the possibility for the Klein’s surface? To see this fix a cyclic
subgroup A of order 7 in PSL;(Z7). Its normalizer N is a nonabelian group of
order 21. There is a unique nonabelian group of order 21 up to isomorphism,
namely
3

(z,ylz" =y® =e, yay ' = 2%).

Since N leaves the fixed point set of A in X invariant the above presentation
shows that the characteristic symbol must be [1,2,4]. So by the above procedure
a model for X may be obtained from a hyperbolic 14-gon with all internal angles
2n /7 where the sidepairing is given by ng;—; +— ngisq.
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Isolated point in Bs
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