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MEAN VALUES AND THERMIC MAJORIZATION
OF SUBTEMPERATURES

N.A. Watson

1. Introduction

A classical result of F. Riesz states that the mean values of subharmonic
functions over concentric spheres of radius r, form convex functions of logr or
r2=" depending on the dimension of the space [2, p. 24]. The corresponding
result for subtemperatures, in which the mean values are taken over level surfaces
of the Green function, was presented in [6], along with some of its consequences.
In the present paper, we give a different, more elementary proof of the theorem for
subtemperatures, as well as two new results on thermic majorization, one of which
gives a criterion in terms of the mean values and depends upon consequences of
the convexity theorem.

The principal result on thermic majorization, Theorem 3, is analogous to
a well-known, elementary result on the harmonic majorization of subharmonic
functions: a subharmonic function on R"™ has a harmonic majorant there if and
only if its mean values over all spheres centred at the origin form a bounded
function. Again the mean values of a subtemperature over level surfaces of the
Green function are used, and because of their geometry the whole space is replaced
by a half-space R™"X] — 0o,a[. The result requires the boundedness of means
associated with a sequence of points rather than just one, and there are many
technical difficulties which do not arise in the subharmonic case. For example,
we have to prove that a subtemperature which has a thermic majorant on the
sets R"x] — 00,a;[ for all j € N, must also possess one on the union of those
half-spaces. This result has an illuminating generalization to arbitrary open sets,
which is given in Theorem 2.

We work in R™*1, and denote a typical point by p or (z,t), as convenient.
A particular point po is assumed without comment to be (zg,%y). A temperature
is a solution of the heat equation

zn:D?u— Dtu = 0.

=1

1980 Mathematics subject classification 35K05, 31C05.

doi:10.5186/aasfm.1991.1630


koskenoj
Typewritten text
doi:10.5186/aasfm.1991.1630


114 N.A. Watson

We use 6 to denote the heat operator, and 6* is adjoint (obtained from 6 by
changing the sign of D).

For all z € R", we put W(z,t) = (4nt)~"/2 exp(— ||z||* /4t) if t > 0, and
W(z,t) = 0 if t < 0. Then the Green function G for § on R"*! is given by
G(p,q) = W(z —y,t — s), where p = (z,t) and ¢ = (y,s).

If po € R™! and ¢ > 0, the fundamental domain Q(po,c) is defined as
{p € R**': G(po,p) > (4mc)~™/2}; it is convex and bounded. Its boundary is a

smooth surface with equation ||zo — z|| = [2n(to — t)log (c/(to — t))] 12 , together
with {po}. If (z,t) € R"x]0,00[, we put

Qz,t) = | [4 el ¢ + (Jlell” — 2nt)2] o

we also put Q(0,0) = 1. For each fixed ¢ > 0, the restriction to 9Q(po,c) of the
function (z,t) — Q(zo — z,to — t) is continuous, and is positive except for a zero
at (zo,to —c). If w is a function on 9Q(po, c), we put

M(w,po,c) = (47r0)_"/2 / Q(zo — z,tg — t)w(z,t) do(z,t),
9Q(po,c)

where o denotes surface measure, provided that the integral exists. If u is a
temperature on an open set D, and Q(po,¢) C D, then u(py) = M(u,po,c). In
particular, M(1,po,c) =1 for any pp and c.

If D is an open set and p; € D, we denote by A(py) the set of all points
g € D\ {po} which can be joined to py by a polygonal line in D along which
t is strictly increasing as the line is described from ¢ to py. A function w on
D is called a subtemperature if it is upper semicontinuous, extended real valued
but never +oo, real valued on a sequence {p;} such that D = |J;2, A(p:), and
satisfies w(po) < M(w,po,c) whenever Q(po,c) C D. If w is a subtemperature
on D, a thermic majorant of w on D is a temperature u such that w < u on D.
If w has a thermic majorant on D, then it has a least one. The basic properties of
subtemperatures are given in [4] and [5], and the equivalent class of subparabolic
functions is discussed in [2].

2. Convexity of mean values of subtemperatures

In this section we present a more elementary proof of [6, Theorem 2] than was
given in [6]. We consider subtemperatures on a domain of the form A(py, ¢, c2) =
Q(po,c2) \ Q(po,cl), where pp € R™1! and 0 < ¢; < ¢2. Such a domain corre-
sponds to an annulus in the subharmonic case. We show that, if w is a subtemper-
ature on an open superset of A(po,c1,c2) then M(w,po,c) is a convex function
of ¢™™/2 for ¢ € [c1,¢2]. Our method is based on an idea due to Dinghas [1] in
the subharmonic case.
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By a smooth function, we mean one for which the partial derivatives that
occur in # exist as continuous functions. For a smooth function u on a domain
in R**! we put V,u = (Dyu,...Dyu) and ||V u| = (E?=1(D,-u)2)1/2 . We use
(-,*) to denote the inner product in R™.

It is convenient to first establish some notation and list some elementary
formulas. In addition to the functions W and @ given abeve, for all (z,t) €
R"™x]0, 00[ we put

L(z,t) = [4]|a # + (J|e])” — 2nt)’]

and
J(z,t) = 2ntexp(— ||z||* /2nt) L(z, t);

note that Q(z,t) = ||z||*> L(z,t). If F € {W,Q,L,J} and (zo,t,) € R*!, we put
Fo(z,t) = F(zo — z,to — t) for all (z,t) € R"X] — 00,to[. On 9(po,c), where

(to — t)exp([lzo — z||* /2n(to — 1)) =<,
the outward unit normal (v,,v;) is given by
v, = —2(tg — t)(zo — 2)Lo(z,t), v = (|lzo — z||* = 2n(to — t)) Lo(z, t).
It is useful to have (vz,1:) in terms of Jy. Since
(1) cJo(z,t) = 2n(ty — t)2Lo(z,t)
whenever (z,t) € 0Q(po,c), we have

_c(zo — )

(2) Yz = n(to - t)

Jo(:lt,t),

¢ (Hzo —2|® = 2n(to — t))

for such points (z,t). Next,
_ Tog — T
(4) V;Wo(x,t) = ————-—2(t0 _ t) Wo(.’t,t),
2
(5) Dz t) = 2Dz 2l ),

4(ty — 1)?
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and if g = Wo—z/" we have

(6) 9*g = E(EH)MQ

n\n

since 8*W, = 0. Finally, on 0Q(po,c) we have
(7) —(VWo,vz) = |lzo — z||? Lo(z, ) Wo(z,t) = (47c) ™2 Qo(z,1).

We need certain Green identities. If v and w are smooth functions, it is
elementary that

n
vhw = Z Di(vDiw) — (Vzv,V,w) — Dy(vw) + wDyv

i=1
and

wh*v = Z Di(wD;v) — (V,w, Vv) + wD;v.

=1
Therefore, if A is any domain for which the divergence theorem is applicable,
(8) // (véw + (Vzv, V,w) — wDw) dz dt = (vVew,vz) — vwiy) do
A £V

and

(9) // (w6*v + (Vzw, Vzv) — wDw) dz dt = / (wV v, v;) do.
A 8A

Lemma 1. Let pp € R"t!, let 0 < ¢; < c2, let u be a smooth function on an
open superset of A(po,c1,cz), and put Q(c) = Q(po,c) and M(c) = M(u,po,c)
for all ¢ € [c1,¢z). Then, if k, = 2"*17"/2n=1 and c €]e;, c3], we have

(10) rcnc("ﬂ)HMc(c) = / ((Vzu, vg) — uut) do
a0 (c)
and
(11) Kn (c("/2)+1Mc(c)) =/ Jobu do.
¢ 8Q(c)

Proof. Let c €]ey,cs[, and put A = A(po,c1,c). We want to use (9) with this
choice of A and w smooth, but with v = W0_2/ " /4w, so that the smoothness of
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v breaks down at py. To prove that this is permissible, we use an approximation
argument. Let t €]ty — ¢1,t0[, and put

Fi(t) = 0Q(po,c1) N (R™ X [to — c1,1]),
Fy(t) = 02(po,c) N (R" x [to — ¢, t]),
V(t) = A(po,c1,¢) N (R™ x [t — ¢, t]).

Applying (9) on V(t) with v = W_Z/"/47r, and using (6) and (7), we obtain

“V Wo|| 2v 20w
(12) //V(t) W2 vw oTWe (Vow, V. Wo) + Ve DtWO) dz dt

—2wv 2
V Wo,v.)do = — c/ —c / wQp do.
/av(t) "Wo( ) "( X Fl(t))

Since wQq is bounded on 0A(pog,c1,c), as t — to— the last expression tends to

S L),
13 —lc —c wQy do.
(13) "< a9(c) ' an(cl)) Q

For the integral over V(¢) in (12), the integrand is

2/2 llzo — z||? v vw(2n(to —t) — ||zo — z||? )
n (n 1) 4t — 1Y " (e —py Ve T o 2n(to — 1)

by (4) and (5). Since v,w and ||V w|| are bounded, this expression is dominated
by a multiple of

leo —z* | 2n
(14) G-t TG

which is obviously integrable on V(#y — c;e™!). Furthermore, in A(po,ci,c),
lzo — z||* > 2n(to — t)log (c1/(to — t)),
so that on A(po,c1,¢)\ V(to — c1e™!) we have

llz0 — =|® 2n
(bo—1)* ~ (to—t)’

and therefore the expression (14) is dominated by |zo — z||* (to — t)~2, which is
integrable by [4, Lemma 4]. It follows that we can make ¢t — to— in (12); in view

of (13), we thus obtain (9) with A = A(po,c1,¢) and v = 0_2/"/47r. Next,

// fdzdt = /d’y/an(‘y)f.]oda
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for any function f such that either side exists [4, p. 388]. It therefore follows from
(9) that

/ / Vev,vg) do —/ d7/ (w8*v+(V,w, V,v)—wDyw) Jo do,
80(c) J89(er) ()

so that
(15) (/ w(Vv,v;) da) = / (w6*v + (V,w, V. v) — wDyw) Jo do.
aN(c) c a0 (c)

In (15), we take w =u and v = Wo_z/"/47r. Then, by (7),

/ w(Vzv,vz)do = L u( - g) WO_(z/")_l(VzWo, v;)do
aQ(c) 4m Jaqa(c)

n
= kDTN (c),
so that the left side of (15) is
Kn (c("/2)+1M(C)) .

Next, by (6), (4), and (1),

1 22 IV-Woll* . —2/n
w(8*v)Jy do = u—|=+1)——"W, Jo do
/an(c) S Ar Joae) "(" ) w¢

2
= (% + 1) /an(c) (%f—li)gg)u do

= (Z + 1) 59(¢) Qoudo = K"(l + g)cn/zM(C)'

n

By (2), (3), (4) and (5), the remainder of the right side of (15) is

i g —(2/71)—1 2 __(2/")_1
4 3ﬂ(c)( nWO (Vzu, V. Wo) + nWO UDtWO)Jo do

= / ((Vzu,vz) — ) do.
80(c)
Hence (15) yields

n n n
5 (PPPM()) = ma(1+2)e2M(e) + /a o (Fetws) =) o
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which implies the identity (10).
Taking A = A(po, ¢1,¢) in (8), and using an argument similar to the one that
gave us (15) from (9), we obtain

(16) (/ ((szw,V,)—kut) do) =/ (v9w+(V,v,V,w)—thv)Jo do.
a0(¢) c 89(c)

In (16), we take v =1 and w = u. Then the left side becomes

(/an(c) ((Vau,ve) = ure) da)c = Fon (C(n/2)+lM°(C)) ;

in view of (10), and the right side becomes

/ JoOu do;
a0 (c)

thus (11) is established.
Lemma 1 provides the following elementary proof of [4, Theorem 12].

Corollary. Let w be a subtemperature on an open set D, and let py € D.
Then M(w,po,-) is increasing on the set of ¢ such that (pg,c) C D.

Proof. If w is smooth on D, we can take A = Q(po,c) and v =1 in (8), to

obtain
// fw dzx dt = / ((V,w, V) — wut) do.
Q(c) 8Q(c)

Therefore, taking u = w in (10), we obtain
M,(c) = kte(M/D-1 // 6w dz dt.
Q(c)

Since 6w > 0, this formula immediately implies that M is increasing. (A similar
argument was given by Pini (3] for the case n = 1.) If w is an arbitrary subtem-
perature, we can take a decreasing sequence {wj} of smooth subtemperatures,
with limit w on a neighbourhood of Q(po,c) [2, p. 281]. Then M(wj,po,-) is
increasing for every j, so that the same is true of its limit, which is M(w, po,-)
by the monotone convergence theorem.

We can now give a proof of [6, Theorem 2] that does not rely upon knowledge
of the Dirichlet problem for A(po,c1,c2).

Theorem 1. Let w be a subtemperature on an open superset of A(py,c1,cz).
Then there is a real-valued, convex function ¢ such that M(w,po,c) = ¢(c™™/?)
for all ¢ € [¢1,c2].
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Proof. We require the fact that M(w, po,-) is real-valued, which was proved
in [6]. That proof requires the special case of [6, Theorem 1] in which u is a
temperature on an open superset of A(py, ¢, c2), which was proved by elementary
techniques (and could alternatively be deduced from (11)). It also requires the
result given as an example in [6], which depends only upon the aforementioned
special case of [6, Theorem 1] and the fact that M(w,po,-) is increasing (which
we have just given an elementary proof of). Suppose that w is smooth. Then
6w > 0, so that

(17) (c("/2)+1MC(C))C >0

by (11). Suppose also that w > 0, so that M > 0. Then we can rearrange (17)
to obtain

(18) > 0.

M 2

ey (el

2¢ ¢

Put A(c) = ¢"/2M(c). Then

and

so that (18) becomes

Putting ¢ = c"/?, we obtain
4% n\ Ac
= - —)Z) >
Aee n? (/\CC + (1 2) c ) 20,

so that A is a convex function of £. Hence c"/2M(c) is a convex function of ¢"/2,
which implies that M(c) is a convex function of ¢~"/2,

If w is smooth but not positive, we can find an open superset S of A(po, c1, c2)
and a constant K such that w — K >0 on S, so that

M(w,PO’C) = M(w - K,PO,C) + K
is a convex function of ¢™™2. If w is not smooth, take a decreasing sequence
{w;} of smooth subtemperatures that converges to w on an open superset of
A(po,c1,c2) [2, p. 281]. Then {M(wj,po,c)} is a decreasing sequence with limit
M(w,po,c) € R, so that M(w,py,c) is also a convex function of ¢~"/2.
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We now present a simple consequence of Theorem 1 that was not considered
in [6]. The subharmonic analogue can be found in [2, p. 24].

Corollary. Let w be a subtemperature on an open superset of A(po,c1,¢2).

If
o(z,t) = M (w,po,(to —t)exp ([loo — || /2n(to — t)))

for all (z,t) € A(po,c1,¢2), then v is a §* -subtemperature (that is, a subtemper-
ature relative to the adjoint equation).

Proof. By Theorem 1, there is a finite, convex function ¢ on ]c;"/z,cl_"/z[

such that v(z,t) = ¢((47)"?W(zo — z,t0 — t)). By Lemma 1, Corollary, ¢

is decreasing, so that if ¥(s) = <;S(c2,_"/2 + cl—n/2 — 8) then % is increasing on

]c;"/z,c;"n[ and v(z,t) = ¢(c2‘”/2 + cl_"/2 — (4m)"?W (2o — z,to — t)). Since
the function of (z,t) with which 1 is composed to get v, is a solution of the adjoint
equation, the dual of [4, Theorem 2] implies that v is a *-subtemperature.

3. Thermic majorization

Let w be a subharmonic function on R", and for each r > 0 let £L(w,0,r)
denote its mean over the sphere of radius r centred at the origin. It is a well-
known, elementary result that w has a harmonic majorant on R" if and only if
L(w,0,-) is bounded above on ]0, o0[; and that, if w has such a majorant and u
is the least one, then

u(0) = sup L(w,0,7) = lim L(w,0,7).

>0 r—0o0

We seek an analogous result for subtemperatures. First, we must replace the
whole space (R™*! in this case) by a lower half-space R"x] — o0, a[, because

U Q(po,c) = RnX] - OO,to[.
c>0

Note that a subtemperature on R"*! can have a thermic majorant on a half-space
R"x] — 00, 0[ without having one on R"*!. For example, it is well-known that
there is a temperature u on R? that is identically zero on R"x] — 00,0] but not
on any open superset thereof [7, p. 86]. The subtemperature u™ cannot have a
thermic majorant on Rx]0,00[, since that would imply that

w(at) = [ Wia=v,0u(s,0) dy =0

whenever ¢t > 0 [7, pp. 100-102].
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We therefore seek a necessary and sufficient condition, in terms of the surface
means M, for a subtemperature w on a half-space H, = R"X] — 00, a[ to have
a thermic majorant there. There are two essential elements for this. The first
is that, if ¢ = (y,s) € H, and M(w,q,-) is bounded above on ]0, o[, then w
has a thermic majorant on H,. This is far less elementary than the subharmonic
theorem, and depends on the continuity of M(w, g, ) that is implied by Theorem 1.
The second is that, if t; - a— and w has a thermic majorant on Hy; for every j,
then w has a thermic majorant on H,. This result can be generalized to arbitrary
open sets, and is given in Theorem 2 below.

Lemma 2. Let w be a subtemperature on an open superset D of H, U{p,}
for some p, € 0H,. If M(w,p,,-) is bounded above on |0,00[, then there is
an increasing family {w. : ¢ > 0} of subtemperatures on D such that we, =
limc_,oc w¢ is the least thermic majorant of w on H,. Furthermore,

(19) Weo(pa) = cll.r{.lo M(w, pq, ).

Proof. If ¢ > 0, then there is a unique subtemperature w. on D such that
w is a temperature on Q(pqg,c¢), we = w on D\ (Q(pa,c)U{pa}), and w, > w on
D [6, Theorem 5]. If d > c, then the same theorem yields not only wg, but also
a unique subtemperature uq on D such that uq is a temperature on Q(p,,d),
Ug = W, on D\(Q(pa,d)U{pa}), and ug > w. on D. Since w, = w on a superset
of D\ (Q(pa,d) U {pa}) and w, > w on D, we see that wg = ug > w, on D,
so that we, = lim._o, w, exists on D. By hypothesis, there is & € R such that
M(w,p,a,c¢) < a for all ¢ > 0. Therefore

wc(pd) < M(wc,pa,c) = M(U),Pa,c) fa

for every ¢ > 0, so that weo(ps) < a. If 0 < ¢ < d then, since wy is a subtem-
perature on D and a temperature on Q(p.,d), we have wq(p,) = M(wq,pa,c)
by [6, Theorem 4]. Since the mean values of subtemperatures are real-valued (by
Theorem 1), we can use the monotone convergence theorem to deduce that

M(Weo, pa,c) = dlin;oM(wd,pa,C) = Weo(pa) < @

for every ¢ > 0. Hence we is finite o-a.e. on 9Q(ps,c), and therefore the
Harnack convergence theorem (2, p. 276] implies that we, is a thermic majorant
of w on H,. Since any thermic majorant of w on H, will also majorize w,. for
every ¢ > 0, the function we is the least such majorant. Finally, if ¢ > 0 we
have

M(w, pa, c) = M(we, pas ¢) = we(pa)
(by [6, Theorem 4]), from which (19) follows immediately.
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Theorem 2. Let w be a subtemperature on an open set E, and let {p;} be
a sequence in E such that

(20) E = Ap))

=1

If w has a thermic majorant on A(p;) for every j, then w has a thermic majorant
on E; and if u is the least thermic majorant of w on E, then for any j the
restriction of u to A(p;) is the least thermic majorant of w on A(p;).

Proof. Let uj denote the least thermic majorant of w on A(p;). Then u;—w
is a potential on A(p;), and since the Green function for A(p;) is the restriction
to A(p;) x A(pj) of the Green function Gg for E [5; 2, p. 300], we have

Uj‘W=/ Ge(-,q)du;(q)
A(p;)

on A(pj), for some positive Borel measure ;. Next, Gg(p,¢) > 0 if and only if
q € A(p) [5; 2,p. 300}, so that

u3(p) — w(p) = /  Ge(r,0)dus0)

for all p € A(p;). Next, by the form of the Riesz decomposition theorem given in
[5] and the uniqueness of representing measures, p; is the measure given by the
distribution —6(uj —w) = 6w on A(p;). Therefore, whenever A(p;) N A(pk) # 0,
the measures p; and pi coincide there. In view of (20), we can therefore define a
measure g on E by putting u = uj on every A(p;). This yields the representation

uj(p) = w(p) + Ge(p,q)du(q)
A(p)

for quasi every p € A(p;). Since the right-hand side is independent of j, whenever
A(pj) N A(px) # 0 we have u; = uy q.e., and hence everywhere, on that intersec-
tion. We can therefore define a temperature u on E by putting u = u; on A(p;).
Obviously u > w on E, and if v is a temperature on E such that v(q) < u(q) for
some q € E, then there is ¢ such that v(q) < ui(¢g) and so v does not majorize w
on A(pi).

Theorem 3. Let w be a subtemperature on H, = R"x] — 0o,a[. Then w
has a thermic majorant on H, if and only if there is a sequence {p;} in H, such
that

Ho = J A(p)
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and M(w,pj,-) is bounded above on ]0,00[ for every j. If w has a thermic
magjorant on H, and u is the least one, then

(21) u(p) = sup M(w, p,c) = lim M(w,p,c)
C>0 CcC— OO0

for every p € H,.

Proof. If there is a sequence {p;} as described, then w has a thermic majorant
on every A(p;), by Lemma 2, so that w has a thermic majorant on H,, by
Theorem 2.

Conversely, if w has a thermic majorant v on H,, then for any p € H, and
¢ > 0 we have

M(w,p,c) < M(v,p,c) = v(p) < oo.

Finally, if w has a least thermic majorant v on H,, and p = (z,t) € H,, then
Theorem 2 shows that the restriction of u to Hy is the least thermic majorant of
w on H;. Therefore, by Lemma 2,

u(p) = lim M('w,p, C),
c—o00

and (21) follows because M(w, p,-) is increasing.
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