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FREE QUASICONFORMALITY IN BANACH SPACES II

Jussi Vaisala

1. Introduction

This paper is continuation to [Vd4]. We consider homeomorphisms f: G —
G' where G and G' are domains in Banach spaces E and E', respectively. In
[Vas] we introduced the class of freely ¢-quasiconformal (¢-FQC) maps, which
in the case E = R™ = E' essentially agrees with the class of K -quasiconformal
(K -QC) maps. We also considered some related concepts, in particular, ¢-solid
maps.

In this paper, the boundary and distortion properties of these maps are stud-
ied. In Section 2 we show that an isolated boundary point is removable for solid
and FQC maps. Since quasihyperbolic geodesics do not always exist, we prove in
Section 3 existence theorems for a generalized concept called a neargeodesic. Sec-
tion 4 deals with a new tool called the coarse length of an arc. We also introduce
the class of coarsely quasihyperbolic (CQH) maps, which includes all solid and
hence all FQC maps. In Section 5 we relativize the theory of quasisymmetric (QS)
and quasimébius (QM) maps. The theory of uniform domains in Banach spaces is
developed in Section 6. The theory of Sections 3-6 is applied in Section 7 to prove
various results on maps of uniform domains. For example, a CQH map f: G — G’
between uniform domains extends to a homeomorphism f: G — 6’, which is QM
rel OG. In particular, the induced boundary map fo: 0G — 9G' is QM. If f
is FQC, then f itself is QM. Many of the results are also new in the classical
case E = R™ = E'. In Section 8 we apply the idea of relative quasisymmetry to
reprove and generalize the recent interesting distortion theorem of D. Cooper on
CQH maps of the n-ball.

We shall use the terminology and notation of [V&,]. In particular, X and Y
will be metric spaces, E and E' will be real Banach spaces and G C E, G' C E'
domains. In the present paper we shall also assume that dim E > 2, dim E' > 2.
The closure A and the boundary 0A of a set A C E are taken in the extended
space E = E U {oo}. References to [Va4] will be given in the form 1.2.5, which
means the result 2.5 of [Vi,].
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2. Isolated boundary points

2.1. Introduction to Section 2. Suppose that z, is an isolated boundary point
of a domain G C FE and that f: G —» G' is a homeomorphism. If E = R* = E'
and f is K-QC, it is well known that f has a K-QC extension to GU {zo}. We
shall prove the corresponding result for solid and FQC maps.

For solid maps the result is new also in R™. However, the proof for this
case would be considerably shorter. For example, we know that the cluster set
clus(f,zo) is a component C' of dG'. For small r the QH diameter of S(zo,r) is
n. If C contains more than one point, then the QH diameter of fS(zo,r) tends
to oo as r — 0, which contradicts the solidity of f. This proves that f has a
limit at zo. In the infinite-dimensional case we can say very little of the cluster
set by topological reasons, which makes the proof much longer.

We start with a basic result of Banach geometry.

2.2. Lemma. Let S = S(zo,r) be a sphere in E. Then each pair of points
in S can be joined by a 2-quasiconvex arc in S.

Proof. Let a,b € S, a #b. Let T be a 2-dimensional linear subspace of E
containing a and b. Then TN S is a topological circle, and the points a,b divide
TNS toarcs 71,72. Assuming I(y1) < I(72), the arc 47 is 2-quasiconvex by [Sc,
44]. o

2.3. Remark. In a Hilbert space we can replace the constant 2 of 2.2 by /2.
The bound 2 is sharp in the plane with the norm |z| = |z1] + |z2].

2.4. Notation. For a set A C G we let k(A) denote the QH diameter of A,
and k(A, B) is the QH distance between two nonempty sets A,B C G. In G' we
replace k by k'.

2.5. Lemma. Suppose that z is a finite isolated boundary point of G and
that B(zo,2r) C GU{zo}. Suppose also that a,b € G with |a—z¢| < |b—zo| < .
Then

k(a,b) < In—20 4 g

and thus k(S(zo,r)) < 4.

Proof. We may assume that zo = 0. Set y = |bla/|a]. By 2.2 we can
choose an arc a C S(zo,[b|) joining y and b with {(a) < 2|b—y| < 4/b|. Then
v = [a,y] U a joins a and b in G, and hence

(6]
k(a,b)Slk('y):/ £+l(—a)§lnlﬂ+4.m
log t B |al
2.6. Lemma. Suppose that G # E, G' # E' and that f: G — G' is solid.
Let A C G with k(A) < co. Then fA is bounded, d(fA,8G") >0, fA C G' and
OfA = fOA.
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Proof. By solidity we have k'(fA) < 0o. By 1.2.2(1) this implies that fA is
bounded and that d(fA,8G') > 0. Hence fA C G', and 9fA is the boundary of
fA in the topology of G'. Since f is a homeomorphism, we have fA = f0A. o

2.7. Theorem. Suppose that zq is an isolated boundary point of G # E
and that f: G — G' is @-solid. Then f has a limit yo € E' at zo, and yo is an
isolated boundary point of 0G'. Setting

Gi=GU{zo}, G1=GU{w},  fi(z) =1,
we obtain an extension of f to a homeomorphism fi: Gy — G}. If o # oo,
Yo # oo and G # E, then fy is ¢y -solid with ¢1 = p1(p).

Proof. Performing a preliminary inversion if necessary, we may assume that
zoy # 0o. By a translation we can normalize 29 = 0. We break the proof to three
lemmas 2.8, 2.15 and 2.16.

2.8. Lemma. The map f has a limit yo at 0, possibly yo = c0.

Proof. Writing U(r) = B(r) \ {0} we choose ro > 0 with U(2r) C G.
We may assume that 0 € fS(rg). If fr — oo as £ — zo, there is nothing to
prove. We may therefore assume that there are R > 0 and a sequence of points
z; € U(ry) such that rj = |zj| — 0 as j — oo, the sequence (r;) is strictly
decreasing, and |fz;| < R for all j. Since E' is complete, it suffices to show that
d(fU(r;)) — 0 as j — oo. The proof consists of six steps.

Step 1. Writing S; = S(r;) for j > 0 we infer from 1.2.2(1) that

k(S;,S0) > In :—" — 00
J

as j — o0o. By solidity this implies

(29) Jim K(f5;,750) = oo.

If B(2R) C G', 1.2.5 implies k'(fz;,0) <1 for all j. By (2.9) this is impossible,
and hence

(2.10) B(2R) N dG" # 0.

Step 2. For j > 1 let A; be the annulus B(rg) \ B(r;). We next show that
there is Ry = Ry(R, ) > 0 such that

(2.11) fAj C B(Ry)
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forall j > 1. If z € S, then 1.2.2(1), 2.5 and (2.10) imply
|fr — fzj| < 5'(ij)ekl(f”fzf) < 3Re?®,

Hence fS; C B(Rl) with R; = 3Re®®) + R. Since 0 € fS,, the same argument
shows that fS, C B(Rl) From 2.5 we infer

(2.12) k(4;) <In :—0 +4< oo
J

By 2.6 this implies

(2.13) OfA; = fSo U £8,.

Hence fA; C B(R,), since otherwise £\ B(R;) would be a connected set meeting
fA; and E\fA but not 0fA;.

Step 3. We show that a; = d(fS;, fSo) >0 for j > 1. By (2.12) and 2.6 we
have d(fA],aG)—qJ>0 Ifz €S, yesS;and |fz— fy| < ¢;/2, then 1.2.5

yields

On the other hand, 1.2.2(1) gives k(x,y) > In (ro/rj). Hence

) - T
fe—fol 2 Lo (0 22) =5, > 0,

J

which implies a; > 8 A (¢;/2) > 0.
Step 4. We show that fS; and fS; can be joined by an arc vj C fA; which
consists of two line segments. Since A; is connected, there is z € A; such that

d(fz,fSo) = d(fz, fS;) = A
Choose points a9 € fSo and a; € fS; such that
|[fz —ao|A|fz —aj| <X+ aj/2.

Replacing ao by a point in [fz,a] we may assume that [fz,a0) N fSo = 0, and
similarly [fz,a;) N fS; = 0. If there is a point u € [fz,a0] N £S;, then

|u_fz! Zd(fz’fsj):)‘a

and hence |u — ao| < @;/2. Since a; = d(fS}, fSs) < |u — ao|, we obtain a
contradiction. Thus [fz,a0] N fS; = 0. Similarly [fz,a;]N fSo = 0. By (2.13)
the arc v; = [fz,a0] U [fz,a;] lies in 4;.



Free quasiconformality in Banach spaces II 259

Step 5. We next show that
(2.14) lim d(fS;)=0.
j—oo
Set §; = d(v;,6G"). By Step 4 and (2.11) we obtain

E'(fSo0, fS;) < k(v;) < U(vj)/é5 < 4R /6;.

By (2.9) this implies that §; — 0 as j — co. Hence d(0fA;,0G') — 0. In Step 3
we observed that d(fSp,0G") > 0. In view of (2.13) we obtain d(fS;,0G") — 0.
On the other hand, we have k'(fS;) < ¢(4), and hence by 1.2.2(1),

d(fS;) < 2d(£S;,8G")e?®,

which gives (2.14).

Step 6. As the final step we prove the original claim d(fU(rj)) — 0. Let
e > 0. By (2.14) there is j such that d(fSi) < € for all ¢+ > j. It suffices
to show that d(fU(rj)) < 4e. Let A;; be the annulus B(r;)\ B(r;) in G. It
suffices to show that d(fAi;) < 4¢ for all 7 > j. Choose closed balls B; and
B; of radius ¢ containing fS; and fS;, respectively. If B; N B; = §, then
E'\ (B; U By) is a connected set meeting E' \ fA;;. As in (2.13) we obtain
OfA;j = fSiU fS; C B1UB;. Hence fA;; C By UB;. Since fA;; is connected,
this is impossible. Consequently, B; meets B;, and hence 0fA;; is contained in

a ball B of radius 2¢. This implies that fA;; C B, and hence d(fA;;) < 4e.
Lemma 2.8 is proved. o

2.15. Lemma. Set G; = GU {0}, G} = G' U{yo}. Then G; and G} are
domains in E and E', respectively. The extension fi: Gi — G} with f1(0) = yo
is a homeomorphism.

Proof. Clearly yo € 0G', and G; is a domain. Performing a preliminary
inversion and a translation, if necessary, we may assume that yo = 0. Write again
U(r) = B(r) \ {0} and choose rq > 0 with U(2rg) C G. Since k(S(ro)) <4 < o0
by 2.5, Lemma 2.6 implies that d(fS(ro),0) = to > 0. We show that B(to)NdG’ =
{0}. Assume that this is false. Since fU(ry) is an open set meeting B(ty), we can
choose points z and z; in B(tg) such that z € fU(rg), z1 € 0G', and 0 ¢ [z, z].
Replacing 2; by a point in [z,z;] we may assume that § = [z,2z1) C G'. Then
a = f~18 does not meet S(ry), and hence a C B(rg). Since f; is continuous at
0, @ does not contain 0. Hence k(a) < oo, which implies k'(8) < co. This is a
contradiction, since § meets 9G'.

We have proved that 0 is an isolated boundary point of G'. This implies that

! is a domain. Moreover, fi: G; — G} is a continuous bijection. It remains to
show that f;! is continuous at the origin.

Let 0 < r < ro. As above, d(fS(r),0) =t > 0. Then f~'U(t) is a
connected set meeting B(r) but not S(r). Hence f~1U(t) C B(r), which implies
the continuity of fi'! at 0. o
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2.16. Lemma. Suppose that G1 # E and yo # oo. Then G} # E' and
fi: G1 = G is ¢ -solid with ¢1 = p1(¢p).

Proof. We may again assume that yo = 0. Assume that G} = E'. This
means that G' = E'\ {0}. By Lemma 2.8, f{'! has a limit z; # 0 at oo, possibly
z; = 0o. Since G; # E, we can choose neighborhoods U of 0 and V of z; such
that UNV =@ and E\ (UUV) meets dG. Then for the set A= G\(UUV) we
have k(A) = co. However, fA does not meet {0,00}, and hence k'(fA) < co.
This contradiction proves that G| # E'.

By auxiliary similarities we can normalize the situation so that d(0,0G;) =
1 =d(0,0G]). We first show that there are a number ro = ro(p), 0 < ro < 1/2,
and an increasing homeomorphism ¥ = ,: [0,7¢] — [0,1/2] such that

(2.17) |fiz| < ¥(l=])

whenever |z| < rp.

We first observe that for each r € (0,1) we have fiB(r) C G} and hence
0f1B(r) = fS(r). Indeed, there is ry < r with f1B(r1) C B(1/2). The annulus
A = B(r) \ B(r1) has a finite QH diameter in G. By 2.6, this implies fA C G',
and hence f1B(r) C G}.

Set € = e(p) = e ¥™® /2, and choose a point z € G with |z| < 1+ ¢.
Let 3 be the ray from z through 0. We can choose points y1,y2 € SN fS(1/2)
such that 0 € [y1,y2] C fiB(1/2) and y; € [2,0]. Writing z; = f~'y; we have
k(z1,z2) < 4 by 2.5. Setting ¢ = |y; — 2| and assuming ¢ < 1/2 we have

dy1,0G")<q, |y1—vy2l>|n|>1-q.

By 1.2.2(1) these yield
1
K (y1,42) > In <

Since f is ¢-solid, we obtain
(2.18) g> e W = 9¢
which is also valid if ¢ > 1/2.
Next assume that 0 < r < 1/2. Choose a point z3 € S(r) such that fz; =
Y3 € [11,0]. If y € [y1,y3] and z; € HG1, we have by (2.18)

I1<|a|<|yl+ly—zl<14+e—q+ly—21|<1—c+|y— 2|,

which implies
d(y,0G") > e A |ys| = t.
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Hence
k' (y1,y3) < ly1 — sl /t < 2/t.

On the other hand, k(z3,z1) > In(1/2r), and hence
2
¢~1(In(1/2r))
as r — 0. Setting ro = e~¥(2/€) /2 = r4(p) we have 1o(ro) = €. Hence

(2.19) lya| < %o(r)

for 0<r<mrg.
Let z € S(r). Then |fz| < |ys| or

t< = to(r) = 0

|f$—y3|) > In | fz|

k'(fz, >In(l+ Ll s
(f yS) ( |y3|

lys|”
Since k(z,z3) < 4, this and (2.19) yield

|fz| < e?@ys| < e#Baho(r) = 3(r)

for 0 < r < rg. Setting 1(0) = 0 we obtain (2.17). Moreover, ¥(ro) = 1/2.

We turn to the solidity of f;. By 1.3.7, f is f-relative with 8 = 6,. By
symmetry and by 1.3.7, it suffices to show that f is (61, ¢)-relative with (61, q)
depending only on ¢. We show that one can choose ¢ = (/3.

We write § = ég, 61 = 6g,, 6' =éc', 6] = bg; . Then

§(z) =ébi(z)Alel,  &'(y) =6(y) Alyl-

Set ¢ =r9/3, and let a € G1, b € B(a,¢é1(a)). It suffices to find an estimate

|fia — fib| |a — b
<6
8 (fa) ~— 1( 81(a) )
with some 6; with 6;(¢) — 0 as t — 0. By continuity we may assume that
a # 0 # b. We consider two cases.
Case 1. |a| > ro/2. If §(a) = |al,

(2.20)

b1(a) <1+ la| < (2/ro +1la| < é(a)/q.

If §(a) = 81(a), this is trivially true. Hence we have |a — b| < 6(a). Since f is
#-relative, this implies

fa— | _ \fa— b _ ,ola—bly _ (la—b]
70a < 0w 25w ) < Gaw)
Thus (2.20) holds with 6;(t) = 6(t/q).
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Case 2. |a| < 19/2. Now é(a) = |a|. We consider two subcases.
Subcase 2a. |a —b| < |a]?. We have

fa—fol _ Ifa— b _ ,/la—t)
G < o ST

Since é1(a) <1+ |a| < 2, we obtain

|a — 5]
81(a)

a — b|?
| Ialzl <la—-bl <2

Hence (2.20) holds with 6,(t) = 6(\/2t).
Subcase 2b. |a — b| > |a|?. Since

la — 8] < g61(a) < q(1+|a]) <ro/2,

we have |b| < ro and
1 < lal + Ja — bl < 2¢/Ja =],

By (2.17) this yields

|fa— fbl < |fal +|£b] < 2(2y/]a — b]).
Since
61(fa) 21 —|fal 21—9(la]) 21/2,  6i(a) <1+ a| <1+10/2 < 5/4,

we obtain (2.20) with 6,(t) = 4 (V/5t). o

2.21. Theorem. Suppose that zy is an isolated boundary point of G and
that f: G — G' is ¢-FQC. Then f has a limit yo € E' at zo, and Yo Is an
isolated boundary point of dG'. Setting fi(zo) = yo we obtain an extension of f
to a homeomorphism f1: GU {zo} » G' U {yo}. If 2o # oo and Yo # 0o, then f;
is 1 -FQC with ©1 = ¢1(p).

Proof. This is an easy corollary of 2.7. o

2.22. Remark. In the QC theory of R™ it is customary to allow the pos-
sibilities co € G and co € G'. In the free theory this would involve technical

complications, since we have not defined the QH metric of such domains. One can
usually reduce the situation to the case G C E, G' C E' by auxiliary inversions.
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3. Neargeodesics

3.1. Terminology. Let G # E and ¢ > 1. Anarc v C G is a c-neargeodesic in
G, if 4 is c-quasiconvex in the QH metric k = kg. In other words, the inequality

Ik (v[z,y]) < ck(z,y)

holds for each pair z,y € 4. Thus v is a QH geodesic if and only if it is a
1-neargeodesic. The arc ¥ may be closed, open or half open.

We showed in 1.2.9 that geodesics do not always exist. In this section we shall
prove two existence theorems for neargeodesics. In the first result we join two
points in G, in the second one a point of G to 0G.

3.2. Lemma. Suppose that a € G # E, that 0 <t < 1/2, and that v is a
rectifiable arc in B(a,t6(a)). Then

1 <lk(7)5(a)< 1 .
1+t=  I(y) —1-t¢

Moreover, every line segment in F(a,t&(a)) is a c-neargeodesic in G with ¢ =
(1+2t)2.

Proof. Since
6(a)(1 — 1) < é(z) < 6(a)(1 +1)

for all z € F(a,t&(a)), the inequalities follow directly by integration. Suppose
that v = [z,y] C B(a,té(a)). Then the second inequality and 1.2.2(3) yield

e(7) < (1+ 20 — yl/6(a) < (1 + 2)%k(a, y). o

3.3. Theorem. Let a,b € G # E and let ¢ > 1. Then there is a c-
neargeodesic joining a and b in G.

Proof. For ¢ > 0 we write ¢; = ¢;(g) = (1 4+ 2¢)?. Choose go > 0 such that
(3.4) go < k(a,b)/10, c1(go) < 5/4.

Then go < (V5 —2)/4 < 1/8. We shall prove the theorem by constructing for
every ¢ < go an arc f joining a and b such that § is a ¢(g)-neargeodesic, where
c(q) > 1as ¢g—0.

Let 0 < ¢ < go. Choose an arc v joining a and b in G such that lx(y) <
k(a,b) + ¢*. Then

(3.5) Le(vlz,y]) < k(z,y) + ¢°

for all z,y € v, since assuming z € v[a,y] we have
k(a, ) + Ik (72, y]) + k(y,5) < L(y) < k(a,2) + k(z,y) + k(y, b) + ¢
Since ¢ < k(a,b)/10, we can choose a number A = A(g) such that
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(1) ¢/4< X <q/2,

(2) Ik(y) =nA

for some positive integer n. Divide v by successive points a = z¢, ..., , = b to
subarcs v; = y[zj—1,z;] with lk(y;) = A. Setting

,B]=[.’I?j_1,$]‘], ,B=U{,BJ1S]STL}

we show that 8 is the desired arc.
Let z,y € B, z # y. Although we have not yet shown that 3 is an arc, the
QH length i (ﬂ [z, y]) is defined in the obvious way, as soon as we fix 7 and j with
z € Bi, y € Bj. Setting
lk (,5[513, y])
P%,Y)= —7———~
)= Tay)
we must find an upper bound p(z,y) < ¢(g) with ¢(¢) — 1 as ¢ — 0. We consider
four cases.

Case 1. For some 7, §; contains z and y. Since k(zi—1,2;) <A <¢q/2< 1,
1.2.5 gives |z;_; —z;| < ¢6(z;). Hence 3.2 implies that p(z,y) < (1-}-2q)2 = c1(q).

Case 2. z and y are vertices of §, say ¢ = z;, y = Tits, s > 1. Using
Case 1 and (3.5) we obtain

ﬂ[mvy] Zlk ﬂz-i-] < C1 Zk($z+] 1>$1+]) <c Zlk(7z+1)

= Cllk (vlz,y]) < clk(m,y) + c1¢.

On the other hand, since ¢ < 1/8, (3.5) implies

k(z,y) > Ik (v[z,y]) —* =sA—¢* > ¢/4 - ¢* > ¢/8.

Hence p(z,y) < e1 + 8c1q = c2(q).

Case 3. There are 7 > 1 and s > i + 2 such that z € §;, y € B,. Using
Case 2 we obtain

(B2, y]) = e (Blzi-1,24]) — L (Blziz1,2]) — Ik (Bly, z4])
< cok(zioa,zs) — k(zic1,z) — k(y, z5)
< cok(z,y) + (c2 — 1) [k(ziz1,2) + k(y,z,)].

Here
k(zi-1,2) < k(Bi) < crk(ziz1,7i) < ) < c1q/2,
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and a similar estimate is valid for k(y,z,). These and (3.5) yield

k(z,y) > k(zi-1,%s) — k(zi-1,2) — k(y, Ts)
> I (Y[zic1,2s]) — ¢ — 21X > (3 — 2¢1)A — q* > (5—4c1)q/8,

where we also made use of the inequalities A > ¢/4 and ¢ < 1/8. By (3.4), the
right-hand side is positive. Consequently,

8ci(c2 — 1)

<
p(.’l?, y) S e + 5 _ 461

=c3(g) =1

as ¢ — 0. We have also proved that v is an arc.

Case 4. Thereis i suchthat z € f; andy € Biy1. U o =2;—1 orif y =241,
we are in Case 3. The general situation is reduced to this special case as follows:

We may assume that z # z; # y. For K > 1 let g: E — E be the similarity
defined by gu = z; + K(u — z;). We can choose K such that gz € 8;, gy € Bit1,
and either gr = z;-; or gy = z;4+1. In Case 1 we showed that £; U 8i+1 C
E(zi,qﬁ(z;)). Applying 3.2 twice we obtain

1(Blz,y])  1(Blgz,gy)) _ (1+@)l(Blgz,9y)
WOl S 2066 " Ri-abe) S KG-9

By Case 3 we have Ix(8[gz, gy]) < csk(gz,gy). These estimates and 1.2.2 yield

(14 qeslgz —gyl (1 +g)esle —yl _ (1 +¢)(1 +2g)csk(z,y)
W) S SR gye@) T G- orE) S (-ep
= a;(q)k(a:,y),

where c4(q) =1 as ¢ = 0. o

3.6. Terminology. A half open arc v in a domain G is an endcut of G if ¥
is a closed arc with one endpoint in 0G.

We want to show that each point zo in G # E can be joined to 0G by
a neargeodesic endcut. If dimE < oo this is easy: We choose yo € 0G with
lyo — zo| = 8(z0). Then [zo,yo) is a 3-neargeodesic by Lemma 3.9 below. In the
general case there is no nearest point yo, and we must replace [z¢,yo) by a broken
line consisting of a countable number of line segments.

We first prove some elementary inequalities in Banach spaces.

3.7. Lemma. Suppose that a,b € G # E with |a — b < §(a) and that
z € [a,b]. Then |z —b| < §(z) and 6(b) < 26(x).
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Proof. Elementary estimates give
|z —a| +|& - b = |a — b] < §(a) < §(2) + |z — dl,

8(b) < 6(z) + |z — b < 26(z). o

3.8. Lemma. Let To,T1,T2 € E with 2|.T1 — let S |£I)0 —11:1| S Iito — Z2|,
and let z € [zo,z1], y € [z1,22]. Then

|z -z <20z —yl, |o1—y| <20z -yl
Proof. We normalize zo = 0, |z;| = 1. Then 2|z, — 22| < 1 < |z5|. Using
a similarity of the form f(z) =z, + K(z — ;) we see that it suffices to consider
the cases where either z =0 or y = z,.
Suppose first that £ = 0. Then
lz —yl =yl 2 le1] = o1 —y[ 2 1 = |21 — 22| 2 1/2,
and hence
|z -z =1<2lz—yl, |o1-y[<|z1 -2 <1/2< 2 -yl
Next assume that y = z5. Now
lz -yl 2yl = |z| 21— |z| = [z ~ 2],
which implies the first inequality. If |z; — y| > 2|z, — |, then
21—yl <o — 2l + [z —y[ < oy —yl/2+ 2 — y].
If |z1 — y| < 2|z; — 2|, then
|z —yl/2 < o1 —z| =1~ |z| < Jy| - || < |y — 2.

In both cases we obtain the second inequality. o

3.9. Lemma. Suppose that a,b € G # E and that |a — b| < §(a). Then

Ik (a,b]) < 31n (1+ |‘;(—b)bl),

and [a,b] is a 3-neargeodesic.
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Proof. . For each z € [a,b] and y € G we have
bl =la—bl— |a—2| < 6(a) — la— 2| < 8(z), 8(b) < &(c) + b o] < 26(2),

and hence

|z — b + 8(b) < 36(z).

Consequently,

la=bl g a—b
I ([a, b)) 53/0 6(b)t+t=3l (1+%)

The last statement follows now from 1.2.2(1). o

3.10. Theorem. Suppose that z9 € G # E and that ¢ > 0. Then there is
an endcut 4 of G from z( such that
(1) « is a co-neargeodesic with a universal cq,

(2) 7 C B(zo, (1+€)6(x0)).

Proof. We may assume that ¢ < 1/4. For positive integers j set ¢; = 27J¢.
We construct inductively a sequence of points zg,z1, ... in G as follows: Suppose
that zg, ..., z; have been chosen. If z; € 0G, the process stops. If z; € G, we
choose a point y;4+1 € 0G with |yit1 — zi| < (1 +¢€i4+1)8(zi), and let z;4; be the
unique point in [z;,yi+1) N S(zi,8(z;i)). Then

(311) 5(13,’+1) < 6,’+15(.’E,’).

Writing +; = [zi—1,2i) we claim that the union v of all 4; is the desired endcut.
As in the proof of 3.3, we can in the obvious way define the QH length of
vlz,y] for © € vi, y € v; as soon as ¢ and j are fixed. We shall show that

(3.12) I (v[z,y]) < cok(z,y)

for all z,y € v with a universal constant ¢o. This will imply that the arcs ; are
disjoint. Moreover, since

E:Kw)—ﬁ:&% 1) < 6(20) (1 }: ;) = 8(zo)(1 +¢),

v lies in B(zo,(1+€)6(z0)), and v is rectifiable. Since E is complete, this implies
that v is an endcut of G. Thus it suffices to verify (3.12). We consider three cases.

Case 1. For some i, v; contains z and y. Now (3.12) follows from 3.9.
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Case 2. For some ¢, z; € v; and y € viy1. Now 3.9 gives

L(oles]) < 30n (14 E) 4o (14 2 ),

Applying 3.8 with the substitution

(930,301,302,5'3,1/) = (l‘i—l,fﬂi,yiﬂ,z,y)

we obtain
& — il V [z — y] < 2z — y].
Since
6(y) < ly —yira| < (1 +€ir1)é(zi) < 96(zi)/8,
and since In(1 +ta) < tln(1+a) for t > 1 and a > 0, these inequalities and 1.2.2
yield the estimate

L (vlz,y)) < (’24—7 + 6) In (1 + Ig&;)ﬂ) < 13k(z,y).

Case 3. For some 1 > 1 and s > 2, z € 4; and y € ¥;4+,. By 3.9 we have

(e 4)/3 < 1n (14 B x')@ln 0 Ty) +in (o i),

By (3.11) we obtain

In (1 + 5(”””"‘1)) <1 28iim1) In(1+¢i4,) <In 8airjm) +Eitj.

6(ziy;) (ziyj) 8(zis;)
Writing
a:lné(x_i)w’ ﬂzlna(y)+|y_xi+s—ll,
() )
these inequalities yield
é(z)

Lk(v[z,y])/3<a+B+e+In—— 5

Furthermore, Lemma 3.7 implies that
0(z;) + |zi — 2| < 28(z) + 8(z) = 36(z),
and hence a <1n3. Since |y — zits-1| < 6(zi4s—1), we have
0(y) S 6(Tigs—1) + |y — Tits—1] < 26(zits—1),
and thus # <In3. Since € < 1, these estimates imply

§(z)
(3.13) lk(v]z,y]) < M +31n )’

where M = 3(1 4+ 2In3). We also see that
6(y) < 26(zits—1) < 2616(xi) = €b(zi) < §(2:)/4 < é(z)/2.
Hence (3.13) and 1.2.2 give (3.12) with ¢ = M/In2+3 < 17. o
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4. Coarse length and CQH maps

4.1. Introduction to Section 4. We first introduce the concept of the coarse
length of an arc, which will be our main tool when studying the boundary prop-
erties of FQC and more general maps. We also consider coarsely bilipschitz maps,
which in the QH case will be called coarsely quasihyperbolic or CQH. The CQH
maps include the solid maps, and hence the FQC maps.

The general idea in the coarse theory is that we forget what happens with
small distances. Related concepts have been considered by M. Gromov [Gr, p. 186]
and several others.

4.2. Terminology. Let v be an arc in a metric space X. The arc may be
closed, open or half open. Let T = (z¢,...,Zn), n > 1, be a finite sequence of
successive points of 7. For A > 0 we say that T is h-coarseif |z;_1 —z;| > h for
all 1 <j <n. Let ®(v,h) be the family of all h-coarse sequences of 7. Set

n
() =Y lzj1 — =l
i=1
I(v,h) = sup {s(T) : T € ®(7,h)}
with the agreement that I(y,h) = 0 if &(y,h) = 0. The number I(v,h) is the
h-coarse length of ~.

In this paper we shall use this concept in the case where X is a domain G # E
equipped with the QH metric k. We let lx(v,h) denote the h-coarse QH length
of v.

This concept is useful in the theory of solid and FQC maps f: G — G',
because we can compare suitable coarse lengths of an arc ¥ C G and its image
fv. The ordinary length is useless, since f need not preserve the rectifiability of
an arc.

We list some elementary properties of the coarse length:

4.3. Lemma. Let v be an arc in a metric space, and let h > 0.

(1) If v is a closed arc and h > 0, then I(y,h) < 0.

(2) I(v,h) is decreasing in h.

(3) I(v,0) =I(v) is the ordinary length of 7.

(4) U(y,h) =0 for h > d(v).

(5) d(y) SRk VI(v,h).

(6) +' C v implies (', k) < (v, h).

(7) U(v,h) is the supremum of s(Z) over all T = (zo,...,z,) which satisfy the
condition h < |zj_y —zj| < 2h forall 1 <j < n.

Proof. The property (1) follows easily from the compactness of 7, and the
properties from (2) to (6) are direct consequences of the definition. Each h-coarse
Z has obviously a refinement § such that A < |yj—; — y;| < 2h for all j. This
implies (7). o



270 Jussi Vaisala

4.4. Remark. The coarse length is not additive. If 4 is divided to two
subarcs 71,72, we usually have I(, h) # l(y1,h) + I(72, k). One can easily prove
the inequalities

I(71,2h) + U(72,2h) — h < I(v, k) < U(71, k) + U(72, ) + 2h,

but they are not needed in this paper.
The following result will be needed in Section 6:

4.5. Lemma. Let G # E and let v be an arc in G N (G + B(r)). If
0 <h <R and lx(v,h) < R, then d(v) < MRr, where M = M(h) is increasing
in h. If h =0, we have {(y) < Rr.

Proof. The case h =0 is easy, since

() |dz|

— < | —=1 < R.

ro- /7 8(z) Hr) < R

Assume that h > 0. We may assume that 7 is a closed arc with endpoints ao, a; .

Replacing v by a subarc we may assume that d(v) = |ag — a;|. We show that the

lemma is true with M = 2(e* — 1)/h, which is easily seen to be increasing in A.
If ¥ C Bi(ao, k), then 1.2.2 implies that

d(y) = lao — a1| < 8(ag)(ekleerar) — 1) <r(e® —1) < Mrh < MrR.

Suppose that v ¢ Bi(ag,h). Choose a sequence T = (z,...,z,) of suc-
cessive points of v such that zo = ao, k(zj—1,2;) = h for 1 < j < n, and
k(zn,a1) < h. Then n > 1 and

nh = s(T) < lx(y,h) < R.
By 1.2.2 this implies
d(v) =lao — a1| < 5(T) + |zn —a1| < (n + 1)r(e? —1) < MRr. o
4.6. Terminology. Let M >0 and C > 0. Amap f: X - Y is C'-coarsely
M -Lipschitz if
|fz = fyl < Mlz —y|+C
forall z,y € X. If f is an embedding and if f and f~!: fX — X are C -coarsely

M -Lipschitz with M > 1, we say that f is C-coarsely M -bilipschitz, abbreviated
(M, C)-CBL. This means that

(4.7) (le—yl=C)/M < |fz — fy| < M|z —y| + C

for all z,y € X. In [Vi3] the CBL maps were called roughly bilipschitz.

One could also consider maps satisfying (4.7) which are not injective or con-
tinuous. However, it is often helpful to be able to consider the inverse map f~1. It
seems to the author that one could develop an analogous theory for one-to-many
“maps” (relations), but this would involve technical complications.

Recall from 1.2.8 that a metric space X is c-quasiconvex if each pair of points
z,y € X can be joined by an arc v C X with I(y) < ¢|z — y|.
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4.8. Theorem. Suppose that X is c-quasiconvex, that d(X) = co and that
f: X - Y is a map. Then the following conditions are quantitatively equivalent:
(1) f is C-coarsely M -Lipschitz.
(2) There are t; > 0 and M; > 0 such that |fz — fy| < M|z — y| whenever
z,y € X and |z —y| > t;.
(3) There are to > 0 and My > 0 such that |fz — fy| < My whenever z,y € X
and |z — y| < tp.
Proof. We show that (1) = (2) = (3) = (1).
If (1) holds and if |z —y| > C, then

|fr— fy| < M|z —y|+C < (M +1)|z —yl.

Hence (2) is true with ¢, = C, M; = M + 1.

We next show that (2) implies (3) with to = t; + 1 and My = 5M;(t, +1).
Assume that z,y € X with |z —y| < t¢. Since X is connected and since d(X) =
00, there is a point z in X such that |z —z| = 2t5. Then ¢, < |z —y| < 3o, and
we obtain

|fz — fyl < |fe — fz| +|fz = fyl < Milz — 2| + Mi]z — y| < 5Mi(t: +1).

Finally assume that (3) is true. Let z,y € X. Choose an arc v joining r and
y with I(y) < c|z—y|. Let k > 0 be the unique integer with kto < I(y) < (k+1)to.
Choose successive points = = zg,...,Zk+1 = y such that each subarc v[z;_1, ;]
has length at most to. Then |zj—1 — z;| < to and hence |fz;_; — fz;| < M.
This implies

|fz — fyl < (k+1)Mo < Mol(y)/te + Mo < cMolz — yl|/to + Mo,

which gives (1) with M = cM,/ty, C = M. o

4.9. Theorem. Suppose that f: X — Y is a C-coarsely M -Lipschitz
embedding, that v is an arc in X and that h > 0. Then for hy = M(hV C)+C
we have

Proof. Let ¥ = (yo,...,yn) be a hq-coarse sequence of fy. Writing z; =
f~1(y;) we obtain a sequence T = (xg,...,Z,). Since

i1 — 231 2 (lyj-1 = yjl = C)/M 2 (hs = C)/M = bV C,

T is h-coarse. Moreover,

n

s(@) <) (Mlzj—1 — 24|+ C),

i=1
where |zj_; — ;| > hV C > C, and hence
s(7) < (M +1)s(z) < (M +1){(v, k),

which implies the theorem. o
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4.10. Terminology. Let h > 0 and ¢ > 1. A metric space X is h-coarsely
c-quasiconvex if each pair of points z,y € X can be joined by an arc v with

I(7,h) < clz —yl.
In particular, an arc v is h-coarsely c-quasiconvex if

1(7[z,y],h) < clz —y|

for all z,y € 7. The case where 7 is an arc in a domain G # E with the QH
metric plays an important role in the rest of the paper. We say briefly that an
arc ¥ C G is (c,h)-solid in G if it is h-coarsely c-quasiconvex in the QH metric
of G. For h =0 this means that v is a c-neargeodesic.

4.11. Theorem. Suppose that f: X —» Y is (M,C)-CBL and that the arc

v C X is h-coarsely c-quasiconvex. Then fv is hj-coarsely c;-quasiconvex with

hy = M(hV2cC)+C, c1 =2cM(M +1).

Proof. Replacing 4 by a subarc we see that it suffices to show that
(4.12) I(fv,h1) < a1l fz — fyl,
where z and y are the endpoints of v. If |z — y| > 2C, we have
[fz = fyl 2 (lz =yl = C)/M > |& —y|/2M.
On the other hand, I(y, ) < c|z — y| implies by 4.9 that
(fr, k1) < (M + 1)clz — ],

and (4.12) follows.
Next assume that |z —y| < 2C. It suffices to show that |fu — fv| < h; for
all u,v € v, since then I(fv,h1) = 0, and (4.12) is trivially true. If |u —v| < A,
then
|[fu— fv] < Mh+C < hy.

If lu—v| > h, then
lu —v| < (y,h) < clz — y| < 2¢C,

which implies

|[fu— fv] <2¢cCM +C < hy.o
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4.13. Terminology. Recall from 1.3.4 that a homeomorphism f: G — G'
between domains G # E and G' # E' is M-quasihyperbolic or M -QH if f is
M -bilipschitz in the QH metric. Similarly, we say that f: G = G" is C-coarsely
M -quasihyperbolic, abbreviated (M,C)-CQH, if it is (M,C)-CBL in the QH

metric. This means that f is a homeomorphism such that
(k(z,y) — C)/M < K'(fz, fy) < Mk(z,y) + C

for all z,y € G.

We next give the relation between the CQH maps and some other classes
considered in this paper. In 7.9 and in 7.22 we shall prove the close connec-
tion between the CQH maps and the maps which are quasimébius relative to the
boundary. More results on CQH maps will be given in [Vés]. For example, the
properties ¢-FQC and fully (M,C)-CQH are quantitatively equivalent.

4.14. Theorem. For a homeomorphism f: G — G' with G # E, G' # E',
the following implications are quantitatively true:

M-QH = ¢-FQC = ¢-solid = (M, C)-CQH.

In the last implication, one can choose an arbitrary C > 0 and then M =
Cle~H(C).

Proof. If f is M-QH, then f is ¢-FQC with ¢(t) = 4M?*t by 1.4.7. The
second implication is trivial. Suppose that f is ¢-solid and that C' >0, ¢ > 1.
Then k'(fz, fy) < C whenever k(z,y) < ¢ '(C). Since G is c-quasiconvex in
the QH metric, the proof of 4.8 shows that f is C-coarsely M -Lipschitz in the
QH metric with M = ¢C/p~Y(C). The same is true for f~'. Since ¢ > 1 is
arbitrary, the theorem follows. o

4.15. Theorem. Suppose that G # E, G' # E', and that f: G — G' is
(M,C)-CQH. If v is a (c, h)-solid arc in G, then the arc fy is (c1,h1)-solid in
G' with (c1,h1) depending only on (c,h,M,C). In particular, if f is @ -solid or
©-FQC, then (c1,h1) depends only on (c,h, ).

Proof. This follows from 4.11 and from 4.14. o

5. Relative quasisymmetry and quasimobius

5.1. Introduction to Section 5. In this section we shall relativize the theory
of quasisymmetric and quasimdbius maps. This theory will be applied in later
sections to study the properties of CQH maps.

5.2. Terminology. By a triple in a space X we mean an ordered sequence
T = (z,a,b) of three distinct points in X . The ratio of T' is the number

la — 2|

p(T) = b—z|
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If f: X - Y is an injective map, the image of a triple T = (z,a,b) is the triple
fT = (fz, fa, fb).

Suppose that A C X . A triple T = (z,a,b) in X is said to be a triple in the
pair (X,A) if z € A orif {a,b} C A. Equivalently, both |a — z| and |b — z| are
distances from a point in A.

Let 7: [0,00) — [0,00) be a homeomorphism. An embedding f: X — Y
is said to be 7-quasisymmetric relative to A, abbreviated 7-QS rel A, if the

condition
p(fT) < n(p(T))

holds for every triple T' in (X, A). Thus quasisymmetry rel X is equivalent to
ordinary quasisymmetry.

Analogously, a quadruple in X is an ordered sequence Q = (a,b,c,d) of four
distinct points in X . The cross ratio of Q is the number
la — bl|c — d|
la —c||b—d|
Warning: The order of the points a,b,c,d varies in the literature. In particular,
the cross ratio above is written as |a,d,b,¢| in [V&;]. The definition is extended
in the well known manner to the case where one of the points is co. For example,
ja—

[a—d

7(Q) =la,b,¢,d| =

la, b, ¢, 00| = = p(a,b,c).
If XoC X and if f: Xo— Y isan injective map, the image of a quadruple Q in
Xo is the quadruple fQ = (fa, fb, fc, fd).

Suppose that A C X, C X. We say that a quadruple Q = (a,b,¢,d) in X,
is a quadruple in the pair (Xo,A) if {a,d} C A or {b,c} C A. Equivalently, all
four distances in the definition of 7(Q) are (at least formally) distances from a
point of A. )

Let 7:[0,00) — [0,00) be a homeomorphism and let 4 C X, C X. An
embedding f: Xo — Y is said to be n-quasimébius relative to A, abbreviated
n-QM rel A, if the inequality

(5.3) 7(fQ) < n(7(Q))

holds for each quadruple in (Xo, A4). Thus 7-QM rel X, is equivalent to ordinary
quasimobius.

5.4. Remarks. 1. Since |a,b,c,d| = |b,a,d,c|, an embedding f: X, — Y is
7-QM rel A as soon as (5.3) holds for each quadruple (a,b,¢,d) with {a,d} C A.

2. It is possible to extend the relative concepts to some cases where the map
is not everywhere injective. Let us say that a map f: X — Y is injective rel A
if f| A is injective and if f~!fA4 = A. For such maps the definitions of QS and
QM rel A still make sense. However, since such maps do not always have inverse
maps, we have the difficulties mentioned in 4.6.
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5.5. Relative theory. We shall next give a relative version of the basic quasimo-
bius theory of [V&;]. In most proofs it is sufficient to check that the corresponding
proof in the absolute case makes only use of triples and quadruples in the given
pair (X, A). In such cases the proof is omitted.

5.6. Theorem. If f: X — Y is n-QS rel A, then f is 6-QM rel A with
6=20,.

Proof. As the absolute case [Vi;, 3.2]. o

5.7. Lemma. Suppose that f: X — Y is an embedding, that A C X and
that n: [0,00) — [0,00) is an increasing function such that
(1) p(fT) < n(p(T)) for each triple T in (X, A),
(2) p(f7IT") < n(p(T")) for each triple T' in (fX, fA).
Then f is n1-QS rel A with n; depending only on 7.

Proof. Observe that we do not require n(0) = 0. Replacing n by a larger
function we may assume that 7 is a homeomorphism onto [rg,c0), 7o > 0. Setting
to = 1/r¢ we define an increasing homeomorphism 79: (0,%9) — (0,00) by no(t) =
n~1(¢t71)"!. Suppose that T = (z,a,b) is a triple in (X, A) with p(T) < to.
Applying (2) to the ratio T' = (fz, fb, fa) gives 1/p(T) < n(p(T")), which implies
p(fT) < no(p(T)). Together with (1) this proves the lemma. o

5.8. Lemma. Suppose that A C X, C X, that f: Xo — Y isan embedding
and that n: [0,00) — [0,00) is an increasing function such that
(1) 7(fQ) < n(7(Q)) for each quadruple Q = (a,b,c,d) in Xo with {a,d} C A.
(2) 7(f7'Q") < n(r(Q")) for each quadruple Q' = (a',¥',c',d') in fX, with
{ahd} C fA.
Then f is 11 -QM rel A with n; depending only on 7.

Proof. In view of 5.4.1, the proof is an obvious modification of the proof of

5.7. o

5.9. Theorem. Suppose that X and Y are bounded spaces, that A C X,
and that f: X — Y is §-QM rel A. Suppose also that A > 0, z; € X and
22,23 € A are such that

|2i — 2| 2 d(X)/X,  |fzi— fz;] 2 d(Y)/A

for i # j. Then:
(1) There is a homeomorphism p = pg x: [0,00) — [0,00) such that

|fz — fyl lz -y
aqv) = ( 4(xX) )

forallz € A, ye X.
(2) fisn-QSrel A with n=mng,.
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Proof. The part (1) is proved as the absolute case [V&;, 2.1]. In the part
(2), we must replace the proof of the absolute case [V&;, 3.12] by the following
argument:

We may assume that f is a homeomorphism and that f~!: Y — X is 6-
QM rel fA. We normalize the situation so that d(X) = d(Y') = X replacing the
metric |a — b| of X by Aa — b|/d(X) and similarly in Y. By (1), there is a
homeomorphism ¢ = g x: [0,00) — [0,00) such that

¢ (lz —yl) < Ifz - fyl < e(lz —yl)

forallz € A, ye X.
Suppose that T' = (z,a,b) is a triple in (X, A). Since f~1 is §-QM rel fA,
it follows from 5.7 that it suffices to find an estimate

(5.10) p(fT) < n(p(T))

for some increasing 7 = ng,x: [0,00) — [0,00). Since |z — 23| > 1, we may assume
that |a — 22| > 1/2. We consider three cases.
Casel. la—z| > 1/4. Now |b—z| > 1/4p(T). Since b € A or z € A, we have
|fo— fz| > ¢~ 1(1/4p(T)), and hence (5.10) is true with n(t) = A/~ (1/4t).
Case 2. |b— 23| > 1/8. Now |fb— fzz| > ¢~1(1/8). The quadruple Q =

(2,0,b,22) s in (X, 4), and 7(Q) < 22p(T). Since 7(fQ) > ¢~ (1/8)p(fT)/A,
we obtain (5.10) with

620
"= Sy

Case 3. |la—z| <1/4 and |b— 2z2] <1/8. Now
|b—z|>|a— 22| —|la—z|— |22 — b > 1/8.

Hence |fb — fz| > ¢~1(1/8), which implies (5.10) with the constant function
n(t) =A¢7(1/8). @

5.11. Theorem. Suppose that G and G' are bounded domains and that
¢ > 1. Suppose also that o € G and zy € G' are points with

d(G) < c6(zo),  d(G') < cb'(zh).

Let f: G — G bea homeomorphism such that fro =z and fG=G'. If f is
0-QM rel 0G, then f is n-QS rel 0G with n =ng.



Free quasiconformality in Banach spaces II 277

Proof. The proof of the absolute case in R™, [V&;, 3.14] needs only slight
modifications. Write z; = z9, M = d(G) = d(0G), M' = d(G') = d(9G").
Choose points z9,z3 € OG with |22 — 23] > M/2. It suffices to show that the
conditions of Theorem 5.9 hold with some A = A(6,c). Since

|21 — 22| > 8(z0) = M/c, |21 — 23| > M/c, |29 — 23| > M/2,
the first condition of 5.9 is true with A = ¢V 2. For j = 2,3 we have
|fz; = f1] 2 &'(z5) = M' /e,

and it remains to find an upper bound for M'/|fz; — fzs].
Choose z4 € OG with |fzg — fz3| > M'/3. The quadruple Q = (22, 21,23, 24)
is in (G,8G), and 7(Q) < 2c. Since

MI
P —
3c|fza — fzsl
and since f is §-QM rel 0G, we obtain
MI
|fz2 — fzs]

6. Uniform domains

7(fQ)

< 3¢6(2¢). o

6.1. Introduction to Section 6. Uniform domains in R"™ were introduced by
Martio and Sarvas [MS] in 1979. A related concept was independently studied by
Jones [Jo], and the equivalence of these two approaches was proved in [GO]. In
this section we shall consider uniform domains in a Banach space. The definition
will be given in terms of length cigars, and alternative characterizations are given
in terms of the QH metric.

6.2. Cigars. Let v C E be an arc with endpoints a,b. For z € v we set
ea(z) = d(v[a,z]) Ad(v[z,b]).
If « is rectifiable, we also define the function
oi(z) = I(v]a, z]) Al(x[z,b]).
For ¢ > 1, the sets
cigg(v,¢) = U{B(z, 0a(z)/c) : = € v\ {a,b}},
cigy(v,¢) = U{B(z, e1(z)/c) : 2 € ¥\ {a,b}}

are the diameter c-cigar and the length c-cigar, respectively, with core . The
length cigar is only defined for a rectifiable .
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6.3. Uniform domains. Let ¢ > 1. A domain G C F is a c-uniform domain
if each pair a,b € G can be joined by a rectifiable arc v satisfying the following
uniformity conditions:

(1) cig(me) C G,
(2) 1(7) < cla—b.
We call (1) the cigar condition and (2) the turning condition. Observe that (1)
can be rewritten as
(1) a(e) < cb()
for all z € .

In R™ one can also characterize the uniform domains by diameter cigars and
the so-called distance cigars, cf. [MS] and [Vaz]. This is no longer true in the
general case. For example, the broken tube of 1.4.12 is not a uniform domain
although one can show that there is ¢ > 1 such that each pair a,b € G can be
joined by an arc v such that cigy(y,¢) C G and d(v) < cla — b|.

We first give examples of uniform domains. A simple lemma is needed:

6.4. Lemma. If y,z € S(1), then |y — z| < 2d(y, [0, 2]).
Proof. Let z € [0,2] and set a = |y — 2|/2. If |z| <1 - o, then |y — z| >
ly| = |z] > a. If || > 1 — «, then
ly—z|2ly—zl—|z—2z|=2a—(1—|z|]) > a.0
6.5. Theorem. For z¢ € E and r > 0, the domains B(zg,r), B(zo,r)\ {z0}
and E \ {z¢} are c-uniform with a universal c.

Proof. We may assume that o =0 and r = 1. We first consider the domain
G = B(1) \ {0}. Suppose that a,b € G, a # b, |a| > |b|. We show that a and b
can be joined by an arc v satisfying the uniformity conditions in G. Setting

ao=a/]a|, bO =b/|b|a t= |(10—-b0|/4

we have 0 <t < 1/2. We consider two cases.
Case 1. [b| < 1—1t. Set a; = |blag and apply 2.2 to find an arc y; C S(|b])

joining a; and b with I(y1) < 2|a; — b| = 8t|b|. We show that ¥ = 4, U[a;, a] has
the desired properties.
If £ € 4, then
o) SUm) S8l 8(e) = bl A (1— b)) > [Bl A,
and hence g(z) < 8(tV |b])é(z) < 86(z). If z € [a1,a] N B(1/2), then

az) <ln) + |e — a1| < 8t[p| + [z] < 5|z| = 58(z).
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If z € [a1,a] \ B(1/2), then
oi(z) <la—z| <1 |z| = é(z).

Hence the cigar condition holds with ¢ = 8.
If |a; — b| < 2|a — a1, then

I(y) < 5la—a1| = 5(la| — [b]) < 5la—b].
If |a; — b > 2|a — a41], then
I(v) <8lax —bl/2,  la—b[2la1 — b —la—a1| 2 |a1 —B]/2,

and we obtain in both cases the turning condition with ¢ =5.

Case 2. |b| > 1—t. Set a; = (1 —t)ag, by = (1 —t)bo, and join the points
ay, by with an arc y; C S(1 —¢) with I(y1) < 2|a; — b1| = 8¢(1 — t) < 8. We
show that v = [a,a1] U 7 U [b1, ] is the desired arc. If z € [a,a1] U [b,b1], then
oi(z) < 6(z). If z € v, then

a(z) <la—a| +1(n) <t 48t =94(z),

and we obtain the cigar condition with ¢ =9.
By 6.4 we have

la 8] = |al|ao — b/lal| = 2|alt > ¢,
which yields the turning condition
I(y)<l|a|—1+t+8t+ b —1+¢t <10t < 10|a —b|.

Hence the domain B(1) \ {0} is 10-uniform. The case G = E \ {z¢} follows
immediately from this. For G = B(1) it suffices to observe that the line segment
[0, z] satisfies for all z € G uniformity conditions with ¢ =1. o

6.6. Other examples. Suppose that T is a closed affine proper subspace of E.
If codim T > 2, E\T is a domain. If codim T'=1, E\T consists of two domains
called half spaces. All these domains are c-uniform with universal ¢. The case
T = {xo} is contained in 6.5. The proof of the general case is contained in [Al].
In fact, ¢ can be chosen to be any number greater than 2.

If G and D are c-uniform domains with G C D, then GND is a ¢; -uniform
domain with ¢; = ci(c). In the case E = R™ this is essentially Theorem 5.4 of
[Vaz]. In the general case, the proof needs some modification; for example, the
distance cigars must be replaced by length cigars. A detailed proof is in [Al]. A
direct proof for the case D = E'\ {zo} is sketched in 6.7 below.

More examples can be obtained by auxiliary maps. We show in 6.26 that if
G is c-uniform and f: G — G' 7-QM, then G’ is ¢;-uniform with ¢; = ¢;(¢, 7).
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6.7. Lemma. Suppose that G is a c-uniform domain and that o € G.
Then Go = G\ {zo} is co-uniform with co = co(c).

Proof. We may assume that zo = 0 and 6(z9) = 1. Let a,b € Gy, a # b.
We describe how to construct an arc -y from a to b satisfying the uniformity
conditions in Gy. We consider 3 cases.

Case 1. |a| < 1 and |b| < 1. This case follows from 6.5.

Case 2. |a| > 1/2 and |b] > 1/2. Join a to b with an arc v satisfying the
uniformity conditions in G. If 0 ¢ cig(v,3c), choose v = v. If 0 € cig;(y,3c)
it is easy to see that v meets S(1/2). Orient v from a to b, and choose the first
point a; and the last point b; of v in S(1/2). Apply 2.2 to choose an arc o
joining a; and b; in S(1/2) with I(«) < 2|a; — b;|. Then

Yo = v[a,a1] U a U v[b1, b].

Case 3. |a| <1/2 and |b] > 1. Let v and b; be as in Case 2. We obtain 7
by replacing y[a,b] by the union of an arc in S(|a|) and a radial segment from

S(la]) to S(1/2). o
6.8. Other approaches to uniformity. For z,y € G # E, the numbers

ro(es) = g b, dal@y) =l (14 ro(z,v)

are the relative distance and the Jones distance between z and y in G, respec-
tively. We shall often abbreviate j = jg, j' = jg. Slightly different but es-
sentially equivalent versions of jg have been considered by Jones [Jo] and by
Gehring-Osgood [GOJ; the present expression is due to Vuorinen [Vu;]. By 1.2.2
we always have

je(z,y) < kg(z,y).

The uniform domains in R" can be characterized by inequalities in the opposite
direction. Indeed, either of the conditions

ke < cjg, kc <cjg+d

is quantitatively equivalent to c-uniformity; see [GO], [Vuy, 2.50(2)] and [Ge,
Theorem 6]. A free version of this result is given in 6.16.

We also consider a generalization of the inequality k¢ < cjg, suggested by
Vuorinen [Vu;,2.49]. Let 4: [0,00) — [0,00) be a homeomorphism. A domain
G # E is called quasihyperbolically 1 -uniform, or briefly QH v -uniform, if

ke(z,y) < ¢(ra(z,y))
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for all z,y € G. For the function ¥(t) = cln(l + t) this gives the inequality
kg < cjg. A somewhat surprising fact is that for a large class of functions 1, thisis
no generalization at all. More precisely, let us call a homeomorphism : [0, c0) —
[0,00) slow if ¥(t)/t — 0 as t — oco. The function ¥(t) = cIn(1 + t) is clearly
slow. We shall prove that QH v -uniformity with a slow ¢ quantitatively implies
the condition kg < cjg.

We start with results dealing with coarse length in uniform domains. They are
needed in the proof of 6.22, which is useful in Section 7. To prove the equivalences
described above, we only need the case h = 0 of these results. Recall that an arc
is (c,h)-solid if it is h-coarsely c-quasiconvex in the QH metric of G. Roughly
speaking, we show that a solid arc cannot travel long distances near the boundary
of a uniform domain.

6.9. Lemma. Suppose that G # E and that v is an arc in GN (8G + B(r))
with endpoints ag,a; such that §(ag) Aé(ar) > r/cy1. Suppose also that G is QH
Y -uniform with a slow .

(1) If v is (c, h)-solid, then d(y) < Mi(c,h,c1,9)r.
(2) If v is a c-neargeodesic, then () < My(c,c1,¥)r.

Proof. To prove (1) we set t = d()/r and look for an upper bound ¢ < M;.
The solidity and uniformity conditions give

le(v,h) < ck(ag,a1) < C¢(Tc(ao,al)) < cp(eqt).

If cyp(cit) < h, we can choose My = ¢~ (h/c)/e1. If cip(crt) > h, then 4.5 gives
d(y) £ M(h)cy(eqt)r, and hence

1 < M(h)ear 1/’(6011‘).
1

Since 1 is slow, this yields the desired bound ¢t < Mj(c, h,c1,7).
To prove (2) we set t = I(y)/r. An easy modification of the argument above
gives

Y(eit)

1< e )
Clt

and hence t < Mi(c,c1,). o

6.10. Lemma. Suppose that G is a QH v -uniform domain with a slow 1.
Suppose also that v is an arc in G N (0G + F(r)) .
(1) If v is (¢, h)-solid, then d(y) < Ma(c,h,¥)r.
(2) If v is a c-neargeodesic, then I(y) < My(c,)r.
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Proof. Replacing r by a smaller number we may assume that §(ap) > r/2
for some ag € . Dividing v to two subarcs we may further assume that aq is an
endpoint of 4. Choose successive points a;,as,... of 4 such that a; is the last
point of v with §(a;) > 277/r. The sequence (a;) may be finite or infinite. Set
¥; = 7[aj-1,a;]. In the part (1) we obtain from 6.9(1)

d(7]) S Ml(c1 ha 27 ,(l))r/zj—l’
and hence d(v) < 2M;r. The part (2) follows similarly from 6.9(2). o

6.11. Lemma. For every slow ¢ and for all ¢ > 1, h > 0 there is a
number ¢ = q(c,h,¥) € (0,1) with the following property: Suppose that G
is a QH 1t -uniform domain and that v is a (c,h)-solid arc starting at zo and
containing a point & with §(z) < ¢é(xo). Then for v, = v\ ¥[zo,z) we have
d(vz) < Ms(c,h,)8(x). If h=0, then I(vz) < M3(c,v)é(z).

Proof. Let My = Mj(c,h,v) be the constant given by 6.10. We show that

one can choose
g=exp[-2(hV cb(My))] .
Let 7,20,z satisfy the conditions of 6.11 with this ¢. Setting r = §(z)/q we have
r < é(zo). It suffices to show that vy, C 8G + B(r), since then 6.10 gives the
result with M3 = M, /q.
Assume that v; ¢ OG+B(r). Let z; be the first point of v, with §(z3) = r.

Since §(zo) > r, we can choose the last point z; of y[zg,z] with §(z1) = r. Then
for a = v[z1, 2] we have

lk('y[:vl,:c],h) < lk(a,h) < ck(zy,22) < c¢(|x1 — x2|/r) < cd;(d(a)/r).
By 6.10 we have d(a) < M,r. Using 1.2.2 and 4.3(5) we obtain
|1 — 2|
qr
On the other hand, we have

In (1+ ) < k(z1,2) < k(yfan, ) Sthgb(Mg):%lng.

|21 — 2] 2 é(21) = §() = (1 - g)r,

which gives the contradiction

lfv_l—_fcl) Snlo
qar q

6.12. Theorem. Suppose that G is a QH 1 -uniform domain with a slow P
and that v C G is a c-neargeodesic with endpoints ag and a;. Then ~ satisfies
the uniformity conditions
(1) Cigl(7a cl) c Gy
(2) Uly) < cilao — a1,
where ¢; depends only on ¢ and 1.

ln(1+
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Proof. Choose g € vy such that §(z¢) is maximal. Let ¢ = ¢(c,0,%) be the
number given by 6.11. If z € vy[ag,zo] and 8(z) < ¢é(z¢), then 6.11 implies

1(7la0,2]) < Ma(e, $)6(z).
If = € y[ao,zo] and §(z) > gé(zo), then 6.10 with r — §(zo) yields

I(vlao, 2]) < Ma(c,$)8(z0) < (M2/q)8(2).

Considering similarly the arc y[a;, z] we conclude that (1) is true with ¢1(c,9) =
Ms V (Mz/q).
To prove (2) write t = |ap — a;|. We may assume that §(ag) < §(a;). We
consider two cases.
Case 1. 6(ag) <t. We may assume that [(y) > 2t. Choose points by and b;
of v such that
1(vao, bo]) =t = (a1, ba]).

By (1) we have t < ¢16(bo) and t < ¢16(b;). Hence

|bo — ao| + |ao — a1| + a1 — b1 ]

<
TG(bO')bl) = t/C]

S 361’

and hence
(6.13) k(bo, b1) < ¥ (3c1).
For each = € 7[bo, b1] we have
k(z,b0) < Ik (7[bo, z]) < Ik (7[bo, b1]) < ck(bo,b1) < cip(3cy).

By 1.2.2 this yields
|z — bo| < 8(bo)(e¥Ber) —1).

Since
6(bo) < 8(ao) + |ag — bo| < 6(ao) +t < 2t,

we obtain
6(z) < 8(bo) + |z — bo| < 2te°¥C) = M,(c,p)t.

Integration along +[bo, b1] gives

ck(bo,b1) > lk(’)’[bo’bl]) 2 K’%O;_tbl]).

By (6.13) this implies
1(y[bo, b1]) < Ms(c,¥)t.
Hence (2) holds with ¢; replaced by Ms + 2.
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Case 2. 6(ag) = r > t. This case makes no use of the QH uniformity of G.
Since é(a;) > r, we have §(z) > r/2 for all = € [ag,a;]. Integration along this
line segment yields

(6.14) k(ag,a1) < 2t/r.

Let a: [0,A] = 7 be the arc-length parametrization of 4 with A = I(y) and
a(0) = ao. Since

§(a(s)) < 6(ao) + lao — a(s)| <r+s,

A ds A ds
lk(7)=/0 6(:3(3)) Z/O rc—lf-.s’:ln(l_i_%)'

Since + is a c-neargeodesic, this and (6.14) imply

1n(1+é)gﬁ.

r

we obtain

Setting u = r/t we obtain
At = u(e?* —1).

Since u > 1 and since the right-hand side is bounded for u > 1, this implies (2).
=]

6.15. Lemma. Suppose that a,b € G # E. Then the following conditions
are quantitatively equivalent:
(1) k(a,b) <cj(a,b), c>1.
(2) k(a,b) <cj(a,b)+d,c>1,d>0.

Proof. Trivially (1) implies (2). Assume that (2) holds, and set r = rg(a, b).
Suppose first that r < 1/2. Since now rln2 <In(1 4 r), 1.2.5 implies

2
< < — .
k(a,b) <2r < anJ(a’ b)

Next assume that r > 1/2. Then j(a,b) > In(3/2), and hence

k(a,b) d
7(a,b) Set In(3/2) N

6.16. Theorem. For a domain G # E, the following conditions are quanti-
tatively equivalent:
(1) G is c-uniform,
(2) kg < cjG,
(3) kG S ch + d’
(4) G is QH v -uniform with a slow 1.
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Proof. By 6.15, (3) implies (2). Since the function ¥(t) = cln(1 +¢) is
slow, (2) clearly implies (4). The implication (4) = (1) follows from 6.12 and 3.3.
Finally, the implication (1) = (3) can be proved with obvious modifications as in
the case E = R™ [GO, Theorem 1]. Observe that [GO] uses a slightly different
version of the Jones distance, call it j%(a,b), but one has always j& < jg < 2j5. ©

6.17. Remark. Inspection of the proofs shows that one can replace the slow-
ness condition in 6.16 by the weaker condition

(6.18) lim sup z,b_(ttl =v <l

t—oo

Indeed, assume that (4) of 6.16 holds with such ¥. Set ¢ = ¢; = v~1/4. Thus
c and c¢; depend only on . Since cciv = v!/2 < 1, the proof of 6.9(2) is
valid with these ¢ and ¢;, and we get M; = M;(¢). In the proof of 6.10(2) we
replace the conditions é§(a;) > 277r by §(a;) > c¢;’r and obtain I(y) < Myr with
M, = My(1 —c;')™' = My(¥). Then the case h = 0 of 6.11 is also true with
these ¥ and ¢ giving ¢ and M; depending on . It follows that the proof of
6.12 is valid with these ¥ and c giving a number ¢; = ¢1(¢), which should not
be confused with the number ¢; = v~1/% above. Since each pair of points in G
can be joined by a c-neargeodesic by 3.3, G is ¢y -uniform.

The condition (6.18) is sharp in the sense that it cannot be replaced by v < 1.
For example, each convex domain is QH -uniform with (t) =t, but a parallel
strip in R? is not a uniform domain.

From 6.12 and 6.16 we immediately get the following result, which in the case
E=R"=E', ¢; =1 is given by [GO, Corollary 2, p. 59]:

6.19. Theorem. Suppose that G # E is a c-uniform domain and that ~
is a ¢ -neargeodesic in G with endpoints ag,a;. Then there is ¢3 = c3(c,c1) 21
such that
(1) cig(7,2) C G,
(2) U(v) < c2lap —ai1]. o

6.20. Remark. Theorem 6.19 means that in a uniform domain, any near-
geodesic is the core of a length cigar satisfying the uniformity conditions. We shall
next prove a coarse version of this, replacing the neargeodesic by a solid arc and
length by diameter. Both results will be needed in the proofs of 7.3 and 7.9. An
auxiliary result is needed:

6.21. Lemma. Suppose that G # E and that v is a (c,h)-solid arc in
G with endpoints ag,a; such that §(ag) A é(a1) = r > |ag — a1|. Then there is
¢y = co(c) > 1 such that

d(v) < calag —ay| V 2r(e® —1).
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Proof. We may assume that §(a;) > 6(ag) = r. Setting ¢t = |ag — a1| and
integrating along [ag,a1] we get k(ag,a;) < 2¢/r as in the proof of (6.14). It
suffices to find an estimate

|z — ao| < cat Vr(eh —1)

for an arbitrary z € 4.
If k(z,a0) < h, then 1.2.2 gives |z — ag| < r(e* — 1). Suppose that k(z,ap)
> h. Choose successive points a9 = z,...,2, = & of v, n > 1, such that

h <k(zj_i,z;) <2h
for all j. Then
nh < Ix(v,h) < ck(ag,a1) < 2ct/r.
This implies k(z,a0) < 2nh < 4ct/r, and hence

|z — ao| < 5(a0)(ek(z,ao) _ 1) < T(T‘4Ct/r —1).
Setting u = r/t we have u > 1 and
|z — ao|/t < u(e*/* —1).

Since the right-hand side is bounded for u > 1, the lemma follows. o

6.22. Theorem. Suppose that v C G # E is a (c, h)-solid arc with end-
points ag,a; and that G is a ¢; -uniform domain. Then there is c2 = ca(e, hyeq)
2 1 such that for r = §(ao) A 6(a;) we have

(1) Cigd(7a02) - G:
(2) d() < c2(|ao — a1| v 2r(eh — 1)).

Proof. Choose z¢ € 7 for which §(z¢) is maximal. For (1) it suffices to find
c2 = ca(c, h,c1) such that

(6.23) d(v[ao, 7)) < c26(z)

for all z € y[ao, zo].

By 6.16 G is QH ¢-uniform with a slow 1 depending only on ¢;. Let
q = gq(¢,h,¥) € (0,1) be the number given by 6.11. If 6(z) < ¢é(zp), then
(6.23) follows from 6.11. If §(z) > ¢6(zo), we apply 6.10 with the substitution
r i+ 8(zo), ¥ — v[ag,z]. We obtain

d(y[ao,z]) < Ma(c, h,)8(zo),

and hence (6.23) holds with ¢, = M, /q.
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To prove (2) set t = |ag — a1|. We may assume that §(a;) > 8(ap) = r and
that d(y) > 2t. If r > t, then (2) follows from 6.21. Suppose that r < ¢. Choose
points yo,y1 € v such that d(y[ai,yi]) =t for i =1,2. By (1) we have

6(yi) > d(vlai,yi])/c2 = t/ca.

Since
lvo — y1] < |yo — ao| + |ao — a1 + a1 — y1| < 3¢,

and since G is QH -uniform, this implies

k(yo,y1) < ¥ (ra(yo,y1)) < ¥(3c2).

By 4.3(5) and by the (c, h)-solidity of v we get
k(vlyo,v1]) < AV Ik (vlvo,v1],h) < RV ck(yo,y1) < BV cp(3cz) = c3(c, by ).

Hence v[yo,y1] is contained in the QH ball Bi(yo,c3). By 1.2.2 this implies that
v C B(yo,R) with

R= 5(y0)(e°3 - ].) +t < (7‘ + |a0 — y0|)(e°3 - 1) +t < 2te®® —t.

This implies (2) with ¢y replaced by 4e®® — 2. o

6.24. Quasimdbius invariance. In the basic paper [MS, 2.15], Martio and
Sarvas proved that QC maps f: R® — R™ preserve the class of uniform domains.
A different proof was given in [GO, Corollary 3, p. 65]. More generally, uniformity
is preserved by QM maps f: G — G' of domains in R™. This is obtained by
modifying the proofs mentioned above or by using the characterization of uniform
domains in terms of cross ratios, given by Martio [Ma]. The latter method was
extended by the author [V&;, 4.11] to a large class of spaces including all Banach
spaces. However, the definition of a uniform domain in [V&;] is not equivalent to
the definition of the present paper in infinite-dimensional spaces. We shall next
use the ideas of [GO] to prove the QM invariance of uniform domains in Banach
spaces. For the notation of the following lemma, see 6.8.

6.25. Lemma. Suppose that G # E, G' # E' and that f: G — G' is an
n-QM homeomorphism. Then

j'(fa, fb) < Mj(a,b) + C

for all a,b € G with M and C depending only on n.
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Proof. We first consider two special cases.

Case 1. 0 ¢ G and f is the restriction of the inversion u(z) = z/|z|2.
Let a,b € G and set r = rg(a,b), r' = rg/(ua,ub). We may assume that
8'(ua) < 6'(ub). Choose = € OG such that |ux — ua| < 28'(ua). By [Vi,, (1.7)]

we obtain
|lua — ub| < 18la — b||z|

(ua) = |z —alb] -
Together with the inequalities

lz| <le—al+a=b+ b, |z—al>é(a), [0 >6(b)
this yields
la —b] 1
.+_
(3565 * o7 * )
Hence 1+ r' <18(1+r)?, and we obtain the lemma with M =2, C =1n18.
Case 2. f is n-QS. Now f extends to an 7-QS homeomorphism G — G.
Let a,b € G, and choose = € 0G with |fa — fz| < 26'(fa). Setting r = rg(a,b)
PR g lfa= gt (la=b
a-— a— a-—
<2 <2p(——) <2 .
§(fa) =~ “|fa—-fe| = ( x[) < 2n(r)

la —
Since G is connected, [TV, 3.12] implies that one can choose 7 to be of the form
n(t) = C1(t* V/*), C; > 1, a > 1. Since we may assume that &'(fa) < §'(fb),
we obtain

r' <18la — < 18(2r +r?).

re(fa, fb) < 2C1(r* v r'/®),

If r <1, then the lemma holds with M =0, C =1In(1 +2C,). If » > 1, then
14 r* < (1+7), and thus we can chose M = a, C = In2C}.

The general case is reduced to the special cases as follows: First extend f to
an 7-QM embedding f G- E applying [Va;, 3.19], where the misprinted fA
should be replaced by fA. By auxiliary translations we may assume that 0 € 0G
and that f(0) is either 0 or co. Furthermore, we can use auxiliary inversions and
Case 1 to normalize the map so that oo € aG’ and f(oco) = co. Then f is n-QS,
and the result follows from Case 2. ©

6.26. Theorem. Suppose that f: G — G’ is an n-QM homeomorphism and
that G is a c-uniform domain. Then G' is c¢; -uniform with ¢; = ¢1(c, 7).

Proof. If G = E, then G' = E' by [Vay, p. 226] or, alternatively, by 1.5.13
and 1.5.18. We may thus assume that G # E, G' # E'. By 1.5.18 and by 4.14,
there are M > 1 and C > 0 depending only on 7 such that

k'(fa, fb) < Mk(a,b) + C
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for all a,b € G. Applying 6.25 to f~! we can write
j(a, b) S Mljl(fa7 fb) + C'1

with M;,C; depending only on n. By 6.16, we have k < ¢oj with ¢o = co(c).
These inequalities imply

k'(fa,fb) < MCoj(a,b) +C< MM]C()j’(fa,fb) + McoCr +C,

and the theorem follows from 6.16. o

6.27. Endcuts. Recall from 3.6 that an endcut of a domain G is a half open
arc 7 C G such that 7 is a closed arc with one endpoint in 0G. If G # E, the
QH diameter k(v) of an endcut is always infinite. We next show that the converse
is true for solid arcs in uniform domains:

6.28. Theorem. Suppose that « is a half open solid arc in a uniform domain
G # E and that k(y) = co. Then « is an endcut of G. If v is also a neargeodesic,
then either v converges to co or v is rectifiable.

Proof. Assume that G is QH 1 -uniform with a slow 1 and that v is (¢, h)-
solid in G. Since k(y) = oo, we have lx(y,h) = co. We may assume that v starts
at the origin and that v does not converge to co. For z € vy write v, = v\ [0, z).
There is R > 0 such that B(R) meets v, for every z € v. If z € v, N B(R), then

Ik(7[0,2],h) < ck(0,2) < 01/)(5—(63—%).

Since lk(y, h) = oo, this implies d(vy,0G) = 0.
Let ¢ > 0. To prove that v is an endcut it suffices to find ¢ € v with

d(v:) < €. Let ¢ = g(c,h,%) and M3 = M;z(c,h,9) be the numbers given by
6.11. Choose z € v such that

8(z) < ¢6(0) A (e/Ms3).

Then 6.11 gives d(v;) < M3é(z) < €.

In the case h =0, 6.11 yields I(y,;) < M3é(z) < oo for any z satisfying the
inequality above. Hence 7 is rectifiable. o
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7. Boundary behavior

7.1. Introduction to Section 7. This section deals mainly with the boundary
properties of homeomorphisms f: G — G' between uniform domains. We show
that if f is CQH, it can be extended to a homeomorphism f: G — 6’, which is
QM rel 8G in the norm metric. In the special case where f is FQC, f is QM in
the whole G. These results are quantitative.

Many of the results are new also in the classical case E = E' = R"™. In the
case where G and G’ are half spaces of R", V.A. Efremovich and E.S. Tihomirova
[ET] proved in 1964 that a solid map f: G — G’ extends to a homeomorphism
f:G— E'-', and D.A. De-Spiller [DS] proved in 1970 that the induced map G —
0G' is quasiconformal. De-Spiller also proved that conversely, each quasiconformal
map of R"~! can be extended to a homeomorphism of R*~! x [0,00) which is
solid in the open half space. We shall construct the corresponding extension from
a Banach space E to E x [0,00) in 7.26. A reflection principle is given in 7.35.

7.2. Terminology. Suppose that G is a domain in E and that fi:G— FE'is
a map. The cluster set of f at a point zo € G is defined as

clus(f,zo) = Nl f[U N G]

over all neighborhoods U of z, in E. Equivalently, a point y € E' belongs to
clus (f,zo) if and only if there is a sequence of points zj € G such that z; — zo
and fz; - y.

In the general case, the cluster set may be empty even if f is an FQC map
onto a domain G'; see 1.4.12.

We next prove the crucial lemma of the paper. Its proof makes effective use
of the theory of the preceding sections: the existence of neargeodesics, the CQH
invariance of solid arcs, and the length cigar and diameter cigar theorems for
uniform domains.

7.3. Fundamental lemma. Suppose that G # E and G # E' are un-
bounded c-uniform domains and that f: G — G' is (M, C)-CQH with oo €
clus(f,00). Let z,a,b be points in G such that |a — z| < |b — z| and k(b,z) >
2CV1/2. Then

|fa— fz| < H|fb— fal
with H = H(M,C,c).

Proof. By auxiliary similarities we normalize the situation so that z — 0,
fz =0, || =1=|fb|. Then |a| <1 and we must find an upper bound |fa| < H
with H depending only on v = (M, C,¢).

We first show that

(7.4) §'(0) < 8M.
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Since this is trivial if §'(0) < 2, we may assume that §'(0) > 2. Then 1.2.5 gives
(7.5) k'(0, fb) < 2|fb|/8'(0) = 2/6'(0).
If C <1/4, we have
E'(0, fb) > (k(0,b) — C)/M > 1/4M.
If C > 1/4, then k(0,b) > 2C, and hence
k'(0, fb) > C/M > 1/4M,

which thus holds in all cases. By (7.5) this gives (7.4).

In what follows, we let c;,c2,... denote constants depending only on v. Ap-
plying 6.19 we first choose ¢; > 1 such that the uniformity conditions hold with
this ¢; for every 2-neargeodesic in G and in G'. Since oo € clus(f,00), we can
choose y € G such that |y| > 2 and |fy| > |fa|. By 3.3 we can choose a 2-
neargeodesic o' in G’ joining fa and fy. Let z be a point of o' with minimal
norm. Then

|z — fa| Alz = fyl 2 | fa] — |z].

Since cig;(a’,¢1) C G', we obtain
018(2) > |fal - |2].

Since (7.4) gives
§'(2) < 6'(0) + |2] < 8M + |2,

this implies
2¢1)z| > |fa] — 8c1 M.

We may assume that |fa| > 16¢; M, since otherwise there is nothing to prove.
Then 2¢;|z| > |fa|/2, and thus
(7.6) |fa| < 4c,d(0,a").

Choose a 2-neargeodesic §' in G' joining 0 and fb. By 4.15, the arcs a =
f'a' and B = f71p' are (cz,h)-solid in G with h = h(M,C). Hence, by 6.22,
there is ¢3 > 1 with

cigy(a,c3) Ucigy(B,c3) C G.

Choose points ap € a and by € 3 such that |ag| = 3/2 and |bg| = 1/2. Then

(77) (5((10) A 6(b0) Z 1/263.
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Applying once more 3.3 we join ao and by with a 2-neargeodesic v in G.
Then cig;(y,c1) C G and

l(‘y) S 61|a0 - bol S 261.

For every z € v we have §(z) > 1/4cyc3. Indeed, if |z —ag|A|z—by| < 1/4c3,
this follows from (7.7), and otherwise from the condition cig;(y,¢;) C G. Hence

l(y) £ 4ercsl(y) < 8c:{C3 = c4.
This implies k(ao, by) < ¢4 and hence
k'(fao, fbo) < Mcy + C = cs.
Next observe that
(7.8) |fbo| < 1(B") < e1]fb] = ca.
By (7.4) this implies
8'(fbo) < 8'(0) + | fbo| < 8M + ¢1 = cs.
By 1.2.2 these estimates yield
|fao — fbo| < &'(fbo)eX (f20 %) < cgets = .
Together with (7.6) and (7.8) this gives the desired bound
|fa| < 4eifao| < 4er(er +¢1) = H(v).o

7.9. Theorem. Suppose that G # E and G' # E' are c-uniform do-
mains and that f: G — G' is (M,C)-CQH. Then f extends to a homeomor-
phism f: G — @I, and f is 8-QM rel 8G with 6 depending only on (M,C,c).
In particular, f | 8G is §-QM.

Proof. In the first part of the theorem, it suffices to show that f has a limit

at every point z9 € 0G. Indeed, then f has a continuous extension f: G — G.

By symmetry, g = f~! extends to a continuous map 7: G — G. Then clearly Gf
and fg are identity maps, and thus f is a homeomorphism.

Performing an auxiliary inversion and recalling 6.26 and 1.4.9, we may assume
that zo # oco. Suppose that f has no limit at zo. By auxiliary similarities we
may assume that 0 € G, f(0) =0, and 6(0) = 1 = §'(0). For r > 0 we set

D(r) = f[Gn B(zo,1)].
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There is o > 0 such that d(D(r)) > o for all r > 0, since otherwise f has a limit
at zo by the completeness of E’. Since oo is not a limit, there is R > o such
that the ball B(R) meets D(r) for all r > 0.

Let r > 0 and choose points z,y € G N B(zo,r) such that |fz|] < R and
|fz — fy| > @/2. Join z and y by a 2-neargeodesic v in G. By 4.15, fvy
is (c1,h)-solid in G' with (c1,h) depending only on (M,C). In what follows,
we let cz,c3,... denote constants depending only on (M,C,¢c,a,R). We have
cigy(fv,c2) C G' by 6.22. Choose z € v with |fz — fz| = a/4. Then |fz - fy| >
a/4, and hence

(7.10) §'(fz) > a/4es.
Join 0 and fz by a 2-neargeodesic #' in G'. Then 6.19 gives c3 with

Cigl(ﬁ”cii) c G” l(ﬂl) < c3|f2|'

Since 6'(0) = 1, this and (7.10) give a lower bound §'(w) > 1/c¢4 for all w € f'.
Hence

k'(0, fz) < Ix(B') < cal(B') < cacs|fzl.

Here

|fz| <|fz — fz| +|fz] < a/4+ R < 2R.
Since f is (M,C)-CQH, we obtain
(7.11) k(0,2) < 2MRcyc3 + C = cs.
On the other hand, 6.19 gives
I(y) < eslz — y| < 2c3r.
Hence
8(2)<|z—zo| < |z—z|+ |z —zo| LU(y)+7 < (2c3 + 1)r = cor.
By 1.2.2 this implies
6(0)

1
k >Iln—%>1ln—.
(0,2) > In 5 = ncer

In view of (7.11), this gives a contradiction for small r. Hence f has a homeo-
morphic extension f: G — G .
To prove the second part of the theorem, let @ = (a,b,¢,d) be a quadruple in

G with a,d € 8G. Since f~! satisfies the same conditions as f, it follows from
5.8 that it suffices to find an estimate

7(fQ) < 1(r(Q))
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for some increasing 7: [0,00) — [0,00) depending only on v = (M, C,c). Per-
forming auxiliary inversions we may assume that d = co and fd = co. Choose
sequences (an),(bn),(cn) in G converging to a,b,c, respectively, such that the
points an,bn,cn are distinct for each n. Set T, = (an,bn,c,). Since p(Tp) =
lan — bnl|/lan — ca] = 7(Q) and p(fT) — 7(fQ), it suffices to find an estimate

(7.12) p(FT2) < n(p(Ty))

with 7 =7, . Setting A = 2C'V 1/2 and observing that §(a,) — 0 we can assume
that

(7.13) len — an| > e*6(ay)

for each n.

Fix n and choose an arc 7 joining a, and b, in G with I(y) < clan — ba|.
Orient v so that a, is the first point. Set yo = a,, and let y; be the last point
of v with |y1 —yo| < |en — yo|. Proceeding inductively, we let y,;4; be the last
point of v with |yj4+1 — y;| < |y; — yo|, and we stop as soon as we obtain y, with
Ys = bn. The process is finite, since v is compact and since |y; —y;—1| > |cn — yo|
for all j <s—1. Assume that s > 2. For 1<j5<s—1 we have

|Yj — anl 2 [y1 — an| = |en — anl.

By (7.13) and by 1.2.2, this implies that k(yj,an) > X and k(cp,a,) > A. By the
Fundamental lemma 7.3, there is H = H(v) > 1 such that

Ifyl—fanl SHlan_fanl
and

|fyi+1 — fyjil < H|fy; — fanl
for 1 < j <s—1. These inequalities imply
lfyj-i-l_fanl < (1+H)'ny_fanl < (1+H)]lfy1 —fanl < H(1+H)j|fcn—fanl
for 0 < j <s—1, and hence

|fon — fan| < H(1 +H)s_1|fcn — fan|.
Clearly this is also true if s = 1. Since
cla, - ba| 2 1(v) > Z lyj - yj—ll 2 (s=1)cn — anl,
i=1

we have s —1 < ¢p(Ty). Hence (7.12) is true with 5(t) = H(1 4+ H)*. o
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7.14. Theorem. Suppose that G and G' are bounded c-uniform domains
and that ¢ > 1, 2o € G, z) € G' with d(G) < cob(zo), d(G') < cod'(zy)-
Suppose also that f: G — G' is an (M,C)-CQH map with fzo = z;. Then f
extends to a homeomorphism f: G — G ,and f is n-QS rel OG with n depending
only on (M,C,c,cq).

Proof. This follows directly from 7.9 and 5.11. o

7.15. Theorem. Suppose that f: B(1) — B(1) is an (M,C)-CQH map
between the unit balls of E and E', and that f(0) = 0. Then f extends to a
homeomorphism f: B(1) — B(1), and f is 7-QS rel dB(1) with n depending
only on (M,C).

Proof. Since a ball is c-uniform with a universal ¢ by 6.5, the theorem is a
corollary of 7.14. o

7.16. Theorem. Suppose that G and G' are c-uniform domains and that
f: G- G is p-FQC. Then f is n-QM with n depending only on ¢ and c.

Proof. If G = E or G' = E', the result follows from 1.5.13. Suppose that
G # E, G' # E'. By 7.9, f has a homeomorphic extension f: G — G. In
view of 6.26, we can use auxiliary inversions to normalize the situation so that
0 € 0G and f(co) = co. We show that f is 7-QS with n = n,.. Now G and
G' are c-quasiconvex. By L.5.5, it suffices to show that f is weakly H-QS with
H = H(p,c).

Let z,a,b € G with |a —z| < |b—z|. By 4.14, f is (M,1/4)-CQH with M
depending only on ¢. By 7.3, the desired inequality

(7.17) |fa — fz| < H|fb~ fz|

holds with H = H(¢p,c) provided that k(b,z) > 1/2. Suppose that k(b,z) < 1/2.
Then 1.2.2 gives

b—z| < X\o(z), A=e'?P-1<1.

Hence a and b are in the ball B = B(z,\6(z)). By 1.5.10, f | B is n-QS with
n = ne. Thus (7.17) holds with H =n(1). o

7.18. Theorem. Suppose that G is a c-uniform domain and that f: G — G'
is ¢-FQC. Then the following conditions are quantitatively equivalent:
(1) G' is ¢ -uniform,
(2) f is n-quasimébius.

Proof. This follows from 7.16 and 6.26. o

7.19. Question. Does 7.18 remain true if ¢-FQC is replaced by (M, C)-CQH
and n-QM by n-QM rel 0G?
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7.20. Remarks. In Theorem 7.9 we showed that for maps between uniform
domains, CQH quantitatively implies QM rel dG. The uniformity condition can
hardly be weakened. For example, conformal maps between non-uniform planar
domains may have rather bad boundary behavior.

We next turn to the converse of 7.9 and show in 7.22 that for maps between
uniform domains, QM rel 0G quantitatively implies CQH. Here the uniformity
plays a less important role. In fact, we shall prove the result for domains which
are only QH i -uniform. Recall from 6.8 that G is QH ¥ -uniform if ¥: [0,00) —
[0,00) is a homeomorphism and if

ka(a,b) < ¢(rg(a,b))

for all a,b € G; here rg(a,b) = |a — b|/(6(z) A 6(y)) is the relative distance
between a and b in G. For example, all convex domains are QH 1t -uniform with

b(t) = t.
In [Vds] we shall prove the result for a larger class of domains including all
domains in R".

7.21. Lemma. Suppose that 0 ¢ G and that G is QH v -uniform. Let u
be the inversion u(z) = z/|z|?. Then uG is QH v, -uniform with ; depending
only on .

Proof. Let a,b € G and set r = rg(a,b), ' = rg (ua,ub), where G' = uG.
Applying Case 1 of the proof of 6.25 to the inverse map G' — G we obtain
r <18(2r' +r'?). By 1.4.9, u is fully 36-QH. Thus

k'(ua,ub) < 36k(a,b) < 36v(r) < 361 (18(2r' + ') = vy (r').

7.22. Theorem. Suppose that G and G' are QH 4 -uniform domains and
that f: G — G isa homeomorphism with fG = G' such that f is n-QM rel 9G.
Then f | G is (M,C)-CQH with (M,C) depending only on 1 and v.

Proof. Performing auxiliary similarities we may assume that 0 € G and
that f(0) is either 0 or co. In view of 7.21, we can use auxiliary inversions to
normalize the map so that co € G and f(00) = co. Then f is 7-QS rel 4G.

Suppose that a,b € G with k(a,b) < 1. By 4.8, it suffices to find an estimate

(7.23) k'(fa, fb) < Mo

with My = Mo(n, ). We may assume that §'(fb) < é'(fa). Choose z € G with
|fz — fb|] < 268'(fb). Then

[fa—fbl _,|fa— fal
5(fo) = "Ift— fal

|a — z|

(7.24) ra'(fa, fb) = b — z|

+252n( )+2.
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By 1.2.2 we have
la—b

< ekab) < ¢
5(b) se S e

Hence

la—z| la—bl+|b—z| _|a—Db|
< <
b—=z| ~ b~ z| — 8(b)

By (7.24) this implies

+1<e+1<4.

ra'(fa, fb) < 2n(4) +2,
which gives (7.23) with Mo = ¢(2n(4) +2). o

7.25. Extension to a half space. For a Banach space E, we consider the space
E; = E x R! as a Banach space with the norm |(z,t)| = |z| V [t|, and we identify
E with the subspace E x {0} of E;. Let H be the half space E x (0,00). Then
OH = E = EU {oo}. For another Banach space E' we similarly define E| and
H'. The half spaces H and H' are co-uniform domains with a universal ¢y by
6.6. Suppose that F: H — H' is p-solid. Then F extends to a homeomorphism
F:H — H and induces an n-QM homeomorphism f: E — E' with n =n, by
7.9.

We shall next show that conversely, every n-QM homeomorphism f: E—E'
can be extended to a homeomorphism F: H — H such that the induced map
F: H - H is ¢-solid with ¢ = ¢,. In the case E = R"™ = E’, this was proved
by De-Spiller [DS] in 1970. In [TV ;] we proved the stronger result that F' can be
chosen to be QH and hence QC in H**! = R" x (0,00). We do not know whether
this is true in the general case.

The construction of F in the proof of 7.26 was used as a preliminary step in
[TV 2], and the solidity of F' in the euclidean case can be proved by compact fam-
ilies of embeddings; see [TV 3, 6.17] and [TV, 2.13]. We shall give an elementary
but somewhat lengthy direct proof.

7.26. Theorem. Suppose that f: E—>E'is n-QM. Then, with the notation
of 7.25, there is an extension of f to a homeomorphism F: H — H' such that
F: H > H' is ¢-solid with ¢ = ¢,,.

Proof. By an auxiliary inversion we may assume that f(co) = co. Then f is
n-QSin E. For £ € E and t > 0 we set

7(z,t) = sup {|fy — fz| : [y — 2 < t},

(7:27) F(m,t) = (f:z:,‘r(z,t)).

Setting F(c0) = co we obtain an extension F:H > H of f and its restriction
F: H — H'. We show that F is the desired map.
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We first show that there are so = so(7) € (0,1/2] and embeddings g, 6: [0, so]
— [0, 00) with x(0) = 6(0) = 0 depending only on 7, with the following property:
Let ap = (x0,%0) and a = (x,t) be points in H with |a — ag| = stg, 0 < s < s¢.
Then

]Fa - Fa0|
7(ao)

Suppose that ag,a € H are as above, |a — ag| = sty, 0 < s < 1/2. Write
70 = 7(ao), 7 = 7(a). For z,z9,71,... we write y = fz, yo = fzo, etc. Let z;
be an arbitrary point of S(z,t) C E. Choose z2 € S(zo,%9) such that z, lies on
the ray from z¢ through z;. Then either

(7.28) u(s) < < 6(s).

|z1 — 22| = |22 — xo| — |21 — 20| < 2o — |21 — 2| + |2 — z0| < 2o —t+ |z — zo]
or

|z1 — 22| = |21 — zo| — |22 — xo| < |21 — |+ |2 — 20| —to <t —to + |z — o).
Hence in both cases

|z1 — z2| < |t — to]| + |z — zo| < 2sty.
By quasisymmetry we obtain
ly1 =yl < ly1 — ya| + lvz — vol + lyo — vl
< n(lm—_ﬁ—l)lyo — 2|+ 70+

|zo —
< n(2s)mo + 70 + 1(s)70 < 7o + 27(25)70.

|zg — x|
— ) yo — v2|

|zo

Since z; € S(z,t) is arbitrary, this implies

T —1T0

(7.29)

< 2n(2s).
- < 2n(2s)

This inequality holds for all pairs ag,a with |a — aq| = sto. Changing the roles of
a and ag gives

To— T

(7.30) < 2n(2sto /1)

.
Now s < 1/2 implies |t —to| < ¢9/2, and hence o < 2¢t. From (7.29) and (7.30)

we obtain
To—T < 217(43)(1 + 217(23))7'0 = 6(s)mo,
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where (s) = 2n(4s)(1 + 2n(2s)) . Hence

(7.31) Ir =70l < g0s)

7o

whenever s < 1/2.
On the other hand, since |z — zo| < |a — ao| = sto, we have

|z — zo]

|fe = faol <0 )fez = faol < n(s)ro < b(s)ro.

|22 — 2o
Hence the second inequality of (7.28) is true with this § and with so =1/2.

We turn to the first inequality of (7.28). In what follows, we let p;: [0,00) —
[0,00) denote homeomorphisms depending only on 7. Using the same notation
as above we assume that ag,a € H with |a — ag| = stg, 0 < s < 1/2. We may
assume that f and f~! are 1-QS, replacing n(t) by n(t) Vn~1(¢7*)~!. Define
M1 and H2 by

1 0, 1~ (p1(s))

pi(s) = /)’ p#1(0) = pa(s) = A

s
2 4’
We consider two cases.

Case 1. |z — zo| > p2(s)to. Let z4 be an arbitrary point of S(zo,t0). Then

lys — yol < (|$4—3«'0|
ly —yol| ~ |z — zo]

) < n(1/pa(s)),

and hence
|y - y0|

1
T n(1/pa(s))
Since |Fa — Fag| > |y — yo|, this gives the first inequality of (7.28).
Case 2. |t — zo| < p2(s)to. Since

= p3(s).

sto = |a —ao| < |z — zo| + |t — to| < pa(s)to + |t — tol,
one of the inequalities

(7.32) t2to(1+4 s~ pa(s)),
(7.33) t <to(1— s+ pa(s))

is true.
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Suppose first that (7.32) holds. Since p2(s) < s/4, we have
I.’II — xol 4+t < /.Lz(s)to +t— sty + ,Ug(s)to < t.

Hence B(zo,t0) C B(x,t). Let x5 € S(zo,t) be arbitrary. Then ys and y belong
to fB(z,t). Hence there is ys € fS(z,t) such that ys € [y,ys]. Then

ly — yol < (Ix—zol

lys — yo| ~ |zs — -730|> < 'l(#z(s)) < pa(s).

Since

lzs —z6| > | —z6|— |z — 70| — |20 — 25| > t — po(s)te —tg > (s—2p2(s))to > sto/2,

lys — vol (lzs—xol (2 1
< <n(2)= — .
lys — ys| =1 |$5—$6|) =1 s) 2u1(s)

we have

Since

T2y —ysl = |y —ys| + lys — vsl > lys — yo| — |y — vol + |ys — vel,

these inequalities give

T — |ys — yo| s 1ys —wsl vy —wo

> — > pi(s).
ws—vol = lvs —vol  Jvs — o] = M

Since |ys — yo| is arbitrarily close to o, we obtain the desired lower bound

|Fa — Fay| > T —

To
> .
- 2 pa(s)

Finally assume that (7.33) is true. Since
I.’I) - .’170] +t< ﬂz(s)to + o (1 — S +;A2(S)) < to(l — s+ 5/2) < o,

we have B(z,t) C B(zo,t0). Let z7 € S(z,t) be arbitrary. Since Yo, Y7 €
fB(zo,t0), there is ys € fS(zo,t9) such that y; € [yo,ys]- Since

tZto—It—totho—StoZt0/2,

we have

ly — ol <l$—$0|) Sn(#z(s)to

ly —y7] = "\|z — 27| t ) < 77(2“2(3)) < pa(s).
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By (7.33) and the inequality p2(s) < s/4 we have t < (1 —3s/4)to <to. Hence
|zg — 27| = |78 — To| — |z0 — 2| — |z — 27| 2 %o — p2(8)tg —t > sto/2 > st/2.

Consequently,

- - 2
ly y7|Sn(|z $7|>S,7(_)= L
lys — yl |zg — z7| s 21 (s)
Since
70 > lys — yo| = ly7 — vol + lys — vz > lyr — yl — |y — vo| + lys — 7|,

these inequalities yield

o—lyr —yl _ lys —v7l |y — ol
>

fall - Z ﬂl(s)a
lyr — vl lyr —yl  lyr — vl
and hence . ,
o —
P pa(s).

Choose so € (0,1/2] such that 6(so) < 1/2. If s < sg, then (7.31) implies
that 7 > 79/2. Hence

|Fa — Fag| _ 1o —T
> > .
T > BT > (o)

We have now proved (7.28) for all s < sq.

From (7.28) it follows that F is continuous in H. If |z — z¢| < ¢, then
7(z,t) < 7(z0,2t). Hence F is continuous in H . Furthermore, (7.28) implies that
F maps each ray {zo} x [0,00) homeomorphically onto the ray {fzo} x [0,00).
From Lemma 7.34 below it follows that F is a homeomorphism.

By (7.28), the homeomorphism F: H — H' is (6, so)-relative in the sense of
1.3.6. If ap,a € H and |a — ag| = sto with s < s¢, then

|Fa — Fag| > p(s)7o.

Since F is a homeomorphism, this implies that FB(ag,sty) contains the ball
B(Fao,u(s)ro). Hence F~! is (6;,s;1)-relative with s; = u(so), 61 = p~!. From
1.3.8 it follows that F' is ¢-solid with ¢ = ¢,. O

7.34. Lemma. Suppose that X and Y are topological spaces and that
F: X x[0,00) = Y x [0,00) is a continuous bijective map of the form F(z,t) =
(f:v,‘r(a:,t)) where f: X — Y is a homeomorphism. Then F' is a homeomorphism.
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Proof. Let ag = (zo,t)) € X x [0,00). We must show that F is open at
Zo. Suppose first that ¢g > 0. Let W = U x V be a neighborhood of aq, where
U is open in X and ¢t € V = (t1,t3) C [0,00). The map t + 7(z0,t) is a self
homeomorphism of [0,00). Choose numbers u;,u; with

T(Zo,tl) <u < T(.’Co,to) <ug < T(:Eo,tg).

Since 7 is continuous, there is a neighborhood U; C U of zo such that z € U;

implies 7(z,t1) < u; and 7(z,t;) > uz. Since F maps the vertical segment {z} x

(t1,t2) onto {fz} x (7(z,t1),7(z,t2)), the set FW contains the neighborhood
fUr % (u1,uz2) of Fag.

The case to = 0 is proved by an obvious modification of the argument above.

a

7.35. Reflection. The reflection principle in the QS theory of R™ enables us
to extend a K -QC map between balls or half spaces to a K-QC map of the whole
space R". We shall next present a free version of this idea. In fact, it turns out
that the principle follows easily from a general result on unions of QS maps.

Suppose first that G and G’ are unit balls of E and E', respectively, and
that f: G — G' is a -FQC map withk f(0) = 0. Then f is n-QM with n =mn(p)
by 6.5 and 7.16. In particular, f extends to a homeomorphism G- G'. Let
u and u' be the inversions ¢ — z/|z|? of E and E', respectively. Then we can
extend f to a homeomorphism f*: E — E' by setting f*z = u’ fuz for z € E\G.
We say that f* is obtained from f by reflection.

Next assume that G is a half space in E with 0 € 8G. This means that
OG \ {o0} is a closed linear subspace T of E of codimension 1. Let e € G be
a unit vector. Then E is spanned by T U {e}, and there is a unique linear map
v: E — E such that v | T = id and ve = —e. We say that v is a reflection in
T. If F is Hilbert space, we can choose e to be orthogonal to T', and then v is
an isometry. In a Banach space, an isometric reflection does not always exist, but
for every M > 3, there is an M -bilipschitz reflection; see Lemma 7.37 below. In
what follows, we assume that the reflections are 4-bilipschitz.

Suppose that G' is another half space with 0 € T' = 8G" \ {oc}. Let f: G —
G' be ¢-FQC. Again by uniformity, f is n-QM, n = n(¢), and extends to a
homeomorphism f: G — G . Suppose that f(co) = co. Using reflections v and
v' in T and in T", respectively, we extend f to a homeomorphism f*: £ — E'
with f*z = v'fvz for £ € E\ G. We again say that f* is obtained from f by
reflection.

In both cases we have f*(co) = co. Hence f* defines a homeomorphism
f«t E — E'. We want to show that this map is »1-FQC with ¢; = ¢1(¢). Since
the inversions u,u’ and the reflections v,v’ are 7o-QM with a universal Mo, the
maps f* | G and f* | E\ G are ;-QM with m = m(e). Since f*(o0) = oo,
f* | G\ {0} is 71-QS in the second case, and f* | E\ G is n;-QS in both cases.
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From Lemma 7.38 below it follows that in the first case, f. | G is 72-QS with
n2 = 12(). From a general result of QS theory, given as Theorem 7.39 below, it
follows that f, is n3-QS with n3 = n3(¢). This implies that f, is ¢;-FQC with
1 = p1(p) by 1.5.18, and we obtain the following result:

7.36. Theorem. (Reflection principle). Suppose that f,: E — E' is ob-
tained from a ¢-FQC map f: G — G' by reflection. Then f, is ¢1-FQC with
1= p1(p).

7.37. Lemma. Suppose that H C E is a half space and that M > 3. Then
there is an M -bilipschitz reflection of E in 0H .

Proof. Setting r = 2/(M — 1) we have 0 < r < 1. Fix an arbitrary ho € H.
Write T = 0H and choose a € T such that |ho — a| < d(ho,T)/r. Write hy =
ho —a and e = hy/|h1|. Then e € H, |e| =1, and

d(e,T) = d(h1,T)/|h1| = d(ho,T)/|h1| > 7.

Let v be the reflection in T with ve = —e. We show that the norm |v| of v is at
most M.
Let z € E be a unit vector. We can write z = y 4+ te with y € T, t € R*.
Then
1=|z| >d(z,T) =d(te,T) = |t|d(e,T) > |t|r.

Hence
lvz| = |z — 2te| < |z| +2[t| <14+ 2/r =M,

which implies that |v| < M. Since v™! = v, the map v is M-bilipschitz. o

7.38. Lemma. Suppose that G and G' are the unit balls of E and E',
respectively, and that f: G — G isan n-QM homeomorphism with f(0) =0 and
fOG = 8G'. Then f is n1-QS with n; = n1(n).

Proof. Fix z; € G and set z; = —z; and 23 = 0. By [Va,, 3.12] or by
5.9, it suffices to show that |[fz; — fz2| > A for some A = A(np) > 0. Setting
24 = f~Y(—fz1) we have

|21 — z4]|22 — 0| <1 |fz1 — fzallfz2 = 0] _ 2
|z1 — z2]|za = 0] — 7 |fz1 — fz2l|fza =0 |fz1 — fz2|’

and hence |fz; — fz2| > 2/n(1). o

7.39. Theorem. Suppose that f: E — E' is a homeomorphism and that
E = A, U A, such that f | Ay, and f | Ay are n-QS. Then f is n:-QS with
m = m(n).
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Proof. Replacing the sets A;, A2 with their closures, we may assume that
they are closed in E. By 1.5.5, it suffices to show that f is weakly H-QS with
H = H(n). Suppose that z,a,b are distinct points in E with |a—z| = |b—z|. In
the present situation, it suffices to show that |fa — fz| < H(n)|fb— fz|. We may
normalize the situation so that z =0, fz =0, and |a| = |b] = 1 = |fb|. Then we
must find an upper bound |fa| < H(n). We may assume that 0 € A; and that
{a,b} ¢ A;. We consider three cases.

Case 1. a € Ay, b € A;. Choose z; € A; N Ay with fz; € [0, fb]. If
|z1| > 1/2, we have

ol < (L0172l < 2.

Suppose that |z1] < 1/2. Since S(1) is connected, there is 2 € S(1) N A; N A,.

Then faz— for] (s — i)
Ty — fxq T2 — 11
for = fml < G < (o) <)

ol < 0 ({20 2] <003 +71(3).

Case 2. a € Ay, b€ A;. Choose z; € S(1) N A; N A, as above and a point
z3 € [0,a] N A; N A;. Then

and hence

50 feol < n(fe=2h)a (2220 (2 0y < i),

|22 — 23 |22
|z3]
[fzsl < (T )18l < (),
and hence |fa| < n(1) + n(1)%n(2).

Case 3. a € A;, b € A;. We again choose z; € A; N A, with fz1 €0, f0].
If |z;] <1/2, then

fa= farl < n(F=2)Ifb - far] < n(3),

and hence |fa| <1+ n(3). Suppose that |z1| > 1/2. Choose again z;3 € [0,a] N
A; NAy. Then

51 < 0 ({2 17l <),

o= fsl < n([F=22) b~ fas] S n(D(1+ IS,
and hence |fa| < n(2) +7(1)(1+n(2)). o
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7.40. Remark. The one-dimensional version of 7.39 is false. For example,
define f: R' —» R! by fx =z for 2 <0 and fz = z? for z > 0. Then f is not
QS although it is QS in (—00,0] and in [0, 00).

7.41. Hyperbolic geometry. Suppose that E is a Hilbert space and that G is a
half space of E. Then the QH metric k of G is the hyperbolic metric of G. Each
pair a,b € G can be joined by a unique hyperbolic segment, which is a subarc of
a semicircle or a ray which joins two points of G and is orthogonal to 0G. This
semicircle or ray is called a hyperbolic line. The Mobius maps preserving G are
the hyperbolic isometries of G.

Maps related to CQH maps of G have been studied by several people. For
example, Thurston [Th, 5.9] considers maps f: G — G called pseudo-isometries.
They are defined by the condition

(k(z,y) = C)/M < k(fz, fy) < Mk(z,y).

Essential use has been made by the fact that the image of a hyperbolic line lies
in a hyperbolic neighborhood of another hyperbolic line. We next show that for
CQH maps, this result follows easily from the fact (Theorem 7.9) that f extends
to a map which is QM rel dG. However, I feel that in the applications it is usually
easier to make direct use of Theorem 7.9 or the related results 7.14 and 7.15.
Moreover, these results also apply to many other domains, in which we do not
have well-defined hyperbolic lines.

The hyperbolic metric h of the unit ball B(1) is obtained with the aid of
any Mobius map of G onto B(1l). Alternatively, h is defined by the density

2/(1 = |z|?). Then h and the QH metric k¥ of B(1) satisfy the inequalities
k<h<2k.

7.42. Theorem. Suppose that G is a half space of a Hilbert space and that
f:G — G is (M,C)-CQH. Let v be a hyperbolic line in G. Then there is a
unique hyperbolic line %' such that fv lies in the hyperbolic neighborhood

N(,r)={y e G:k(y,y") <r},

where r can be chosen to depend only on (M,C).

Proof. Let a and b be the endpoints of 4. By 7.9, f extends to a homeomor-
phism f: G — G. By auxiliary Mdbius maps we may assume that a = 0 = fa and
b= 0o = fb. Then 7 is the ray from 0 to oo, orthogonal to G. The uniqueness
of 7' is clear: we must have ' = y. The neighborhood N(7,r) is a cone with
axis 4. Let = € 7, and let y € OG be the point for which fy is the orthogonal
projection of fr on 0G. Let a be the angle between the vector fzr and the ray
7. It suffices to obtain an upper bound for tan a in terms of (M, C).
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By 7.9, f is n-QM rel G with 1 depending only on (M, C). Applied to the
quadruple (y,0,z,00) this gives

|fyl lyl

tanoa = =——— <n{———) < n(1).
7o g1 <"(fg—ap) <70

This proves the theorem. From the formulas in [Vuz, p. 22] we can obtain the

explicit bound r =In (H + V1 + H?) with H =5(1). o

8. Distortion

8.1. Introduction to Section 8. This section was inspired by a manuscript
[Co] of D. Cooper. Let B™ be the open unit ball of R*, and let f: B® — B"
be (M, C)-CQH. Cooper considered the distortion of hyperbolic spheres under f.
By auxiliary Mébius homeomorphisms of B® we reduce the problem to the case
where f(0) = 0 and the center of the sphere is the origin. We can then consider
the QH sphere

Sk(r) = 9Bx(r) = {z € B" : k(z,0) = r},

where k is the QH metric of B”. This sphere is also a euclidean sphere § (s) with
radius s=1—¢e". If r > 2C, then

(8.2) r/2M < k(fz,0) < 2Mr

for all z € Sk(r). Examples show that for any r > 0, k(fz,0) may have the
order of magnitude of Mr or r/M at certain points of Si(r). Cooper made the
important new observation that for large r, this can happen only in a set of small
area, provided that n > 3. Indeed, the multiplicative bounds in (8.2) can be
replaced by the additive bounds

(8.3) r—a<k(fr,0)<r+a

for z € Sk(r) except for a subset whose area has an upper bound ¢(a, M, C,n)
which tends to zero as a@ — oo. Observe that ¢ does not depend on r.

I have not been able to follow all details of Cooper’s proof. The purpose of
this section is to give a new proof for this result. In fact, we prove in Theorem
8.7 that the first inequality of (8.3) also holds for n = 2. To prove the second
inequality we need the absolute continuity of the boundary map $™~! — §n-1,
This requires n > 3; the result is given as Theorem 8.9.

Since we are working in R™, this section differs from the preceding sections.
However, our proof is based on Theorem 7.15 on relative quasisymmetry. On the
other hand, the result is also new for QC maps of B™. A reader interested only in
this special case can skip the preceding sections, since a K-QC map f: B® — B"
with f(0) = 0 is well known to be 7-QS with 1 = g . For example, reflect f to
R™ and use [AVV, 5.23].
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8.4. Notation. Suppose that f: X — Y is a map. For z € X and r > 0 we
set S(z,r) = 0B(z,r) and
L(xsfar) = sup{|fy - f:l:| 'y € S(.’E,T‘)},
l(.’l:,f,'r‘) = inf {|fy - f$| Y€ S($,T)}
The n-dimensional outer measure of a set A C S™ = dB™*! is written as mn(4).

For z € S, 0 < r <2, welet U(z,r) be the cap S®NB(z,r). There are positive
numbers a, < b, such that

a,r® < mn(U(z,r)) < b,r"

for all z € S™ and 0 < r < 2. We also write w, = m,(S").

8.5. Lemma. Suppose that n > 1 and that f: S® — S™ is a homeomor-
phism. Suppose also that 0 < r < 2, that t > 0 and that A C S™ is such
that

l(z, f,r) > tr

for all z € A. Then m,(A) < u(t,n) where p(t,n) - 0 as t — oo.

Proof. The proof is based on a simple packing argument. Choose a maximal
set F C A with the property that |z — y| > 2r whenever z,y € F with z # y.
Write k = card F'. Since A is covered by the caps U(a,2r), a € F, we have
mn(A) < kb,(2r)". Hence it suffices to find an estimate

(8.6) kr™ < p(t,n).
Since

fU(a,r) D U(fa,l(a, f,r)) D U(fa,tr)
for a € F and since the sets fU(a,r) are disjoint, we have

Wnp =mgu(S™) > E mn(fU(a,r)) > kan(tr)".
a€F

This gives (8.6) with u(t,n) = wn/ant™. o
8.7. Theorem. Suppose that n > 2, that f: B* — B" is (M,C)-CQH,
that f(0) = 0, and that 0 < a < r. Suppose also that A is a subset of the QH
sphere Si(r) such that k(fz,0) <r — « for all z € A. Then
mn_l(A) S 61(01, M, C,n)

where €1(a, M,C,n) = 0 as a — o0.
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Proof. By 7.15, f extends to a homeomorphism f: B — B which is 7-QS
rel S™! with n =nar,c. Let fo: S®~1 — S™~! be the restriction of f. Writing
as usual §(z) = d(z,0B") = 1 — |z| we have §(a) = e™" and é(fa) > e*" for
all a € A. Let p: R™\ {0} — S™~! be the radial projection pz = z/|z|. We first
show that
(8.8) l(pa, fo,e™") 2 €77 /n(1)
for each a € A. Let y € S"~! with |y —pa| = e™". Then |a — pa| = |y — pa|, and
hence

e*™" < 6(fa) < |fa— fopal < n(1)|foy — fopal.
This proves (8.8). By Lemma 8.5 we obtain
Mn—1(A4) <mu_1(pA) < pu(e*/n(1),n —1) =e1(a, M,C,n).

8.9. Theorem. Suppose that n > 3, that f: B — B™ is (M,C)-CQH,
that f(0) =0 and that r > 0, o > 0. Suppose also that A is a subset of the QH
sphere Si(r) such that k(fz,0) >r+ « forall z € A. Then

Mmp-1(A4) < e2(a, M,C,n)
where e2(a, M,C,n) — 0 as a — oo.
Proof. Let a € A. Using the notation of the proof of 8.7 we first show that
(8.10) L(pa, fo,e™ ") <ce "¢

with ¢ = ¢(M,C). Assume that y € S*~! with |y —pa| = e™". Set z = f; 'pfa.
Since
|z — pa| < |z —a| + |a — pa| < 2|z — al,

the relative n-quasisymmetry of f gives
|foz = fopal < n(2)|foz — fal.
This implies
|fa — fopal < (1+1(2))|foz — fa| < (1+n(2))e "™
Since |y — pa| = |a — pal, we have
|foy — fopal < n(1)|fa — fopal.

These estimates yield (8.10) with ¢ =n(1)(1 + n(2)).
From (8.10) it follows that

I(d, fo—l,ce"r_“) >e 7
for each b € fypA. Hence Lemma 8.5 gives
manc1(fopA) < (e fe,n — 1) = e3(a, M, C,m),

and €3 — 0 as @ — oo. The theorem now follows easily from the absolute
continuity of QC maps. This is the point where the condition n > 3 is needed.
We give the required result as Lemma 8.11 below. o
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8.11. Lemma. Suppose that n > 2 and that f: S® — S™ is an 7-QS
homeomorphism. Then for each A C S™ we have mn(fA) < e(mn(A),n,n),
where e(t,n,n) - 0 ast — 0.

Proof. Let ¢: S™ — R™ be the stereographic prOJectlon with ¢(ent1) =
Then ¢ maps the lower hemisphere H onto B™. Let Q C B" be a closed n- cube
with vertices on S™~1. Since there is an integer k = k(n) such that S™ can be
covered by k rotatlons of ¢p71Q, we may assume that A C ¢ ~1Q. We may also
assume that fe,4+1 = en41. The map g = @fe l: : R" — R"™ is a K-QC map
with g(o0) = oo and K = n(1)"~!. From the 7-quasisymmetry of f we obtain
a lower bound |fz — eny1| > ¢ = ¢(n) > 0 for each z € H. Indeed, setting
y = f~!(—ent1) we have

ly — ent1] £ 2 < V2|2 — enyal,

and hence

2= fy — feas1] <n(V2)|fz — €npal-

It follows that m(gQ@) has an upper bound depending only on n and n. From
[Re, Corollary, p. 262] we obtain an estimate

m(gpA) < eo(m(pA),n,n)

where €¢(t,n,n) — 0 as t — 0. This proves the lemma, since ¢ is L-bilipschitz

in S™\ B(en+1,9) with L = L(n,n). o
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