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MEAN VALUES AND THERMIC MAJORIZATION
OF SUBTEMPERATURES

N.A. Watson

1. Introduction

A classical result of F. Riesz states that the mean values of subharmonic
functions over concentric spheres of radius r, form convex functions of logr or
r2-n , depending on the dimension of the space [2, p. 241. The corresponding
result for subtemperatures, in which the mean values are taken over level surfaces
of the Green function, was presented in [0], along with some of its consequences.
In the present paper, we give a different, more elementary proof of the theorem for
subtemperatures, as well as two new results on thermic majorization, one of which
gives a criterion in terms of the mean values and depends upon consequences of
the convexity theorem.

The principal result on thermic majorization, Theorem 3, is analogous to
a well-known, elementary result on the harmonic majorization of subharmonic
functions: a subharmonic function on Ro has a harmonic majorant there if and
only if its mean values over all spheres centred at the origin form a bounded
function. Again the mean values of a subtemperature over level surfaces of the
Green function are used, and because of their geometry the whole space is replaced
by a half-space R"x] - m,a[. The result requires the boundedness of means
associated with a sequence of points rather than just one, and there are many
technical difficulties which do not arise in the subharmonic case. For example,
we have to prove that a subtemperature which has a thermic majorant on the
sets R"x] - @,aj[ for all , € N, must also possess one on the union of those
half-spaces. This result has an illuminating generalization to arbitrary open sets,
which is given in Theorem 2.

We work in R,a+l, and denote a typical point by p or (c,t), as convenient.
A particular point ps is assumed without comment to be (cs,to). A temperature
is a solution of the heat equation

- Dtlt :0.i D?u
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We use d to denote the heat operator, and d* is adjoint (obtained from d by
changing the sign of D1).

For all c € R', we put W(r,t) = (4trt)-'/2exp(- llallz l+t) if , > 0, and
W(r,t) = 0 if , < 0. Then the Green function G for 0 on R"*r is given by
G(p,q) :W(x - U,t - s), where p: (t,t) and q: (y,s).

If po e R"*1 and c ) 0, the fundamental domain O(po,c) is defined as

{p e R"*' : G(po,p) > (4rQ-"1'} ; it is convex and bounded. Its boundary is a

smooth surface with equation llcs - rll : fZn(tn - t)log ("lGo-r)))'/', together
with {ps } . If (c, t) e R" x]0, oo[, we put

+ (tt"tt' - 2nt) '] 
-''' 

,

[n 
" 

*tt' t'Q@,t)- llrll'

we also put Q(0,0): t. For each fixed c > 0, the restriction to flO(ps,c) of the
function (c,f) r--+ Q@o - fr,to - t) is continuous, and is positive except for a zero
at (rs, to - c). If to is a function on äO(p6, c), we put

M(r,po,c) : (Atrc)-n/z 
I Q@o - n,to - t)ta(r,t) do(a,t),

dO(po,c)

where a denotes surface measure, provided that the integral exists. If u is a
temperature on an open set D, and CI(po,c) e D, then u(po): M(u,po,c). In
particula,r, M(l,po,c): 1 for any ps and c.

If D is an open set and po e D, we denote by Å(po) the set of all points
q e D \ {po} which can be joined to ps by a polygonal line in D along which
t is strictly increasing as the line is described from g to po. A function ur on
D is called a subtemperature if it is upper semicontinuous, extended real valued
but never {oo, real valued on a sequeng {fi} such that D : UErÅ(p;), and
satisfies u(po) I M(w,po,c) whenever O(po, q g D. If ur is a sub[emperature
on D, athermicmajorantof ur on D is atemperature u suchthat ur 1u oa D.
If to has a thermic majorant on D, then it has a least one. The basic properties of
subtemperatures are given in [a] and [5], and the equivalent class of subparabolic
functions is discussed in [2].

2. Convexity of mean values of subtemperatures

In this section we present a more elementary proof of [6, Theorem 2] than was
given in [6]._We consider subtemperatures on a domain of the form A(ps, cr)c2) :
Q(po,cz) \ CI(po,c1), where po € R"*l and 0 ( cr ( c2. Such a domain 

"orr"-sponds to an annulus in the subharmonic case. We show that, if ur is a subtemper-
ature o.n an open superset of. Ä(psrct)cz) then M(wrps,c) is a convex function
of c-n/2 for c € lq,cz). Our method is based on an idea'due to Dinghas [L] in
the subharmonic case.
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By a smooth function, we mean one for which the partial derivatives that
occur in 0 exist as continuous functions. For a smooth function u on a domain
in Rn+r, we put Y,u - (Dru,... D,u) and llv,ull : (DLr(D,u)')'l'. We use
(.,.) to denote the inner product in R".

It is convenient to first establish some notation and list some elementary
formulas. In addition to the functions W and Q given above, for all (x,t) e
R'x]0,m[ we put

and
J (x,,t) : 2ntexp(- llrll2 I znt) t (a,t);

note that Q@,t): llrll' L(a,t). If .F' € {W,Q,L,J} and (zs,to) € R"+t, we put
Fs(r,t): F(co - a,to - t) for all (c,r) € R"x] - m,t6[. On äQ(po,c), where

(ro - t)exp(llrs - allz lzn(to - t)) : c,

the outward unit normal (urrut) is given by

u, : -Z(to- rXro - r)Ls(x,t), ut : (ll*o - *ll' - 2n(ts - t)) Ls(x,t).

It is useful to have (ur,ut) in terms of ./0. Since

(1) cJs(a,t) :2n(to - t)2 Lo@,t)

whenever (r,t) e 00(po,c), we have

(2) ,,: -ffirs(a,t),

L(x,t): 
[n tt *ll't' + ( llrll' - 2nt)')-'''

" (llro - *ll' - 2n(ts - ,))
(3) Ut:t- Js(x , t)

for such points (*,t). I\ext,

(4) v,wo(*,t): ffiwo(*,t),

(5) Dtwo(*,t): zn(to --!) - ll,,g - allz 
wo(*,t),

4(to - t),
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and if g : W;21" we have

(6) ot:iå.)W'
since 0*We :0. Finall5 on äO(ps,c) we have

(7) -(Y,Wo,v,l : llt6 - allz Ls(r,t)Ws(r,t) : (4rc)-"lzgo(x,t).

We need certain Green identities. If u and u) ate smooth functions, it is
elementary that

uhw :f Or{rOru) - (V,u,V,u) - D1(uw) * wDtrs
i=1

and 
n

w|*u :\ O;1-O;u) - (Y,u,V,u) * utDps.
i=l

Therefore, if A is any domain for which the divergence theorem is applicable,

(8) ll^{rt, * (v,u, v,u,) - wDp) dr d,t = luo(lro,',u,) - uwul) d,o

and

(e) llnlrt., * lv,w,v,,) - uDp) d,rd,t : 
Iuo@o,u,u,l 

d,o.

Lemma L. Let po € R,a+r ,bt 0 ( c1 ( c2,Iet u beasmoothfunctiononan
open superset of Ä(ps,ct,c2), a,ndput O(c) = O(po,r) and M(c): M(u,ps,c)
for aJI c € [c1, c2]. Then, if nn =2n]ron/2r-r and c €1c1, c2), we have

(10) n','c,-12)*174"(") : 
lurur((v,,r, 

u,l - uu1) d,o

and

(r1) *n("{,.t')+'u"@)) 
": lunr"rJsoudo.

Proof. Let c €]c1,c2[, and put ,4, : A(po,,e,c).We want to use (9) with this
choice of A and ur smooth, but with, = Wi'/" f4r, sothat the smoothness of
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o breaks down at po. To prove that this is permissible, we use an approximation
argument. Let t e]t6 - cl,r0[, and put

Fr(r) = 0Q(po,c1) n (R" x lto - c1,t]),

F2(t): äo(po,c) n (R" x [t6 - c,t]),

v(t): A(po,"r,c) n (R" x [t6 - c,t]).

Applying (9) on Y(t) with , : Wi'|" f 4r, and, using (6) and (?), we obtain

G»ll,u,GG.iW" - h(Y.w,Y.wst + Yo,wo) a'at

f- J u' <')-ff F'*o' u'l do : |G I 
"u, 

- "' I " r'r)' 
Q o oo'

Since rrQs is bounded on ?A(ps,qrc), as f + ts- the last expression tends to

(13) |G I*u,-"' Iun,",,)wQo 
d'o'

For the integral over V(t) in (12), the integrand is

ic.r)ffi uu, - #) (v"u, ro - al .W
bV (a) and (5). Since o, tn and llv,rll are bounded, this expression is dominated
by a multiple of

(1^\ llro - rll' - 2n
\^=,, 

Qo _t)2 , 
(to _ t),

which is obviously integrable on Y(fs - qe-r). Furthermore, in A(ps,q,c),

llro - rll' ) 2n(ts - t)log ("rlQo - r)),
so that on A(ps,cr, c) \ V(to - cfi-r) we have

llro-rll' , 2n
(to-t), -(to-r)'

and therefore the expression (14) is dominated by llro - *ll' 0o - t)-2, which is
integrable by [+, Lemma 4]. It follows that we can make f --+ to- in (12); in view

of (13), we thus obtain (9) with A = A(po,c1,c) and , :W{'ln/42r. Next,

II^' dx dt : 
1"",0' Irnrrl ro do
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for any function / such that either side exists [4, p. 388]. It therefore follows from
(9) that

( t - t ).u(v,r,u,)d,o: ['or[ (w0*ut(y,w,v,rsl-wDp)Jsdo,
\./äo(c) J0o(c1) ' J.t J an(o)

so that

(15) (l**ru(Y,u,u,l d,o) .: funr"r(wl*u* 
(V,to,v,r) - wDp)Jsdo.

In (15), we take ,n: u and u :W;2ln /42r. Then, by (7),

l rn«tw 
(v'u' v') d'o : * l r*u) " 

( - l)w; 
t' r "t -' \v'wo' u'l d'o

- n,,c(o/z)+'M@),

so that the left side of (15) is

o,(rr,"lz)+, M(")) 
".

Next, by (6), (4), and (1),

I,natw(o* 
u) ls oo : * I unu,"'r(: 

* iWw;' t n ro do

:(1*i |,,u,(W),ao
: (1*i lrru,esud,o: ',(t +|)""nu1.7.

By (2), (3), (4) a,nd (5), the remainder of the right side of (15) is

* I*ur(';*;"tn)-t 1v 'u'Y 'wol I ?vr;tz/")-|uD'ws) Js do

t: 
J'n1"''((v"'' 

u'l - uu1) do'

Hence (15) yields

*n("tnt»+'MG)) ,= *n( +i)""t'uk) * 
Iunur((V,,r, 

u,l - uu1) do,
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which implies the identity (10).
Taking A: A(po,c1, c) in (8), and using an argument similar to the one that

gave us (15) from (9), we obtain

(16) ( 
lunr"r{lro "u,u,) 

*uwur) oo) .: Iunr"r(,t.* 
(v'u, v,u)l -wD1u)Js d,o'

In (16), we take u : 1 and u) :'..!,. Then the left side becomes

( Irrur((v,', 
u,l - uu1) oo) 

": 
*,("{'t»+'v"{d) 

"

in view of (10), and the right side becomes

t Jooudo;
J aa(c)

thus (11) is established.

Lemma 1 provides the following elementary proof of [4, Theorem 12].

Corollary. Let w be a subtemperature on an open set D, and let po e D.
Then M(w,po,.) is increasing on the set of c sucå that A(ps,c) g D.

Proof. If ur is smoothon D, we can take A: O(po,c) and u: L in (8), to
obtain

' I ow d,x at : [ ((v,,,, u,) - wu1) do.
J Jnr", Jao(c)

Therefore, taking u, : to in (10), we obtain

M"(") - ^-rr-(n/"-' Ilrrrow 
d,a dt.

Since Our ) 0, this formula immediately implies that M is increasing. (A similar
argument was given by Pini [3] for the case n : 1.) If tu is an arbitrary subtem-
perature, we can take a decreasing sequence {ur;} of smooth subtemperatures,
with limit u, on a neighbourhood of O(pg,") [2, p.281]. Then M(tuj,po,.) is
increasing for every j, so that the same is true of its limit, which is M(w,ps,.)
by the monotone convergence theorem.

We can now give a proof of [6, Theorem 2] that does not rely upon knowledge
of the Dirichlet problem for A(ps, ct,cz).

Theorem L. Let w beasubtemperatureonanopensuperset of Ä(ps,cr,cz).
Then there is a reil-valued, convex function $ such that M(u,po, c) : ö("-"1')
forallc€lc1,c2l.
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Proo!. We require the fact that M(w,po,.) is real-valued, which was proved
in [6]. That proof requires the special case of [6, Theorem 1] in which u is a
temperature on an open superset of .4(p6, ct,c2), which was proved by elementary
techniques (and could alternatively be deduced from (11)). It also requires the
result given as an example in [6], which depends only upon the aforementioned
special case of [6, Theorem 1] and the fact that M(w,po,.) is increasing (which
we have just given an elementary proof of). Suppose that ur is smooth. Then
0w ) Q, so that

( 17)

by (11). Suppose also that
to obtain

( 18)

n^" n2 nja-I

c) ' 4c2 ' 2c2'

function of cn/2 ,

,S of Ä(po , cL t cz)

/\" n \I - _ _l

\ ) 2c)

Put )(") - cn/2 M@). Then

M"
M

and
M "" )""
M-Å-

so that (18) becomes

Putting ( - cnlz, w€ obtain

so that Å is a convex function of (. Hence cn/zM(") is a convex
which implies that M(") is a convex function of c-n/z .

If w is smooth but not positive, we can find an open superset
and a constant K such that w - K > 0 on S, so that

M(r, Po,") = M(w - K, Po, c) + K

is a convex function of c-"/2. If ur is not smooth, take a decreasing sequence

{_tui} of smooth subtemperatures that converges to tr.r on ar} open superset of
A(po,"r,cz) 12, p. 281]. Then {,&,((uitpotc)} is a decreasing sequence with limit
M(rrporc) e R, so that M(*rporc) is also a convex function of c-"/2 .
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We now present a simple consequence of Theorem 1 that was not considered
in [6]. The subharmonic analogue can be found in 12, p.241.

Corollary. Let us be a subtemperature on an open superset of Ä(ps,ct,cz).

then u is a 0* -su btemperature (that it, a su btemper-
equation).

Proof. By Theorem 1, there is a finite, convex function $ on lcr"l',"r"1'l
such that u(x,t) : 6(1+r1"/'W(*o - t,,to - ,)). By Lemma 1, Corollary, /
is decreasing, so that if /(s) : ö("r"1' * cr"lz - s) then ry' is increasing on

l"i"l',";"1'l and u(c, t) : g(cr"l2 1s;"/2 - (+r1"/21ry(*o - *,to - r)). Since
the function of (c, t) with which ry' is composed to get u, is a solution of the adjoint
equation, the dual of [4, Theorem 2] implies that u is a 0* -subtemperature.

3. Thermic majorization

Let w be a subharmonic function on R', and for each r > 0 let L(w,}rr)
denote its mean over the sphere of radius r centred at the origin. It is a well-
known, elementary result that tp has a harmonic majorant on R" if and only if
L(w,O,.) is bounded above on ]0,m[; and that, if u; has such a majorant and u
is the least one, then

"(0) - sup L(*,0,r) - Iim L(*,0,r).
r>0 r+oo

We seek an analogous result for subtemperatures. First, we must replace the
whole space ( R"+1 in this case) by a lower half-space R" xl - m, a[, because

U n(oo,c) : R"x] - oo,ts[.
c)0

Note that a subtemperature on R'*r can have a thermic majorant on a half-space
R" xl - oo, 0[ without having one on pn*l . For example, it is well-known that
there is a temperature u on R2 that is identically zero on R"x] - oo,0] but not
on any open superset thereof [7, p. 86]. The subtemperature u* cannot have a

thermic majorant on Rx]O, oo[, since that would imply that

If
u(r,t) : M(*

for all (*,t) € A(po,cL,cz),
ature relative to the adjoint

u(x,t)- t W (r - U,t)r( U,0) dv - 0
JRN

whenever t > 0 17, pp. 100-102].

,po, (f0 - t) "*p 
( llro - nll2 lzn(to - t)))
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We therefore seek a necessary and sufficient condition, in terms of the surface
means M, for a subtemperature u, on a half-space Ho - R x] - m, o[ to have
a thermic majorant there. There are two essential elements for this. The first
is that, if. q: (y,r) e äo and M(r,g,.) is bounded above on ]0,m[, then to
has a thermic majorant on ä". This is far less elementary than the subharmonic
theorem, and depends on the continuity of. M(w,g, .) that is implied by Theorem 1.
The second is that, if ti + a- a^nd tp has a thermic majorant oa Hq for every j,
then ur has a thermic majorant oa Ho. This result can be generalized to arbitrary
open sets, and is given in Theorem 2 below.

Lemma 2. Let w be'asubtemperatureon an open superset D of HoU{p"}
for some po € 0Ho. If M(u,po,.) is bounded above on ]0,m[, tåen there is
an increasing falr4.tly {u" : c > 0} of subtemperatures on D such that w* -
lim"-oo w" is the least thermic majorant of w on Ho. Furthermore,

( 1e) ?D@(p") - lim M(u, po, c).

Proof. If c > 0, then there is a unique subtemperature tu" on D such that
tu" is atemperatureon O(po, c), u": r, on D\(O(p,,r)U{p,}), and tu" ) ur on
D [6, Theorem 5]. If. d> c, then the same theorem yields not only to7, but also
a unique subtemperature u4 on D such that u2 is a temperature on O(pr,d),
'ttrd : tDc on D\ (O(pr, d)U{p"}), and u7 } ur" on D. Since uc : 7! on a superset
of D\ (0(p",d) U {p,}) and ur" ) ur on D, wesee that wit : ltit ) u" oa D,
so that ?-D*: lim"--tp" exists on D. By hypothesis, there is o € R such that
M(r,po,c)Sa forall c)0. Therefore

w.(p") I M(u",po,c): M(u,po,c) 1a

forevery c)0, sothat w*(p") (o. If 0<c( d then, since ur7 isasubtem-
perature on D and a temperature on O(po,d), we have w1(po): M(ta,prrc)
by [6, Theorem 4]. Since the mean values of subtemperatures are real-valued (by
Theorem 1), we can use the monotone convergence theorem to deduce that

M(u*,Po,") : 
",t3" 

M(ra,Porc) = w*(Po) I a

for every c ) 0. Hence uroo is finite o-a.e. on äfl(po,c), and therefore the
Harnack convergence theorem 12, p.2761implies that troo is a thermic majorant
of to on Iro. Since any thermic majorant of tl on ä, will also majorize w" for
every c ) 0, the function to- is the least such majorant. Finally if c > 0 we
have

M(., po, c) : M(w 
", 

po, c) : w c(po)

(by [6, Theorem 4]), from which (L9) follows immediately.
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Theorem 2. Let w be a subtemperatute on an open set E, and let {pi} b"
a sequence in E sueh that

(20) E - Ö Ä(pi)'
i:t

If w has a thermic majorant on Ä(pi) for every j , then w has a thermic majorant
on E; and if u is the least thermic majorant of w on E, then for any j the

restriction of u to Å(pi) is the least thermic majorant of u on 
^(pi).

Proof. Let ui denote the least thermic majorant of ur on 
^(pi). 

Then ui - to

is a potential on Å(p;), and since the Green function for Ä(pi) is the restriction
to Å(p;) x Å(pi) of the Greenfunction Go for E 151,2,, p.300], we have

,,-r: I Ge(.,q)dpi(s)
J tr(pi)

on Å(p;), for some positive Borel meastre pj. Next, Ge(p,C) > 0 if and only if
q e 

^(p) 
[5; Z,p. 300], so that

ui@) -.(p): I Ge(p,q)dpi@)
J L(p)

for all p e 
^(pi). 

Next, by the form of the Riesz decomposition theorem given in

[5] and the uniqueness of representing measures, pi is the measure given by the
distribution -il(ui - u) : 0w on 

^(pr). 
Therefore, whenever 

^(pi) 
n L(p*) # 0,

the measures p; and pp coincide there. In view of (20), we can therefore define a

measure p on E by putting p : lli on every 
^(pi). 

This yields the representation

ui(p):.(p) + [ Go(p,q)dp(c)
J tr(p)

for quasi every p e 
^(pi). 

since the right-hand side is independent of j , whenever

^(pi) 
n 

^(pt) 
* 0 *e have uy : uå 9.€., and hence everywhere, on that intersec-

tion. We can therefore define a temperature u on ,E by putting u : ui on 
^(pi).Obviously u ) w on E, and if u is a temperature on -E such that u(q) < u(q) for

some g €.8, then there is i such that u(q) <,r;(q) a,nd so u does not majorize ur

on Å(p;).

Theorem 3. Let w be a
åas a thermic majorant on H o
that

subtemperature on Ho: FL'?x] - oo, o[. Then w
if and only if there is a sequence {pi} in Ho sucå

oo

Ho: U A(pi)
J=1
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and M(w,pi,.) is bounded above on l0,oo[ for every j. If w has a thermic
majorant on Ho and u js tåe least one, then

(21) u(p) : sup M(w,p, 
") 

: 
"lllg 

M(w,p,c)
c>0

foreveryp€Ho.
Proof. If there is a sequenc" {pi} as described, then ur has a thermic majorant

on every A(pi), by Lemma 2, so that to has a thermic majorant on If,, by
Theorem 2.

Conversely, if ur has a thermic majorant u on Ho, then for any p e Ho and
c)0wehave

M(.,p,c) < M(u,p,c): u(p) < m.

Finally, if tu has a least thermic majorant u on Ho, and p : (x,t) € I/, , then
Theorem 2 shows that the restriction of u to If1 is the least thermic majorant of
w on H1. Therefore, by Lemma 2,

u(p): Jjg3M(.,p,"),
and (21) follows because M(r,p,.) is increasing.
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