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FREE QUASICONFORMALITY IN BANACH SPACES II
Jussi Väisälä

1. Introduction

This paper is continuation to [Vän]. We consider homeomorphisms f : G --+

G' where G and G' are domains in Banach spaces .E and -E', respectively. In
[Väa] we introduced the class of. freely g-quasiconformal (g-FQC) maps, which
in the case .D : Rn :.8' essentially agrees with the class of K-quasiconformal
(/(-QC) maps. We also considered some related concepts, in particular, g-solid
maps.

In this paper, the boundary and distortion properties of these maps are stud-
ied. In Section 2 we show that an isolated boundary point is removable for solid
and FQC maps. Since quasihyperbolic geodesics do not always exist, we prove in
Section 3 existence theorems for a generalized concept called a neargeodesic. Sec-

tion 4 deals with a new tool called the coarse length of an arc. We also introduce
the class of coarsely quasihyperbolic (CQH) maps, which includes all solid and
hence all FQC maps. In Section 5 we relativize the theory of quasisymmetric (QS)
and quasimöbius (QM) maps. The theory of uniform domains in Banach spaces is
developed in Section 6. The theory of Sections 3-6 is applied in Section 7 to prove
various results on maps of uniform domains. For example, a CQH map /: G ---+ G'
between uniform domains extends to a homeomorphism T:G -- d, which is QM
rel 0G. In particular, the induced boundary map /s: 0G --. 0G' is QM. If /
is FQC, then / itself is QM. Many of the results are also new in the classical
case .E : Rn : Et . ln Section 8 we apply the idea of relative quasisymmetry to
reprove and generalize the recent interesting distortion theorem of D. Cooper on
CQH maps of the n-ball.

We shall use the terminologr and notation of [Väa]. In particular, X and Y
will be metric spaces, .O and .E' will be real Banach spaces and G C .8, G' C E'
domains. In the present paper we shall also assume that dim E > 2, dim.E' ) 2.
The closure Z and the boundary AA of a set A C E are täken in the extended
space -E : .E U {m}. References to [Väa] will be given in the form I.2.5, which
means the result 2.5 of tva4].

I thank P. Alestalo, J. Luukkainen and O. Martio for valuable remarks.
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2. Isolated boundary points

2.L. Introduction to Section 2. Suppose that zs is an isolated boundary point
of adomain GCE andthat f:G -- G'isahomeomorphism. If E:Rn:Et
and / is K-QC, it is well known that / has a K-QC extension to G U {cs}. We
shall prove the corresponding result for solid and FQC maps.

For solid maps the result is new also in .R". However, the proof for this
case would be considerably shorter. For example, we know that the cluster set
clus(/,rs) is a component C of. äG'. For small r the QH diameter of §(us,r) is
r. If C contains more than one point, then the QH diameter of /,S(cs,r) tends
to oo as r + 0, which contradicts the solidity of /. This proves that / has a
limit at rs. In the infinite-dimensional case we carl say very little of the cluster
set by topological reasons, which makes the proof much longer.

We start with a basic result of Banach geometry.

2.2. Lernrna. Let ,S : ,S(ro, r) be a spåere in E. Then eaeh pair of points
in S can be joined by a 2-quasiconvex arc in S.

Proof. Let a,ä €,5, a * b. Let T be a 2-dimensional linear subspace of E
containing o and å. Then T n S is a topological circle, and the points a, ä divide
T n S to arcs ^lr,^lz. Assuming I(2, ) < l(12), the arc J1 is 2-quasiconvex by [Sc,
4.41. o

2.3. Remark In a Hilbert space we can replace the constant 2 of 2.2 by r /2.
The bound 2 is sharp in the plane with the norm lrl : lrl l + l*rl.

2.4. Notation. For a set A C G we let e(A) denote the QH diameter of A,
and k(,4,8) is the QH distance between two nonempty sets A,B C G. In G, we
replace k by let .

2.5. Lemma. Suppose that as is a finite isolated boundary point of G and
that B(ts,2r) C GU{zs}. Suppose also that a,b e G with la-zal < lå-16 | < r.rhen 

k(a,b)S h1E4 + +,
9-xol

and thus /c(S(c6, r)) S +.

Proof. We may assume that frs : 0.
choose an arc a C S(ro, lål) joining y and b

l-lo,y)Uajoins a and b in G, andhence

Set y _ lbl"llol. By 2.2 we can

k(a, b)

2.6. Lemma. Suppose that G * E, G' I E' a,nd that f : G --+ G, is soJid.
Let ACG with k(A) < oo. ?åen f A isbounded, dU,q,AG,)>0, f ACG, and
af A: f aA.

ffi (h#*n D
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Proof. By solidity we have k'(lA) ( m. By 1.2.2(7) this implies rhal f A
bounded and that d$,q,AG) > 0. Hence lÄ c G' , and 0f A is the boundary

f A in the topology of. Gt. Since / is a homeomorphism, we have 0f A: f AA.

2.7. Tlrreorem. Suppose that as is an isolated boundary point of G I
and.that f:G--+G' isg-iotid. Then f h*alimityoe bt at as,andys is
isolated bounda.ry point of )Gt , Setting

Gt - G U {ro}, G\: Gt U {yo}, fr(ro) : Uot

we obtain an extension of f to a homeomorphism fi: G1 + G\. If rs f @,
yo*a andGrf E,then h itPr-solidwithW:p{V).

Proof. Performing a preliminary inversion if necessary, we may assume that
*o * *. By . translation we can normalize co : 0. We break the proof to three
lemmas 2.8,2.15 and 2.16.

2.8. Lemma. Themap f has alimit ys at 0, possibly go:oo.

Proof. Writing U(r) : B(r) \ {0} we choose rs } 0 with U(2rs) c G.
We may assume that 0 € /S(ro). If. fr -) oo as n '-+ no, there is nothing to
prove. We may therefore assume that there are .R ) 0 and a sequence of points
ai e U(rs) such that ri : lril -+ 0 as J --+ oo, the sequence (ri) is strictly
decreasing, and l/oil < .R for all j. Since -E' is complete, it suffices to show that
a(fU(r)) --+ 0 as , -) oo. The proof consists of six steps.

Step 1. Writing Si : S(tr) for j ) 0 we infer from I.2.2(1) that

is
of
tr

E
an

k(Si,.9o) 2 In

oo. By solidity this impliesas j -)

(2.9)

(2.10)

there is .Br - .Rr (R, V) > 0

(2.11)

?.g _+ oo
rj

It B(zR) CG',I.2.5 implies k'(fxi,0) S t for all r. By (2.9) this is impossible,
and hence

li* k'(f S i, /So )
J'+oo

B(2R)n0G'*0.

Ai be the annulus B(ro) \ B(r j). We next show that
such that

f Ai cB(Rr)
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for all j > L . If r € S; , then I.2.2(1),2.5 and (2.10) imply

lf* - lril < 6' (f x)ek' (fx,fx5) 1 BRev@).

Hence f Si cB(R) with .B1 - gRee@) * rt. Since 0 e /,S0, the same argument
shows that /,So C B(.Rr). From 2.b we infer

(2.12) k(Ä)shl9*4<m.rj

By 2.6 this implies

(2.13) 0f Aj: f sou f si.

Hence f Ai.c B(ar), since otherwise E'\B-(ar) would be a connected set meeting
f Ai ar.d E\f Ai but not 0f Ai.

Step3. We show that o; : d(f Si,1So) > 0 for j > 1. By (2.1,2) and 2.6 we
haye d(fÄ1,,AG'): Qj ) 0. If r € So, 9 €,S; and lf* - fyl 3 sil2, then I.2.b
yields

k'(f,,fv) sA#.21f"-- fYl 
.

On the other hand,I.2.2(7) gives &(r,y) > tr, (rolr). Hence

tf * - fyt, ?*-' (r ä) - 
gi > o,

which implies cr12.0i n(qj/2) > 0.

Step 4. We show that f 51 and /,Ss can be joined by an arc tj C fÄi which
consists of two line segments. Since ,4., is connected, there is z €,4; such that

d(f z, f So) : d(f z,.fSi ) : ).

Choose points ao € f So a;rd ai e f Si such ihat

lf, - ool nlf, - oil < \ * a112.

Replacing oo by apoint in [f z,as] we may assume that [f ,,oo)n.fSo - 0, and
similarly [f ,,,oi) n f Si:0. lf. there is a point u €ff z,asln f Si, then

l" - lrl> d(fr,/Si) = Å,

a.nd hence lu - ool < ail2. Since ai -- d(f Si,/So) S lu - ool, we obtain a
contradiction. Thus lfr,oolnf Si:0. Similaily lfz,ainfss:0. By (2.19)
the arc ti : lf z,aslUlf z,a;] lies h Äi.

Jussi Väisälä
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Step 5. We next show that

(2.I4) 
,,ff1 

d(f S i) : 0.

Set 6i - d(li,6G'). By Step 4 and (2.11) we obtain

259

t''(f So, f Si) 3 tx(ti) 3 t(ti)l6i < 4tu161.

By (2.9) this implies that 6; + 0 as, --+ oo. Hence d(AlAj,1G') -- 0. In Step 3
we observed that d(f S1,AG') > 0. In view of (2.13) we obtain d(f Si,)Gt) --+ 0.
On the other hand, we have k'(f Si) < p(a), a^nd hence by L2.2(1),

affS) < 2d,(f Si,AGt)eeG),

which gives (2.14).

Step 6. As the final step we prove the original claim d(fU("r')) * 0. Let
e > 0. By (2.1a) there is j such that d(/S;) I e for all i > i. It suffices

toshowthat d(/U(r;)) S 4e. Let A;ibe theannulus B(r;)\B-(";) in G. It
suffices to show that d(f A;i) < +, for all i > j. Choose closed balls B; and

|i "t radius e containinl f S; and /^9;, respectively. If Bl o Bj :0, then
E' \ (Br U Bz) is a connected set meeting E'\ f A;i. As in (2.13) we obtain
7fA;i:fS;UfSi CBrU.B2. Hence fA;iCBrUBz. Since fA;i is connected,
this is impossible. Consequently, B; meets B;, and hence 0f A;i is contained in
a ball B of radius 2e . This implies that fA;i c B, and hence d(f A;i) 14e.
Lemma 2.8 is proved. o

2.15. Lemma.. Set Gr : G U {0}, Gl : G' U {yo} . Then Gr and G1 are
domains in E and E , respectively. The extension h: Gr ---+ G\ with å(0) : yo

is a homeomorphism.

Proof. Clearly ao e )Gt, and G1 is a domain. Performing a preliminary
inversion and a translation, if necessary, we may assume that ys : 0. Write again
u(r) :B(r) \ {0} and choose 16 ) 0 with U(2rs) c G. since k(^9(ro)) . 4. o"
by 2.5, Lemma 2.6 implies that d(/S(ro ), 0) : to ) 0 . We show that B(fs )n )Gt :
{0}. Assume that this is false. Since fU(ro) is an open set meeting B(to), we can
choosepoints z and zl in B(ts) suchthat z e fU(rs)t zr e äG', and 0 $. lz,z1l.
Replacing zt by a point in lz,z1) we may assume that B : lz,zt) C G'. Then
o: f-'§ does not meet ^9(rs), and hence a C .8(16). Since fi is continuous at
0, a does not contain 0. Hence fr(") < oo, which implies b'(B) < oo. This is a
contradiction, since B meets 1Gt .

We have proved that 0 is an isolated boundary point of G'. This implies that
G! is a domain. Moreover, h: Gr --+ G', is a continuous bijection. It remains to
show that "fit i" continuous at the origin.

Let 0 ( r ( 16. Asabove, d(/S(r),0) :t > o. Then /-lU(t) isa
connected set meeting B(r) but not ^S(r). Hence f-ru(t) C B(r), which implies
the continuity of /r*1 at 0. o
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2.L6. Lemma. Suppose that G1 I E and Uo { a. Then G\ I E' a,nd

h: Gr --+ G', is g1-solid with 91 : g{p).
Proof. We may again assume that go : 0. Assume that G', : Et . This

meansthat G':.8'\{0}. BvLemma 2.8, frr hasalimit *r*0 at oo,possibly
o1 : oo. Since Gt * E, we can choose neighborhoods [/ of 0 and tr/ of c1 such
that 7n7- fl and E\(t/UV) meets äG. Thenfor the set A: G\(UUV) we

This contradiction proves that G', + E' .

By auxiliary similarities we can normalize the situation so that d(O,AGr) :
1 : d(0, AG). We first show that there are a number ro : ro(g), 0 ( ro < 7/2,
and an increasing homeomorphism r/ : thp: [0, 16] --r 10,1/21such that

(2.r7) lÅrl S /(l,l)

whenever lrl < ro
We first observe that for each r € (0,1) we have frB(r) C G', and hence

0fi8(r): /^9(r). Indeed, there is 11 ( r with fiB(rt) C B(t/2). The annulus
A: B(r) \-E(Iil has a finite QH diameter in G. By 2.6, this implies JA c G' ,

and hence frB(r) C G'r.
Set e : e(p): 

"-e@)f2, 
andchooseapoint z e AG\ with lzl ( 1*e.

Lef B be the ray from z through 0. We can choose points AttUz e Pn f 5(112)
such that 0 e [yr ,yzl C f$(112) and y1 e lz,0l. Writing ri : f-ryj we have
lc(q,q) < 4 by 2.5. Setting q: lh - zl and assuming q < ll2 we have

By I.2.2(1) these yield

Since f is p -solid, we obtain

(2.18)

q

which is also valid if C> Il2.
Next assume that 0 < r < 1/2. Choose a point rs € S(r) such that /23

Us €lyr,0]. If y € [yr,ys] and z1 e 1Gt, we have by (2.18)

t llal < lyl + ly-rrl< 1 *e-q+lv - "rl<t -e* ly - rrl,

which implies
d(y,lG')>eAly3l :1.

Jussi VäisåLå
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Hence
lc'(u,yt) < ly, - ysllt <2|t.

On the other hand, k(rr,rr) 2 ln(Llzr), and hence

2
t < e=1*I»: r/6(r) -r o

as r --+ 0. Setting ro : e-e(21"\ 12: re(g) we have r/s(r6) :6. Hence

(2.1e) lYsl 5 {o(')

for 0 ( r ( 16.

Let a e S(r). Then l/rl S lyrl o'

k,(f*,ys) > rn (, * 5#) = 
*#

Since k(r,rr) < 4, this and (2.19) yield

lf ,l S 
"v@)1orl 

< evelforr) : {:(r)

for 0 < r rs. Setting /(0) : 0 we obtain (2.17). Moreover, rb?s) :712.
We turn to the solidity of "f1. By I.3.7, / is 0-relative with 0:0s. By

symmetry and by I.3.7, it suffices to show that fi is (01,q)-relative with (d1,q)
depending only on p. We show that one can choose q: rsf 3.

We write 6 : 6c, 6l : 6Gr, 6' : 6c, , 6l : 6c\. Then

6(r) : 61(c) n lcl, 6'(v) :6i(y) n lyl.

Set g : 16/3, and let a € Gr, b € B(a,q6r(o)). It suffices to find an estimate

(220) bffiysd,(*#)
with some d1 with 01(t) -+ 0 as t -r 0. By continuity we may assume that
a + 0 + b. We consider two cases.

Case L. lal> rslz. If 6(a) : lol,

6r(") S 1 + lol a (21,0+ t)lol < 6(")ls.

If 6(a) :6r(a), this is trivially true. Hence we have l"-bl < 6(o). Since / is

d-relative, this implies

W=+#='("1a) ='(fi#)
Thus (2.20) holds with 0{t): e(t1il.
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Case 2. l"l
Subcase 2a.

Jussi Väisälå,

Hence (2.20) holds with 0{t) - 0(OI) .

Subcase 2b. la - ål > l"l'. Since

^lo - älz 
6r1a)

By (2.L7) this yields

lf"- fblslf"l+lfbl
Since

we obtain (2.20) with 01(l) : +.b({st). "
2.2L. Theorem. suppose that xs is an isolated boundary point of G and

that f: G -- G' is 9-FQC. Then f has a limit ys e E, ut rs, and ys is an
isolated boundary point of lGt . Settins h@i : ls we obtain an extension of f
to ahomeomorpåism f1: GU {ro} -- G'U{yo}. If rs la and Ao { a,then f1
is cp1-FQC with 91 : Vr(p).

Proof. This is an easy corollary of 2.7. o

2.22. Remark. In the QC theory of 8" it is customary to allow the pos-
sibilities oo € G and oo e G' . In the free theory this would involve technical
complications, since we have not defined the QH metric of such domains. One can
usually reduce the situation to the case G c E, G' c E, by auxiliary inversions.

l" - bl-

la - äl ).
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3. Neargeodesics

3.1.. ?erminologlr.Let Gl E and c ) 1. Anarc I CGisac-neargeodesicin
G, if. 1 is c-quasiconvex in the QH metric h : lcc. In other words, the inequality

lr(tl*,y)) < ch(x,y)

holds for each pair r,U e 'y. Thus 7 is a QH geodesic if and only if it is a
1-neargeodesic. The a,rc 7 may be closed, open or half open.

We showed in I.2.9 that geodesics do not always exist. In this section we shall
prove two existence theorems for neargeodesics. In the first result we join two
points in G, in the second one a point of. G to 0G.

3.2. Lemma. Suppose that ae G*E,that 0<r< Tf2,andthat l isa
rectifrable arc in E(a,t6(a)) . Then

t -tx(t)6(") - 1

1+r>--i6;--1-r'
Moreover, every line segment in E(a,t6(o)) is a c-neargeodesic in G with c :
(L +2t)z .

Proof. Since
6(a)(t -t) S 6(r) < 6(a)(t +t)

for all r eE(a,t6(a)), the inequalities follow directly by integration. Suppose
that 7 : la,yj cB(a,t6(o)). Then the second inequality and I.2.2(3) yield

I*(z) < Q + zt)lx - yll 6(") < (1 + 2t)2 tc(x,y). o

3.3. Theorem. Let a,b e G { E andlet c) 1.. Thenthereisac-
neargeodesic joining a and b in G.

Proof. For q ) 0 we write cr: cr(q): (1+ 2q)2. Choose {6 ) 0 such that

(3.4) qs 1 lc(a,b)110, cr(so) < 514.

Then 96 < (^/5-Z)/+ < 1/8. We shall prove the theorem by constructing for
every q ( go *, arc B joining a and ö such that B is a c(g)-neargeodesic, where
c(q)- 1as q-»Q.

Let 0 1q 196. Choose an arc 7 joining a and b in G such that l*(l) S
k(a,b) + 92. Then

(3.5) tx(tl*,yl) < k(*,v) + q'

for all rrA e 7, since assuming x €llaryl we have

k(a, x) * I p (11x, yj) + k(y, b) 3 I x(i I le(a, Q + k(r, y) + k(y, U) + f .

Since g l le(a,b)170, we can choose a number ):,\(q) such that
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(t) ql+<\<q12,
(2) Ip(1): il,
forsomepositiveinteger n. Divide 7 bysuccessivepoints a:no, ..., rn: å to
subarcs .yi:.yLti-l,c;] with l*(li): ,\. Setting

Bi:fait,oil, §:U{7i:t< j <n}

we show lhat B is the desired arc.
Let a,y e P, x * y. Although we have not yet shown fhat B is an arc, the

QH length lx(|lr,y]) is deffned in the obvious way, as soon as we fix i and j with
u€0;,ye 0i. Setting

P(t,Y) - 
lo{gl"'Yl)

k(*,y)

we must find an upper bound p(r,y) < 
"(C) 

with c(q) + 1 as g --+ 0. We consider
four cases.

Casel. Forsome i, B; contatns r and y. Since k(*;-r,r,) a ) 1qf2<7,
I.2.5 gives lri-r - a;l < q6(ti). Hence 3.2 implies that p(r, y) < (1 +2q)2 -- "r(q).

Case2, r and y areverticesof B,say o:.titA: r;.r-e, s ) L. Using
Case 1 and (3.5) we obtain

t*(§l*,yl) : » t*@;+). 
", D k(r;ai_t,ni+j) <", D lx(t+i)

j:l i=7 j=l
: cllp(1la,yl) < qk(a,y) * "s2.

On the other ha^nd, since C < 118, (3.5) implies

k(*,v) > tx(tl*,yl) - q, = s.l - q2 > ql4 - q2 > ql8.

Hence p(x,V) ( cr + 8c1q: sr1r1.

Case 3. There are i ) L and s ) i-1-2 such that c e 0;, y € B,. Using
Case 2 we obtain

I x (glr, yl) : t x (gl*, -r, r,l) - I r (glr,-r, 
"l ) - t o (gly, * 

"l)
1 c2lc(x;-1,r") - k(r;-r,a) - k(y,a")
1 c2lc(x,y) * (cz - t)[t(c;-, ,x) + k(y,,x")).

Here
k(r;-r,r) < l*(9;) 1. c1k(x;-1,r;) ( c1.\ I clqf 2,
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and a similar estimate is valid for k(y,r,). These and (3.5) yield

k(r,y) 2 k(r;-r, a 
") - k(u;-r, 0) - k(Y,, 

")
2 Ir(.y[ri-.,r"]) - q2 -2"y), > (3 - 2c)\- c' > (5 - 4c1)q18,

where we also made use of the inequalities \ > ql4 and g < 118. By (3.4), the
right-ha^nd side is positive. ConsequentlS

8c' (c, - 1)
p(*,v) 1 cz + #: cs(s) -- 1

as g -+ 0. We have also proved that 7 is an arc.

Case4. Thereis i suchthat z € 0; and y € 0;+r. If r: ri-t otlf y:t;11,
we are in Case 3. The general situation is reduced to this special case as follows:

We may assume that r * ,; * y. For I{ > L let g: E ---+ .E be the similarity
defined by gu : n; * K(" - c;). We can choose K such that gt € §;, gy € 0;+r,
and either gn = fii-r or gy : oi+l. In Case 1 we showed that §; U 0;+t C

B(rr,q6(ri)). Applying 3.2 twice we obtain

I (Plg r, sy)) (1 + q)tk (Plg *, sy))
/{(1 - q)6(r,) K(1 - q)

By Case 3 we have lx(glc*,gy]) < cslc(gr,9y). These estimates and I.2.2 yield

(1 + q)ctlg*-syl (1 + q)cgl* - vl (1 + qX1 *2q)"rk(*,y)
(1 - q)2 6(x;) (1 - q)2/((1 - q)2 6(x;)

c4(q)k(*, U),

where 
"n(q) - L as q -+ 0. o

3.6. ?erminology. A half open arc 7 in a domain G is an endcut of G if 7
is a closed arc with one endpoint in 0G.

We want to show that each point ca in G I .E can be joined to äG by
a neargeodesic endcut. If dimE < m this is easy: We choose Uo € äG with
lyo -rrl :6(ro). Then [ro,yo) is a 3-neargeodesic by Lemma 3.9 below. In the
general case there is no nearest point p6, and we must replace [ro, yo) by a broken
line consisting of a countable number of line segments.

We first prove some elementary inequalities in Banach spaces.

3.7. Lemma. Suppose that a,b e G { E with lo - öl < 6(") and that
a e la,b). Then l, - ål < 6(") and 6(b) <26(a).



266 Jussi VäisäLå

Proof. Elementary estimates give

l, - "l+ l, - bl : la- äl < 6(") < 6(o) + l, - ol,

6(ä) < 6(r) + l, - öl < 26(a). o

3.E. Lemma. Let ootnttxz €E with2lq-*rl 1l*o-*rl < lro -*zl,
and let x e fxs,srl, y € [rr, r2). Then

l, - *rl < 2l* - yl, 1", - vl < 2l* - yl.

Proof. We normalize os:0, lrrl:1. Then 2lz1 -*rl 1l1lr2l. Using
a similarity of the form /(r) = cr * K(* -u1) we see that it suffi.ces to consider
the cases where either e:0 or U: sz.

Suppose first that r : 0. Then

and hence

lx - rrl- 1 szl, - yl, l*, - yl < l*, - r2l < tlz < l* - yl.

Next assume that y : rz . Now

which implies the first inequality. If l*t - yl > 2l*, - rl ,, then

If l*t - yl < 2l*, - nl , then

lr, - yll2( lr, - rl : t- lrl S lyl - lrl < ly - *1.

In both cases we obtain the second inequality. o

3.9. Lemma. Suppose that a,b e G I E and that la - öl S 6(a). Then

t*(lo,ål) <3,"(1 +*#) ,

and lo,b) is a 3-neargeodesic.
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Proof. . For each n € [o,b\ and y € AG we have

lb-rl: lo- bl-1"-ol J 6(r) - lo-*l < 6(r), 6(å) < 6(c) + lb-"1<26(r),

and hence

lr-öl +6(ä)<36(z).

Consequently

rp([a,ä]) =, Io'"-u' #r: Brn (r. #)
The last statement follows now from I.2.2(1). o

3.1O. Theorem. Suppose that ro eG + E a,ndthat e > 0. ?hen thereis
an endcut 1 of G from rs such that
(t) f is a c6 -neargeodesic with a universal cs,
(z) t c B(as,(t + e)6(co)).

Proof. We may assume that e <114. For positive integers j set ei:2-ie.
We construct inductively a sequence of points ro trt, . . . it G as follows: Suppose
that co t ,..t &i have been chosen. If r; € 0G, the process stops. If o; € G, we
choose a point U;+r e äG with ly;+, - "il < (1 *e;a1)6(r;), and let c;11 be the
unique point in l*;,y;+r) o ,S(c;,6(r;)). Then

(3.11)

(3.12)

Writing 7;: lr;-r,c;) we claim that the union 7 of all 7; is the desired endcut.
As in the proof of 3.3, we can in ihe obvious way define the QH length of

llr,yl for c € 'li, y € 7i as soon as i and j are fixed. We shall show that

6(*i+1) 1e;+r6(r;).

for all r,g e 7 with a universal constant co. This will imply that the arcs 7j are
disjoint. Moreover, since

j:t

7 lies in B(*0,(1+e)6(o0)), und 7 is rectifiable. Since .E is complete, this implies
that 7 is an endcut of G. Thus it suffices to verify (3.12). We consider three cases.

Case1-. Forsome i,7; contains r and y. Now (3.12) followsfrom3.g.
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Case2. For some i, r; € 7i and y €l;+r. Now 3.9 gives

tx(t[*,y]) < Br,, (r + $6fl * 3In (r. #)
Applying 3.8 with the substitution

we obtain 
('o'"tfi2t0ty) * (s;-t"'t;'u;+rt,.ta)

since 
l, - ";l V lri - vl < 2l* - vl.

6(y) S ly - y;+rl < (1 +e;a1)d(c;) < 96(c;)/8,
and since ln(l*Jo) < tln(l* o) for t ) 1 a,nd o ) 0, these inequalities arrdl.Z.2
yield the estimate

t*(tt,,d) < (T+ o)rn (, * %#) < rar1,,y;.

Case3. Forsome i>1 and s)2, r€.1; and y€T;+.r. ByS.gwehave

tx(tt*,vt) ft sr" (r + #l - 
E 

r (,. ffi) +r, (,. %#)
By (3.11) we obtain

r, (r + ff#) = 
t ff# * h(1 +ei+;) 

= 
rff# I e;+i.

Writing

o : tn 
6(c;) + lrr - zl . 0- r,, 

6(v) + lv - c;+,-rl
6(r) 6(r;+,-, ) '

these inequalities yield

tx(tlr,yl) fi < a * 0* e * h ffi.
Furthermore, Lemma 3.7 implies that

6(z;) + lr; - rl < 26(a)+ 6(o) : 36(r),
and hence a ( ln3. Since ly - oi+s-rl S 6(ri+"-r), we have

6(v) s 6(ri+"-r) + ly - ri+c-Ll ( 26(c;a"-1),
and thus B < ln 3. Since e < 1 , these estimates imply

(3.13) t*(tlr,y)) S M+3hffi,
where M : 3(L * 2ln 3). We also see that

6(y) < 26(r;a,-1) < 2e16(a;) : e6(x;) < 6(Q/a ! 6@)/2.

Hence (3.13) andl.2.2 give (3.12) with cs : M/ln2*3 < 17. o
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4. Coarse length and CQH maps

4.L. Introduction to Section 4. We first introduce the concept of the coarse

length of an arc, which will be our main tool when studying the boundary prop-
erties of FQC and more general maps. We also consider coarcely bilipschitz maps,
which in the QH case will be called coarsely quasihyperbolic or CQH. The CQH
maps include the solid maps, and hence the FQC maps.

The general idea in the coarse theory is that we forget what happens with
small distances. Related concepts have been considered by M. Gromov [Gr, p. 186]

and several others.

4.2. Terminology. Let 1 be an arc in a metric space X. The arc may be

closed, open or half open. Let T : (so, . .. ,nn), n ) 1, be a finite sequence of
successivepoints of 7. For ä ) 0 we say that d is h-coarseif lc;-r -ril> h for
all L < j <n. Let O(7,I2) be the family of all ä-coarse sequences of 7. Set

s(o):f lrr-, -*il,
j--t

t(t,h): suP {s(r) : z e o(7, ä)}

with the agreement that I(7,h): O if O(7,h):0. The number l(l,h) is the
h-coarse length of 1.

In this paper we shall use this concept in the case where X is a domain G + D
equipped with the QH metric &. We let lp(1,ä) denote the ä-coarse QH length
of 1-

This concept is useful in the theory of solid and FQC maps /: G -- G' ,

because we can compare suitable coarse lengths of an arc 1 C G and its image

/7. The ordinary length is useless, since / need not preserve the rectifiability of
ar} arc,

We list some elementary properties of the coarse length:

4.3. Lemma. Let 1 be an arc in a metric space, and let ä > 0.
(1) If 1 is a closed arc and h ) 0, then l(1,å) < *.
(2) l(l,h) is decreasngin h.
(3) ,(r,0) : ,(7) is tåe ordina'ry length of 1 .

(4 l(t,ä): O for h> d(1).
(r) a(r) < hv t(t,h).
(6) z' C 7 implies l(l' ,h) < l(t,h).
(7) I(l,h) is the supremum of s(e) over alJ T : (r0,...,rn) which satisfy the

condition h < lai-r - ril < 2h for aJl I < j < n.

Proof. The property (1) follows easily from the compactness of 7, and the
properties from (2) to (6) are direct consequences ofthe definition. Each lr-coarse
c has obviously a refinement I such that h < lyi-, - Vil < 2h for all j. This
implies (7). o
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4.4. Remark. The coarse length is not additive. If 7 is divided to two
subarcs .lr,.lz, we usually have I(7, h) * l(lr,h) * l(tz,å). One can easily prove
the inequalities

l(11,2h) * l(tr, 2h) - h < l(t, h) < l(tr, h) * t(12, h) + Zh,

but they are not needed in this paper.
The following result will be needed in Section 6:

4.5. Lemma. Let G I E andlet 1 be an arc in Gft (AG+B(r)). If
0 < ä 1 R and l*(l,h) 1 R, then d(l) < MRr, where y : M(h) is increasing
in h. If h : 0, we have l(1) < Rr.

Proof, The case ä : 0 is easy, since

t(t) < t ",84,:/*(r)<rB.r - Jr 6(x)

Assume that ä ) 0. we may assume that 7 is a closed arc with endpoints eotal .

Replacing 1 by a subarc we may assume that d(7) : lao - o1l. we show that the
lemma is true with M :2(eh - l)lh, which is easily seen to be increasing in ä.

lf 7 C B*(oo,ä), then I.2.2 implies that

d(l) : loo - or.l < 6(as)(ee(co,ar) - 1) S r("h _ L) < Mrh 1 MrR.
Suppose that 7 I Bk(as,h). Choose a sequence T : (ror...,rn) of suc-

cessive points of 7 such that ro : ao t b(ti-t,rj) : ä for 1 S j < n, and
lc(a*,a1)( ä. Then n ) 1 and

nh: s(T) S t*(t,h) < R.

By 1.2.2 this implies

d(t):loo-orl S"(z) *l*n-o,,lS(r*t)r(eh -1) < MRr.o
4.6. Terminology.Let M )0 and c>0. Amap f:x ---+y is c-coarsely

M -Lipschitz if.

lf*-fyl<Mlr-yl+C
for all n, U e X . If f is an embedding

(M,C)-CBL. This means that

and it f and f-t: f X + X are C-coarsely
f is C -coarsely M -bilipschitz,, abbreviated

for all n,u e x. In [vä3] the cBL maps were called roughly bilipschitz.
One could also consider maps satisfying (4.7) which are not injective or con-

tinuous. However, it is often helpful to be able to consider the inverse map /-1. It
seems to the author that one could develop af,r analogous theory for one-to-many
"maps" (relations), but this would involve technical complications.

Recall from I.2.8 that a metric space X is c-quasiconvex if each pair of points
o,A eX can be joined by an arc 7 C X with r(Z) < clx - Vl

(4.7)

Jussi Vd,isålå
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4.8. Theorem. Supposethat X is c-quasiconvex'that d(X):x andthat

f : X + Y is a map. Then the following conditions are qua,rfiitatively equivalent:
(1) / is C-coarsely M-Lipschitz.
(2) Therearetl ) 0 and Mt2 0 such that lfr-fVlSMtlr-yl whenever

r,a€X andl*-yl>tt.
(3) ?here a.retn )0 and Mo)-0 sucå that lfa- fvlSMs whenever x,y e X

and lr - yl < to.

Proof. We show that (1) + (2) + (3) + (1).
If (1) holds and if l, - vl ) C, then

lf, - fvl < Ml* - yl+ C < (M + 1)1,, - yl.

Hence (2) is true with tr : C , Mr : M + 7.
We next show that (2) implies (3) with to: tt * 1 and Mo:5M1(r1 + 1).

Assume that z, y e X with lc - yl3 ts. Since X is connected and since d(X) :
oo, thereis apoint z in X suchthat lr-rl-2to.Then to <lz- yl ( 3ts, and
we obtain

lf* - fyl < lf , - f zl+lf z - fyl S Mrlr - zl+ Mtl, - vl < 5M1(r1 + 1).

Finally assume that (3) is true. Let r,y e X. Choose an arc 7 joining z and
y with r(Z) S .|"-yl. Let & ) 0 betheuniqueintegerwith /cto <10) < (k+1)r0'
Choose successive points s : rot...:s/c+l - y such that each subarc llai-trai)
has length at most to. Then l*i-, - xil < to and hence lf *i-, - f*il 3 Mo'
This implies

lf* - fyl< (e + 7)Mo S Mst(1)lts * Mo I cMslt - yllto * Mo,

which gives (1) with M : cMolto, C : Mo.o

4.9. Theorem. Suppose that f:X --+ Y is a C-coarsely M-Lipschitz
embedding, that 1 is an arc in X and that h ) 0. Then for h1 : M(hV C) + C
we have

t(h,hr) < (M + 1)l(7, ä).

Proof. Let y: (yor...,Un) be a hr-coarse sequence of h. Writing ri :
f-'@i) we obtain a sequence d : (*rr...,rn). Since

lri-, - ril2 (lvi-r - ail- c)ltw 2 (är - c)lM : hY c,

7 is ä-coarse. Moreover,

(ttl*i-'-rjl +C),
n

/IJ
j:t

/-\
s(Y,)

I J 4 J'

which implies the theorem. tr

C , and hence
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4.70. Terminology, Let h ) 0 and c ) 1. A metric space X is h-coarsely
c-quasiconvex if each pair of points fr,A e X can be joined by an arc 7 with

In particular, an arc I is h-coarsely c-quasiconvex if

l(tl*,y),h) S"l*-vl

for all t,A € 7. The case where 7 is an arc in a domain G + E with the QH
metric plays an important role in the rest of the paper. We say briefly that an
atc 1C G is (c, h)-solid in G if it is ä-coarsely c-quasiconvex in the QH metric
of G. For ä : 0 this means that 7 is a c-neargeodesic.

4.11. Theorem. Suppose that f: X ---+Y is (M,C)-CBL andthat the arc
"y c x is h-coarsely c-quasiconvex. Then fu is fu-coarsely cl-quasiconvex with

ht- M(hv 2cC) * C, c1 -2cM(M + 1).

Proof. Replacing I by . subarc we see that it suffices to show that

(4.L2) l(ft,ht) S ctlfn-fvl,

On the other hand, l(l , h) S clr - yl implies by 4.9 that

t(h,hr)S(M*L)clx-yl,

and (4.12) follows.
Next assumethat l*-yl<2C.It suffi.cesto show that lfu- frl< å1 for

all u,u € 7, since then I(/7,är):0, and (4.t2) is trivially true. If lu-ul <h,
then

lf"-frl<Mh+C<fu.
lf lu - ul > h, then

lf"-ful<2"CM+C<h1.tr
which implies
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4.13. Terminology. Recall from I.3.4 that a homeomorphism /: G -- G',

between domains G * E and G', I E', is M-quasihyperbolic or M-QH if / is

M-bilipschitz in the QH metric. similarly, we say that /: G -- G'l is C-coarsely

M-quasihyperbolic, abbreviated (M,C)-CuH, if it is (M,C)-CBL in the QH
metric. This means that / is a homeomorphism such that

(k(r,y) - C)lu I k'(f x, fv) < Mk(a,Y) + C

for all a,y e G.
We next give the relation between the CQH maps and some other classes

considered in this paper. In 7.9 and in 7.22 we shall prove the close connec-

tion between the CQH maps and the maps which are quasimöbius relative to the

boundary. More results on CQH maps will be given in [Väsl. For example, the

properties P-FQC and fully (M,q-cqH are quantitatively equivalent.

4.14. Theorem. For a homeomorphism f: G't G' with G + E, G' * E',
the following implications ate quantitatively true:

M'qH =+ g-FQC + g-solid + (M,C)-CQH'

In the last implication, one can choose an arbitrary C > 0 and then ltf -
c le-'Q).

Proof. If / is M-QH, then / is g-FQC with 9(t) :4M2t bv I.4.7. The

second implication is trivial. Suppose that / is g-solid and that C > 0, c ) 1.

Then &,(/o,fil < c whenever k(r,v) 3p-,(c). since G is c-quasiconvex in
the QH metric, the proof of 4.8 shows that / is c-coarsely M-Lipschitz in the

eH metric with M = cClg-t(C). The same is true for /-1. Since c ) 1 is
arbitrary, the theorem follows. o

4.15. Theorem. Suppose that G+8, G'+E',andthat f:G --+G' is

(M,,C)-C}H. II I is a (c, h)-solid arc in G, then the atc f1 is (c1,h1)-solid in

G' with ("r, är) depending only on (c,h,M,C), In patticular, if f is g-solid ot
p-FQC, then (c1,h1) depends only on (c,h,g).

Proof. This follows from 4.1.1. and from 4.14. o

5. Relative quasisymmetry and quasimöbius

5.7. Introduction to Section 5. In this section we shall relativize the theory

of quasisymmetric and quasimöbius maps. This theory will be applied in later
sections to study the properties of CQH maps.

5.2. Terminology. By a triple in a space X we mean an ordered sequence

T : (x,a,b) of. three distinct points in X. The ratio of 7 is the number

p(D:ffi
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lf f: X --+ Y is an injective map, the image of a triple T : (r,o,å) is the triple
fT : (fr, fo, fb).

Suppose lhat AC X. A triple 7 : (n,a,ä) in X is said to be a triple in the
pa;r (X,A) if r €.4 or if. {a,b} C ä. Equivalently, both lo-*l and lå-rl are
distances from a point in .4.

Let q: [0, -) * [0, m) be a homeomorphism. An embedding /: X ---+ y
is said to be rl-quasisymmetric rclative to A, abbreviated ry-QS rel ,4", if the
condition

p1r) < q(pg))
holds for every triple 7 in (X, Ä). Thus quasisymmetry rel X is equivalent to
ordinary quasisymmetry.

Analogously, a quadruple in X is an ordered sequence Q : (o,b,c,d) of four
distinct points in X. The cross ratio of Q is the number

r(Q) : la,b,c,dl:1", - bll:- 
1.,.la-cllb-dl'

warning: The order of the points a,b,crd varies in the literature. In particular,
the cross ratio above is written as lo, d,b,cl in [Vä1]. The definition is extended
in the well known manner to the case where one of the points is oo. For example,

la,b,c,*l : ]g - äl : p(a,b,c).p-cl
If xo c * and if. f: xs--+ Y is an injective map, the image of a quad.ruple e in
Xo is the quadruple f Q : (f qtf b, f c, f d).

Suppose that .4 C X0 C X. We say that a quadruple Q: (a,b,cd) in X6
is a quadrupleinthepair (Xs,A) if {a,d} c A or {å, c} c A. Equivalently, all
four distances in the definition of r(Q) are (at least formally) distances from a
point of A.

Let q: [0,*) * [0,m) be a homeomorphism and let A C Xo C X. An
embedding f: Xo -» Y is said to be q-quasimöbius relative to A, abbreviated
?-QM rel .4, if the inequality

(5.3) ,(f q 3,t(,@))
holds for each quadruple in (Xo,A). Thus ?-QM rel Xo is equivalent to ordinary
quasimöbius.

5.4. Remarks. 1. Since la,b,c,dl : lb,a,d,,cl, an embedding /: X6 --+ y is
?-QM rel ,4, as soon as (5.3) holds for each quadruple (a,b,cd) with {a,d} C A.

2. It is possible to extend the relative concepts to some cases where the map
is not everywhere injective. Let us say that a map f : X ---+ y is injective rel .4.

if f I A is injective and if f-'f A = A. For such maps the definitions of es and
QM rel ä still make sense. However, since such maps do not always have inverse
maps, we have the difficulties mentioned in 4.6.
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5.5. Relative theory. We shall next give a relative version of the basic quasimö-

bius theory of [Vä1]. In most proofs it is sufficient to check that the corresponding
proof in the absolute case makes only use of triples and quadruples in the given
pair (X, A). In such cases the proof is omitted.

5.6. Theorem. If f : X -'+ Y is q-QS rel A, then / is 9-QM rcl A with
0:0q.

Proof. As the absolute case [Vä1, 3.2). o

5.7. Lemma. Suppose that f: X + Y is an embedding, that A C X a'nd

that q: [0, -) ---+ [0, m) is an increasing function such that
G) pUT Snb@\ for each triple T in (X,A),
(z) p(f -'T') < ,t(p(T' )) for each triple T' in (f X, f A) .

Then f is ryr -QS rcl A with ry depending only on q.

Proof. Observe that we do not require ,l(0) : 0. Replacing ? by a larger
function we may assume that 4 is a homeomorphism onto [rs, m), ro ] 0. Setting
to : Llro we define an increasing homeomorphism ?o: (0, to) - (0, oo) by r76(t) :
4-t(1-t)-t. Suppose that ? : (s,o,6) is a triple in (X,A) with p(T) < to.
Apptying (2) to the ratio ?' : (f r, f b, f ") gives ll p(T) S rt(p@')) , which implies
p(fT) < ro (p(f)) . Together with (1) this proves the lemma. o

5.E. Lemma. Suppose that ACXo C X,that f: Xo --+Y is anembedding
and that 17: [0, m) + [0, m) is an increasing function such that
(t) 

"(f 0 S ,l(r(Q)) for each quadruple Q : (o,b,c,d) in Xo with {a,d} c A.
(2) "(f-tQ') 3 ry(r(Q')) fur each quadruple Q' : (o',b',c',d') in fXs with

{o',d'} C f A.
Then f is 41-QM rel A with q1 depending only on 11.

Proof, In view of 5.4.1, the proof is an obvious modification of the proof of
5.7. a

5.9. Theorem. Suppose that X and Y are bounded spaces, that A C X,
andthat f:X + Y isd-QMrel ä. Suppose aJsothat Å ) 0, zt e X and
z2rzs e A are sucl: tåat

lr,-zil 2d,(X)l^,, lf ,; - f ,il 2 d(Y)l^

forilj.Then:
(1) ?åere is a homeomorpåism p: pe,^: [0, -) --+ [0, m) such that

lf* - fvl < pf l",,;=yl)
d(Y) --\ d(x) /

forallxeA,AeX.
(2) f is a-QS rcl A with q : qe,^.



276

Proof. The part (1) is proved as the absolute case [Vä1, 2.1]. In the part
(2), we must replace the proof of the absolute case [Vä1, 3.12] by the following
argument:

We may assume that / is a homeomorphism and that f-r:Y '-+ X is 0-

QM rel f A. We normalize the situation so that d(X) : d(Y) : ) replacing the
metric l"-bl of X by Ala-blld(X) and similarly in Y. By (1), there is a
homeomorphism g : ge,^: [0, *) --r [0, m) such that

p-' (l*- vl) < lf* - fvl s e(1" - vl)

forall ae A,VeX.
Supposethat 7:(a,a,ö) is atriplein (X,A). Since,f-1 i. d-QM rcL f A,

it follows from 5.7 that it suffi.ces to find an estimate

(5.10)

for some increasing rl : ne,^: [0, *) ---+ [0, oo). Since lr, - ,rl ) 1, we may assume
that lo - ,rl) 712. We consider three cases.

CaseL. l"-rl> 1l4.Now lö-cl /tl+p@). Since b e A or x e A, wehave

lfb - l*l ) p-'(t1+p1r1), and hence (5.10) is true with a(l) : 
^le-|(114t).Case2. lb- rrl > 1/8. Now lfb- f ,rl> p-'(tl8). The quadruple Q:

(r,a,b,z2) is in (X,.4), and ,(Q) S»,p(T). Since ,(fQ) > p-'Gl8)p(fT)/^,
we obtain (5.10) with

rtr,) : ^t!?^!.), .'\ / g-r1ll)
Case 3. lo - *l < 714 and lö - ,r141/8. Now

lb-"1 > lo- zzl-la-rl-lrr-bl > 1/8.

Hence lfb - f"l > p-r\l8), which implies (5.10) with the constant function
n(t): \le-tQl$. o

5.11. Theorem. Suppose that G and G' are bounded domains and that
c 2 1. Suppose aJso that rs € G and x| € Gt are points with

d(c) S c6(r6), d,(G') < c6'(i).

Let f:G -.d be a homeomorphism such that f *o : r'o and fG : Gt . If f is
d-QM rel 0G, then f is r7-QS rel 0G with r7 : \0,c.

Jussi VäisåLå
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proof. The proof of the absolute case in R", [vä1, 3.14] needs only slight

modifications. Write zt: no,, M : d(G): d()G), Mt : d(Gt): d(AG')'
Choose points 22,23 e äG with lrr- rrl> Mlz' It suffices to show that the

conditions of Theorem 5.9 hold with some .\ : )(0, c). Since

lr, - ,rl2 6(co) 2. Mlc, lr, - ,rl2 Ml", lr, - ,rl> M12,

the first condition of 5.9 is true with Å : cY 2. For 7 - 2,3 we have

lf ,i - f al> 6'(rL)2 M'1",

and it remains to find an upper bound for Mtllf zz - f al.
Choose z+ e 0G with lf za- f ,rl> M'13. The quadruple Q : (22,21,ft,24)

is in (G,äG), and r(Q) S 2c. Since

Sclf z2 - f ,sl

and since / is d-QM rel äG, we obtain

M'
lI; _jA < 3c0(2c). o

6. Uniform domains

6.L. Introduction to Section 6. Uniform domains in .R" were introduced by
Martio and Sarvas [MS] in 1979. A related concept was independently studied by
Jones [Jo], and the equivalence of these two approaches was proved in [GO]. In
this section we shall consider uniform domains in a Banach space. The definition
will be given in terms of length cigars, and alternative characterizations are given

in terms of the QH metric.

6.2. Cigars. Let 1C .E be an arc with endpoints o, ö. For r € 7 we set

oa(r) : d(tla,rl) n d(7[c, ö]).

If 7 is rectifiable, we also define the function

Qr(r) : l(1la,,xl) n I(z[2, öl).

For c ) 1, the sets

cila?,") : u{B(,,e0(")1") : x e "Y \ {",å}i,
cigr(z, c) : u{B(r, sr@)1") : t € 1\ {o, å}}

are the diameter c-cigar and the length c-cigar, respectively, with core 7. The
length cigar is only defined for a rectifiable 7.

Mt
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6.3. Uniform domains. Let c ) 1. A domain G C E is a c-uniform domain
if each pair o, b e G can be joined by a rectifiable arc 7 satisfying the following
uniformity conditions:
(1) cigl(7, c) c G,
(z) t(t) < cla - bl.
We call (1) the cigar condition and (2) the turning condition. Observe that (1)
can be rewritten as

(1') pr(") <c6(a)
forall 0e.y.

In .R" one can also characterize the uniform domains by diameter cigars and
the so-called distance cigars, cf. [MS] and [Vä2]. This is no longer true in the
general case. For example, the broken tube of 1.4.12 is not a uniform domain
although one can show that there is c > L such that each pair arb e G can be
joined by an arc 7 such that cig4(7,c) C G and d(7) < cla - bl.

We first give examples of uniform domains. A simple lemma is needed:

ly - "l>- lv - zl - lz- cl : 2a - (L- lrl) ) a. o

6.5. Theorem. .Fbr ao e E and r ) 0, the domains B(*o,r), B(rs,") \ {ro}
and E \ {ro} te c-uniform with a universal c.

6.4. Lemma. If U,z € ,S(1), then

Proof. Let n € 10, ,1 and set a -

Proof. We may assume that fis - 0 and r - 1.
G - B(L) \ {0}. Suppose that a,b € G, a * b, l"l
can be joined by an arc I satisfyirrg the uniformity

We first consider the domain

conditions in G. Setting

lo, - bollaas-allol, bs-bllbl, t:

we have 0 <, S Ll2. We consider two cases.

Case l. lål < 1 - t. Set a1 : lblas and apply 2.2 to find an arc J1 C S(läl)
joining 01 arrd ö with I(Zr) < 2lor-61 :8rlä1. Weshowthat 7:.ft1)[a1,a] has
the desired properties.

IfaeTl,then

p{r)S,(zr)s8rlå1,

and hence et(x) < 8(, v läl)6(o) < 86(c). If c € [o1,a] o B(Llz), then
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If r e [or,o]\ B(Llz), then

or(c) < lo - *l< 1 - lcl : 6(r).

Hence the cigar condition holds with c : 8.
If 

f 
o1 - bl < zla - a1l, then

I(z) < lla - a1l : 5(lrl - 16l) < 5lo- bl.

If lo1 - bl > zla - 01l , then

,(,y) < 5la1-bl/2, l"-bl ) lr, - bl-1"-rrl> la1-bll2,

and we obtain in both cases the turning condition with c : 5.

Case2. 16l > 1-f . Set o1 : (1 -t)oo, bL: (1 -r)å0, and join the points
at) bt with an arc ^tr C,S(1 -l) with ,(Zr) < 2lor- 6rl :8r(1 -r) < 8t. We
show that 1 : la,ar] U 7r U [år,ä] is the desired arc. If a e la,,o1l U [å,ä1], then
er(c) a 6(r). If * € tr, then

Q{a) < lo - orl + /(,rr) < t + 8, : 96(c),

and we obtain the cigar condition with c : 9.
By 6.4 we have

l" - bl: lollao - bll"ll > 21"1t > t,

which yields the turning condition

I(z) < lrl - 1+r+8r+ lål - 1 +, < 10t < 10lo-61.

Hence the domain B(1) \ {0} is 10-uniform. The case G : E \ {ro} follows
immediately from this. For G : B(1) it suffices to observe that the line segment

[0, c] satisfies for all r e G uniformity conditions with c : 1. o

6.6. Other examples. Suppose that ? is a closed affine proper subspace of E.
If codim T ) 2, E\? is adomain. If codim T:1, E\? consistsof two domains
called half spaces. All these domains are c-uniform with universal c. The case
? : {co} is contained in 6.5. The proof of the general case is contained in [Al].
In fact, c ca,n be chosen to be any number greater than 2.

If G and D are c-uniformdomainswith G C D, then GnD is a c1-uniform
domain with c1 = cr(c). In the case E:.8" this is essentially Theorem 5.4 of
[Vär]. In the general case, the proof needs some modification; for example, the
distance cigars must be replaced by length cigars. A detailed proof is in [Al]. A
direct proof for the case D: E\ {cs} is sketched in 6.7 below.

More examples can be obtained by auxiliary maps. We show in 6.26 that if
G is c-uniformand f:G--+ G' ?-QM,then G'is c1-uniformwith c1:c1(c,q).
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6.7. Lemma. Suppose that G is a c-uniform domain andthat xs e G.
Then Go: G \ {rs} is cs-uniform with cs: co(c).

Proof. We may assume that os :0 and 6(zs) : 1. Let a,b € Gs, a * b.
We describe how to construct an arc 76 from a to b satisfying the uniformity
conditions in Go. We consider 3 cases.

Case L. lrl < 1 a,nd läl < 1. This case follows from 6.5.

Case2. lal> 112 and lål > l/2.Join a to ä with a,n arc 7 satisfying the
uniformity conditions in G. If 0 d cigl(?,3c), choose lo:.f . If 0 € cigl(7,3c)
it is easy to see that 7 meets S(1/2). Orient 7 from a to b, and choose the first
point a1 a^nd the Iast point fu of. t h 5(112). Apply 2.2 to choose an arc a
joining 01 and fu in 5(712) with /(") < 2lor- ä11. Then

7o - ^rfo,,or] u o u1[br, b] .

Case3. lal<112 and löl ) 1. Let 7 and å1 beasinCase2. Weobtain 7s
by replacing lla,br) by the union of an arc in s(lal) and a radial segment from
s(l,l) to s(L12). o

6.8. Otåer approaehes to uniformity. For r,a e G + E, the numbers

rc(r, y)- ,17 - Y\
(r) 

^ 
6(y) '

ic(*,y) - In (t + rG(r,il)

are the relative distance and the Jones distance between u and y in G, respec-
tively. We shall often abbreviate j : jc, j' : jc,. Slightly different but es-
sentially equivalent versions of jc have been considered by Jones [Jo] and by
Gehring-Osgood [GO]; the present expression is due to Vuorinen [V"r]. By L2.2
we always have

ic(r,Y1 < kc(r,v).

The uniform domains in .R" can be characterized by inequalities in the opposite
direction. Indeed, either of the conditions

k6 I ,jc + d

is quantitatively equivalent to c-uniformityl see [GO], [Vu1, 2.b0(2)] and [Ge,
Theorem 6]. A free version of this result is given in 6.1.6.

we also consider a generalization of the inequality &6 I "jc, suggested by
Vuorinen [Vu1,2.49] . Let $: [0,*) - [0,oo) be a homeomorphism. A domain
G + E is called quasihyperbolically tfs-uniform, or briefly QH r/-uniform, if
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for all a,,y e G. For the function ,b(t) : cln(1 * r) this gives the inequality
lc6 1 cj6. A somewhat surprising fact is that for a large class of functions ry' , this is

no generalization at all. More precisely, let us call a homeomorphism r/: [0, ca) -*
[0,*) slow if ,lr(t)lt -r 0 as t -+ oo. The function ,lr(t): cln(1 *t) is clearly
slow. We shall prove that QH ry'-uniformity with a slow ry' quantitatively implies
the condition lc6 1"jc.

We start with results dealing with coarse length in uniform domains. They are

needed in the proof of.6.22, which is useful in Section 7. To prove the equivalences

described above, we only need the case ä: 0 of these results. Recall that an arc

is (c,ä)-solid if it is ä-coarsely c-quasiconvex in the QH metric of G. Roughly
speaking, we show that a solid arc cannot travel long distances near the boundary
of a uniform domain.

6.9. Lemma. Suppose that G I E and that 1 is an arc in Gll(AG +B(r))
with endpoints as,a1 such that 6(46) n 6("r) > rf c1. Suppose aIso that G is QH
r! -uniform with a slow tlt .

(1) If 1 is (c,h)-solid, then d(1) I M1(c,h,c1,rf.t)r.
(2) If 1 is a c-neargeodesic, then ,(f) S Mr(",ct,rb)r.

Proof. To prove (1) we set l: d(l)/, and look for an upper bound t 1Mr.
The solidity and uniformity conditions give

If. al:@fi) t h,we can choose Mr: tlt-t(hlc)1c1. lf. ct!(cfi) > h, then 4.5 gives

d@) 3 M(h)crt;@1t)r, and hence

7 < M(h)ccr'bk\t) .'ht

Since ty' is slow, this yields the desired bound t 1M1(c,h,"t,rlr).
To prove (2) we set f : l(l)1,. An easy modification of the argument above

gives

71cc1
ctt

and hence t I M1(c,"t,,rlr). o

6.10. Lemma. Suppose that G is a QH r!-uniform domain with a slow tlt.
Suppose also that 1 is an arc in G n (AG + B(r)) .

(1) If 7 is (c, h)-solid, then d(1) I M2(c,h,rb)r.
(2) If 7 is a c-neargeodesic, then l(l) I M2(c,$)r.
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Proof. Replacing r by a smaller number we may assume that 6(a6) > r/2
for some ao e 1. Dividing 7 to two subarcs we may further assume that o6 is an
endpoint of 7. Choose successive points aL,tazt... of 7 such that o; is the last
point of 7 with 6("i) > 2-ir. The sequence (a;) may be finite or infinite. Set

% : T lai-t, a;]. In the part (1) we obtain from 6.9(1)

d(t ) 3 Mr(c,, h,2, rl)r f 2i -r,,

and hence d(l) < 2Mrr. The part (2) follows similarly from 6.g(2). o

6.11. Lemma. For every slow $ and for aJI c ) l, h ) 0 there is a
number 8 : e(c,h,rlr) e (0,1) witå the following property: Suppose that G
is a QH rlt-uniform domain and that 7 is a (c,h)-solid arc starting at xs ar,d
containing a point x with 6(r) < q6(ao). Then for 1,: I \ .ylro,o) we have
d(t") < Ms(",h,r!)6(x). If h : 0, then l(t) < Ms(",r06(r).

Proof. Let Mz : Mz(",h,$) be the constant given by 6.10. We show that
one can choose

q : exp l-z(nv cg(tutr))1.

Let 1,cs,r satisfy the conditions of 6.11 with this g. Setting ,:6(")lq we have
r < 6(rs). It suffices to show that 7, C AG +B(r), since then 6.10 gives the
result with Ms : Mz lq.

Assume that 7, (. 0G +B(r). Let o2 be the first point of 7, with 6(x2) : 7 .

Since 6(e6) ) r, we can choose the last point c1 of. 1fxs,c] with 6(21) :7. Then
for o : llxtrrz) we have

lx(llrr,*l,h) < le(o,h) 1 clc(q,*r) 1"r1,(lr, - *rllr) < c$(d(a)lr).
By 6.10 we have d(") 3 M2r. Using T.2.2 arrd 4.9(S) we obtain

rr, (r + #l I k@1,x) < k(1lx,, rl) S hv a/t(M2): *,r 1.'2q
On the other hand, we have

l*, - *l) 6(c1) - 6(r) : (1 - s)r,
which gives the contradiction

r,(r+ l"-'l) >h1.o\grlq
6.12. Theorem. suppose that G is a QH tl: -uniforrn domain with a slow {t

and that 1 c G is a c-nea.rgeodesic with endpoints as and a1 . Then 7 satisrles
the uniformity conditions
(1) cig;(7, cr) c G,
(z) t(t) ( cl las - arl,
where q depends only on c and $.



Free quasiconformality in Banach spaces II 283

Proo{. Choose q€l suchthat 6(cs) ismaximal. Let q- g(",0,r/) bethe
number given by 6.11. If x e lfas,rs] and 6(r) < q6(rr), then 6.11 implies

I (tlao, rl) < M3(c, rD6(").

If r € ,ylao,rol and 6(c) > C6(oo), then 6.10 with r r+ 6(os) yields

t(tloo,fl) S Mz(c, d)6("0) ! (M21il6(x).

Considering similarly the arc llar,xl we conclude that (1) is true with c1(c,ry') :
Ms v (M21il.

To prove (2) write t: lao - rrl. We may assume that 6(o6) ! 6(a1). We
consider two cases.

Casel.6(oo) <1. Wemayassumethat /(,y) > 2t. Choosepoints äo and år
of 7 such that

l(tlao,aol) : t : l(tla1 bl).
BV (t) we have I < c16(åe) and f ( c16(å1). Hence

'c(bo,ar;5 
låo - "1+ 

l"; "'l+ { 3cr,
t 1",

and hence

(6.13) fu(åg, ä1) < t$.r).
For each r e 1lbs,å1] we have

&(r,å6) < I*(z[år, *1) < lu(z[å.,år]) l ck(bs,b) < cg(3c).

By I.2.2 this yields

l, - bol < 6(ås)(e"'P1acr) - 1).

since 
d(åo) < 6(as) * lro - äol < d(oo) +t <zt,

we obtain
6(r) < 6(å0) + l, - åol < 21"c$(scr) : Mlc,,rb)t.

Integration along 7[ås,ä1] gives

ck(bs,ör) > Ir(,r,[ö0,är]) , t(tW*r!l) 
.

By (6.13) this implies
l(tlbo,ärl) < M5(c, lt)t.

Hence (2) holds with c1 replaced by Ms +2.
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Case 2. 6(os) : r ) t. This case makes no use of the QH uniformity of G.
Since 6(a1) ) r, we have 6(z) > rl2 for all x €las,o1]. Integration along this
line segment yields

(6.14) k(as,,a1) < Zt/r.

Let a: [0,,\] + 7 be the arc-length parametrization of 7 with Å : /(Z) and
a(0) : as. Since

6(a(s)) < 6("0) * l"o - o(r)l < r *s,
we obtain

tx(i:/^(fu ,- 
l,^ *:r"(r+l).

Since 7 is a c-neargeodesic, this and (6.14) imply

u,(r+l).?{.\ r/ - r

Setting u: rlt we obtain
\lt:u(e2"1" -!).

Since u ) 1 and since the right-hand side is bounded for u ) 1, this implies (2).

6.15. Lemma. Suppo se that a,b e G I E. Then the following "orditir:"are quantit atively equivalent :

(1) e(o,b) ! cj(a,b), c) 1.
(2) k(a,b) < cj(a,b) + d, c) l, d > 0.

Proof. Trivially (1) implies (2). Assume that (2) holds, and set , : ,c(a,b).
Suppose first that r < L/2. Since now rln2 l ln(1 * r), 1.2.5 implies

k(a,b) i-2r 1{i@,u).

Next assume that r > 1/2. Then j(",b) > ln(3/2), and hence

k(a,b) - d

@<c*rtryo
6.16. Theorem. For a domain G + E, the following conditions are quanti-

tatively equivalent:
(1) G is c-unifonn,
(2) kc l cjc,
(3) ec S cjc * d,
(4) G is QH $-uniform with a slow tlt.
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Proof. By 6.15, (3) implies (2). Since the function ,h(t) : cln(1 + t) is

slow, (2) clearly implies (a). The implication (4) + (1) follows from 6.12 and 3.3.

Finally, the implication (1) + (3) can be proved with obvious modifications as in
the case E : R' [GO, Theorem 1]. Observe that [GO] uses a slightly different
version of the Jones distance, call it j[(4, ä), but one has always ib 3 jc < 2iå. "

6.L7. Rema,rk Inspection of the proofs shows that one can replace the slow-

ness condition in 6.16 by the weaker condition

(6.18)
t*oo^ t

Indeed, assume that (a) of 6.16 holds with such ry'. Set c - cL: u-1la. Thus
c and c1 depend only on ry'. Since cclu - vrlz ( 1, the proof of 6.9(2) is

valid with these c and c1, and we get M1 : Mr(t). In the proof of 6.10(2) we

replacetheconditions 6(o;) )-2-ir by 6(oi) ) cltr andobtain r(Z) < M2r with
Mz: tulr(L - "r 

t)-t : Mz(rh). Then the case h: A of 6.11 is also true with
these ry' and c giving g and M3 depending on ,lt. lf follows that the proof of
6.12 is valid with these ry' and c giving a number q: cr($), which shouid not
be confused with the number c1 : 11-r/4 above. Since each pair of points in G
can be joined by a c-neargeodesic by 3.3, G is c1-uniform.

The condition (6.18) is sharp in the sense that it cannot be replaced by u ( L.

tr'or example, each convex domain is QH r/-uniform with r/'(t) : t, but a parallel
strip in E2 is not a uniform domain.

From 6.12 and 6.16 we immediately get the following result, which in the case

E : Rn - E' , cr : 1 is given by [GO, Corollary 2, p. 59]:

6.19. Theorem. Suppose that G I E is a c-uniform domain and that 1
is a c1 -neargeodesic in G with endpoints o6, a1 . Then there is c2 : c2(c,rt) , 1

such that
(1) cigl(7, cz) C G,
(z) t(t) I c2las - o,l. o

6.20. RemarJr. Theorem 6.19 means that in a uniform domain, any near-
geodesic is the core of a length cigar satisfying the uniformity conditions. We shall
next prove a coarse version of this, replaciug the neargeodesic by a solid arc and
length by diameter. Both results will be needed in the proofs of 7.3 and 7.9. An
auxiliary result is needed:

6.2L. Lemma. Suppose that G I E and that 1 is a (c, h)-solid arc in
G with endpoints oe,o1 sucir that 6(as) A 6(o1) : r ) loo - orl. Then there is
cz: cz(c) 2 1 sucå tåat

d(t) S czlao - allv zr(eh - 1).
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Proof. We may assume that
integrating along loo, or) we get
suffices to find an estimate

Jussi VäisäJä

l* - ool I czty r(eh - t)

for an arbitrary x e l.
lf. lc(a,ro) < ä, then I.2.2 gives l, - ool I r(eh - 1). Suppose that k(x,an)

2 ä. Choose successive points do : oot... rtn : x of ,y, n ) 1, such that

h { lt(x;-r,ai) (-2h

for all j. Then
nh l lp(1,h) I ck(as,a1) < 2ctf r.

This implies lc(x,an) < 2nh I 4ctf r, and hence

l* - ool< 6(as)(e&(x,do) - L) < r(rad/' - 1).

Setting u: r/t we have u ) 1 and

l*-ool/t<u1e+'/"-1).
Since the right-hand side is bounded for u ) 1, the lemma follows. o

6.22. Theorem. Suppose that 7 C G + E is a (c,h) -solid arc
points asral and that G is a c1-uniform domain. Then there is c2 :) 1 such that for r:6(ao) A 6(o1) we have

with end-
cz(c, h, rt)

(1) ciga(7, cz) C G,
(z) d(i < cz(lao - o, I V zr(eh - t)) .

Proof. Choose xo € ^t for which 6(rs) is maximal. For (1) it suffices to find
c2 : c2(crä, c1) such that

(6.23) d(t [oo,r]) S c26(r)

forall c€y[as,xs).
By 6.16 G is QH ry'-uniform with a slow ry' depending only on c1. Let

q: .q(:,|,d) e (0,1) be the number given by 6.11- If dG) j q6(r6i, then
(6.23) follows from 6.11. If 6(c) > q6(xo), we apply 6.10 wirh the subs[itution
r å 6(as), 1 å -y[ao,x7. We obtain

d(t[ao, f) < M2(c, h, rb)6 (rs),

and hence (6.23) holds with cz: Mz/q.
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Toprove(2)sett:l,o-o,l.WemayaSSumethat6(",)>

points aotut e I such that d(llor,yi)) - t for i: L,2. By (1) we

6(v;) > d(tl",,ui) I ", 
: t / cz.
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6("0) - r and
r < t. Choose
have

Since

lyo - yrl < lyo - rol* loo - orl* lor - yrl < 3t,

and since G is QH t/-uniform, this implies

By 4.3(5) and by the (c, ä)-solidity of 7 we get

k(tlvo,vrl) S hv h(1fvs,vr),h) < hv 
"k(vo,vt) 

< hv crlt(lc2) : cs(c,h,"t).

Hence llyo,Vr) is contained in the QH ball B*(yo, cs). By L2.2 this implies that
'r c B(yo,,.R) with

E : 6(yoXe"" - 1) +t . (r * loo -Uol)(e"" - 1)+ t I 2tecs -t.

This implies (2) with c2 replaced by 4e"" -2. a

6.24. Quasimöbius invariance. In the basic paper [MS, 2.15], Martio and
Sarvas proved that QC maps /: Rn -+ .B' preserve the class of uniform domains.
A different proof was given in [GO, Corolla,ry 3, p. 65]. More generally, uniformity
is preserved by QM maps /: G -- Gt of domains in .8". This is obtained by
modifying the proofs mentioned above or by using the characterization of uniform
domains in terms of cross ratios, given by Martio [Ma]. The latter method was
extended by the author [Väl, 4.11] to a large class of spaces including all Banach
spaces. However, the definition of a uniform domain in [Vä1]is not equivalent to
the definition of the present paper in infinite-dimensional spaces. We shall next
use the ideas of [GO] to prove the QM invariance of uniform domains in Banach
spaces. For the notation of the following lemma, see 6.8.

6.25. Lemma. Suppose that G * E, G' + E' and that f : G --+ G' is an
,f -QM homeomorpåism. ?åen

j'(f o,/ä) S Mj(o,b) + C

for all a,b e G with M and C depending only on r7.
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Proof. We first consider two special cases.

Case 1. 0 ( G and / is the restriction of the inversion u(r) : */l*l'.
Let arb e G and set r : rc(q;b), r' - rc,(uarub). We may assume that
6'(ua) < 6'(ub). Choose x e 0G such that lux - ual < 26'(ua). By [Vä1, (1.7)]
we obtain

lua-ubl -781a-öllrl
6'("") > 

l, - "lläl 
'

Together with the inequalities

lrl Slr-@l +lo-öl +lö1, lr-"1>6(o), lål >6(å)

this yields

r' < 18lo - 4(tä . Jå#. #) < 18(2r +")'

Hence L*r'( 18(1+r)2, and we obtain the lemmawith M :2, C:lnl,8.
Case 2. / is 7-QS. Now / extends to an 4-QS homeomorphism ]: G -rd .

Let a,b e G, and choose a € 0G with l/o -T.l <26'(f a). Setting r : rc(o,b)
we obtain

%# *##<,,(H) s2,1,1

Since G is connected, [TVl ,3.12) implies that one ca.n choose 4 to be of the form
q(t): Cr.(t'vl/'), Cr) 1, a ) 1. Since we may assume that 6'(/o) < 6'(.få),
we obtain

r6,(f a, f b) < 2C{r' v ,'/').
If r(l,thenthelemmaholdswith M:0, C:1n(1 +2Ct). lf.r )1,then
1+ro < (1 +r)o, and thus we can chose M : ot, C:lt2Cr.

The general case is reduced to the special cases as follows: First extend / to
an 7-QM embedding j,G - å' applying [Vär, 3.1g], where the misprinted, f A
should be:eplaced bv TÄ.By auxiliary tra^nslations we may assume that 0 € aG
and that /(0) is either 0 or oo. Furthermore, we can use auxiliary inversions and
Case l to normalize the map so that q e 0G and /(m) : oo. Then / is 7-QS,
and the result follows from Case 2. o

6.26. Theorem. Suppose that f : G -- G' is an r1-QM.homeomorphism and
that G is a c-uniform domain. Then Gt is c1-uniform with c1: ct(crq).

Proof. lf. G:.8, then G' : Etby [Vä1 ,p.226) or, alternatively, byI.5.1B
arrd I.5.18. We may thus assume that G + E, G' * E' . By I.b.18 and by 4.14,
there are M > I and C ) 0 depending only on 7 such that

k'(f o, f b) S Mk(o,b) + C
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for all arb e G . Applyittg 6.25 to 7-t we can write
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j(",b) 3 Mtj'(f o, f b) + Cr

with M1,C1 depending only on ?. By 6.16, we have lc l csj with cs : co(c).

These inequalities imply

k'(fo,/ä) < Mcsj(a,b)+C l MMlcsj'(f ",fb)* McsC11Q,,

and the theorem follows from 6.16. o

6.27. Endcuts. Recall from 3.6 that an endcut of a domain G is a half open
arc 7C G suchthat f is aclosedarcwithoneendpointin äG. If G* -8, the

QH diameter k(7) of an endcut is always infinite. We next show that the converse
is true for solid .r"s in uniform domains:

6.28. Theorem. Suppose that 1 is a half open solid arc in a uniform domain
G + E and that &(r) = m. ?åen 1 is an endcut of G. If 1 is also aneargeodesic,
then either 1 converges to m or 7 is rectifiable.

Proof. Assumethat G is QH ry'-uniformwithaslow ry' andthat 7 is (c,h)-
solid in G. Since k(l) : oo, we have 16(7, ä) : oo. We may assume that 7 starts
at the origin and that 7 does not converge to oo. For o € 7 write Z, : 7\t[0,z).
Thereis .R> 0 suchthat B(.8) meets 1,for every o € 7. If z e JcnB(.R), then

t*(r[o, ,1,,h) < ck(o,2)= "d(m*Ar)

Since I1(7, ä) = -, this implie" d(1,äG) : g.

Let e > 0. To prove that 7 is an endcut it suffices to find c € 7 with
d(1,) < e. Let q:q(c,h,$) and M3 - Mt(c,h,t!) be the numbers given by
6.11. Choose o € 7 such that

6(r) S q6(0) A(elMs).

Then 6.11 gives d(7,) ! Ms6(x) < e.
In the case h:0, 6.11 yields l(1,) < Ms6(a) ( oo for af,ry o satisfying the

inequality above. Hence 7 is rectifiable. o
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7. Boundary behavior

7.1. Introduction to Section 7. This section deals mainly with the boundary
properties of homeomorphisms f: G + G' between uniform domains. We show
that if / is CQH, it can be extended to a homeomorphism /: G -, d, which is
QM rel 0G in the norm metric. In the special case where / is FeC, ] i. qU i'
the whole G. Thes" results are quantitative.

Muny of the results are new also in the classical case E : Et = -R" . In the
case where G and G' are half spaces of 8", V.A. Efremovich and E.S. Tihomirova
[ET] proved in 1964 that a solid map f : G ---+ G, extends to a homeomorphism
f : G + G', and D.A. De-spiller [DS] proved in 1920 that the induced map äG +
äG' is quasiconformal. De-Spiller also proved that conversely, each quasiconformal
map of J?'-1 can be extended to a homeomorphism of E,-1 x [0, -) which is
solid in the open half space. We shall construct the corresponding extension from
a Banach space .E to .E x [0, -) in 7.26. A reflection principle is given in 2.85.

7.2. Terminology. suppose that G is a domain in E and that /: G -+ Et is
a map. The cluster set of f at a point c6 € äG is defined as

clus (/, ro) : ncl/[t/ n G]

over all neighborhoods [/ of rs in å. Equivalentlg a point y e b, belongs to
clus(/,c6) if and only if there is a sequence of points ai e G such that *i 1*o
ard fti + y.

In the general case, the cluster set may be empty even if / is an Fec map
onto a domain G'; see I.4.72.

We next prove the crucial lemma of the paper. Its proof makes effective use
of the theory of the preceding sections: the existen"" of ,r"*geod.esics, the CeH
invariance of solid arcs, and the length cigar and diameter cigar theore*, io,
uniform domains.

7.3. F\rndamental lemma. Suppose that G I E and G, * E, a,re un_
bounded c-uniform domains and that f: G --+ Gt is (M,c)-ceir witå m €
clus(/,oo). tet t,a,b bepoints in G sucå that la-rl < lb'-*l and k(b,a)>
2C v L/2. Then

lfo-frl<Hlfb-fl
with H : H(M,C,c).

Ptoof. By auxiliary similarities we normalize the situation so that s : 0,
f:-0: lål =1:l/ö1. Then lol <l andwemustfindanupperbound lf"lAHwith If depending only on u : (M,C,c).

We first show that

(7.4)

Jussi Väisälä
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since this is trivial if 6,(0) ! 2, we may assume that 6',(0) > 2. Then I.2.5 gives

If C S 114, w€ have

If C > L 14, then k(0, å) > 2C, and hence

h'(o,fb)>clM > 714M,

which thus holds in all cases. By (7.5) this gives (7.4).
In what follows, we let cttczt... denote constants depending only on ,. Ap-

plying 6.19 we first choose cr 2 1 such that the uniformity conditions hold with
this cr for every 2-neargeodesic in G and it Gt . Since oo € clus (/, *), we car]

choose y e G such that lyl >- 2 and l/yl 2 lf "1. By 3.3 we can choose a 2-

neargeodesic o' in G' joining /o and fy. Let z bea point of a' with minimal
norm. Then

l, - f"l ^ 
l, - fal2 lf"l - lrl.

Since cigl(o',cr) C G',we obtain

c16'(z)2lfol-lrl.

Since (7.4) gives
6'(r) < 6'(0) + lzl < 8M *lzl,

this implies
2c1lzl >- lf "l - 8c1M.

We may assume thai l/ol ) l6c1M , since otherwise there is nothing to prove.
Then 2c1lzl>-lfallZ, and thus

(7.5)

(7.6)

(7.7)

k'(0, fb) < 2lfbl16'(o) - 2 I 6'(o).

lf "l < 4"1d(0 ,o').

Choose a 2-neargeodesic B' in G' joining 0 and fb. By 4.15, the arcs o :
f-ra' arrd P: f-r/' are (c2,ä)-solid in G with h: h(M,C). Hence, by 6.22,

there is ca ) 1 with
ciga(a,ca)u cigl(B,cs) C G.

Choosepoints aoe a and ås €f suchthat lasl:312 and lö6|1:L12. Then



292 Jussi Väisålå,

Applying once more 3.3 we join a6 and å6 with a 2-neargeodesic 7 in G.
Thencigl(7,cr)CGand

I(,y) S crlao-bsl< 2c1.

Forevery a €l wehave 6(c) ) lf 4c1ca. Indeed, if lc-o6lAl"-bsl <Lf 4cs,
this follows from (7.7), and otherwise from the condition cigl(7, c) c G. Hence

I*(.y) < 4qcsl(1) I 8c?rca - ca.

This implies &(as, bs) I ca and hence

k'(foo,/åo) < M"+ + C : cs.

Next observe that

(7.8) l/äol S t(p') < cllfbl: sr.

By (7.4) this implies

6'(fur) < 6'(0) + l/åol < 8M * cr : ca.

By 1.2.2 these estimates yield

lfoo -/äol < 6'(fbilek'(fao,Jäo) ! c6e"o : c7.

Together with (7.6) and (7.8) this gives the desired bound

lf "l S 4c1lf asl < 4c1(c1 * ct) : fI(u). o

7.9. Theorem. Suppose that G I E and G, + E, are c-uniform do-
mains and that f: G -+ Gt is (M,C)-CQH. Then f extends to a homeomor-
påism T:G -_d, andT is d-QM rel 0G with 0 dependingonly on (M,C,c).
In particular, T I AG is d-QM.

Proof. In the first part of the theorem, it suffices to show that / has a limit
at every point c6 e 0G. Indeed, then / has a continuous extension j:G +d .

By symmetryt g : /-1 extends to a continuous map p: d --G. Then clearly //
ar,d fg are identity maps, and thus / is a homeomorphism.

Performing an auxiliary inversion and recalling 6.26 and I.4.9, we may assume
that ro I a. suppose that / has no limit at co . By auxiliary similarities we
may assume that 0 € G, /(0):0, and 6(0):1:6,(0). For r ) 0 we set

D(r) : /[c n B(cs, r)].
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There is o ) 0 suchthat d(D(r)), o for all r ) 0, since otherwise / has a limit
at cs by the completeness of E' . Since oo is not a limit, there is J? ) a such

that the ball B(.8) meets D(r) for all r ) 0.
Let r > 0 and choose points t,A € G n B(rs,r) such that l/rl ( -B and

lf" - lyl > "12. Join c and y by a 2-neargeodesic 1 in G. By 4.15, f1
is (c1,Ir.)-solid in G' with (c1,h) depending only on (M,C). In what follows,
we let c2tcst... denote constants depending only on (M,C,c,a,R). We have

ciga(fl,c2)CGtby6.22. Choose zQ.l withlf ,-f*l:a/4. Then l/z -fvl>
af 4, an.d hence

(7.10) 6'(f ,) ) af 4c2.

Join0 ard fz bya2-neargeodesic B'hGt. Then6.19gives ca with

t(p') S cs lf ,1.cigr (g' , rr) C G' ,

Since 6'(0) : 1, this and (?.10) give a lower bound 6'(tr.,) ) \f ca for all u e P'
Hence

k'(0, f z) < l*(0') < 
"q,l(P') 

< cacalf zl.

Here

lfrl S lf , - frl + lf*l < al4 + R <2R.

Since f is

(7.11)

(M,C)-CQH, w€ obtain

k(0,2) S 2MRc+ct+C - c5.

On the other hand, 6.19 gives

,(t) S "rlr-yl12car.
Hence

6(r) <1, - *ol<lz - rl+lx - rol < l(t)+r I (2cs f 1)r: c6r.

By 1.2.2 this implies

In view "f (7.11), this gives a contradiction

morphic extension jrG -rG'
To prove the second part of the theorem,let Q - (a,b,c, d) be a quadruple in

G with a,d, e.0G. Since /-1 satisfies the same conditions as /, it follows from
5.8 that it suffices to find an estimate

c6T

for small r. Hence f has a homeo-

,ffQ) a 11 ("(q)
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for some increasing 7: [0,m) -- [0,oo) depending only orr u :_ (M,Crc). Per-
forming auxiliary inversions we may assume that d: oo and jd: a. Choose
sequences (r"),(6"),(c") in G converging to o,6,c, respectively such that the
points dn,bn,cn are distinct for each n. Set 7" : (an,br,cn). Since p(Tr):
la" - b"lllan - cnl -- r(Q) ard p(fT*) - r(f Q), it suffi.ces to find an estimate

(7.12)

with q - Tu. Setting Å

that

(7.13)

- 2C v ll2 and observirg that 6(or) * 0 we can assume

for each n.
Fix n and choose an arc 7 joining o,, and bn in G with /(7) I cla, - b.l.

Orient 7 so that o, is the first point. Set y6 : ctns and let At be the last point
of 7 with ly, -yol S 1"" -Vol. Proceeding inductively, we let Aj+t be the last
point of 7 with lyi+, - yil3lli - Aol, and we stop as soon as we obtain y, with
U" : bn. The process is finite, since 7 is compact and since lyi - yi_rl > 1", - yol
forall j <s- 1. Assumethat s ) 2. For 1< j < s-1 wehave

lyi - o,l ) lyr - aol: l"n - o*1.

By (7.13) and by I.2.2, this implies that k(yi,o.)).\ and lc(cn,a,) > ). By the
Fundamental lemma 7.3, there is ä : H(") > 1 such that

lfvr-fo"l<Hlf".-fo,l
and

lfyi+, - fvil < Hlfyi - fo,l
for 1( j <s- 1. These inequalitiesimply

lfyi+r-lo.l < (1+ä)l/yi-fa.l < (1+ H)ilfyr-fo.l < ä(1 +H)ilf",_fo.l
for0(j<s-l,andhence

lfb" - f o"l < H(t + H 'lf ", - f onl.

Clearly this is also true if s - 1 . Since

clon - ä"1 > l(t)
j:l

wehave s-1S cp(T"). Hence (7.L2) is truewith ry(t):ä(1 *H).t. o
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7.14. Theorem. Suppose that G and Gt a,re bounded c-uniform domains

and that ca ) 1, no e G, *L e Gt with d(G) < cs6(xs), d,(G') < cs6t(x'o).

Suppose alsothat f:G + G' is an (M,C)-CQHmapwith fq - t'o. Then f
extends to a homeomorpåism T, G -- G' , *rd ] is a -QS rcl 0G with 11 depending
only on (MrC,c,co).

Proof. This follows directly from 7.9 and 5.11. o

7.L5. Theorem. Suppose that f: B(1) --» B(1) is *, (M,C)-CQH map
between the unit balls of E and E' , and tåat /(0) : 0. Then f extends to a
homeomorphism j:B1t; --, A-(1), *rdf is a-QS rel 0B(1) with r7 depending
only on (M,C).

Proof. Since a ball is c-uniform with a universal c by 6.5, the theorem is a
corollary of 7.14. o

7.16. Theorem. Suppose that G and Gt are c-uniforrn domains and that
f : G --+ G' is g-FQC. Then f i" ,I-QM witå q depending only on g and c.

Proof. lf. G : E or Gt - E' , the result follows from I.5.13. Suppose that
G * E, G' + E'. By 7.9, / has a homeomorphic extension /:G.d. ln
view of 6.26, we can use auxiliary inversions to normalize the situation so that
q€0G and /(m): oo. Weshowthat / is r7-QSwith 17:rls,". Now G a,nd

G' are c-quasiconvex. By I.5.5, it suffices to show that / is weakly If -QS with
H : H(p,c).

Let c, a,b e G with lo- ol < lå-rl . By 4.'i..4, f is (M,1/4)-CQH with M
depending only on p. By 7.3, the desired inequality

(7.17) lf"- f,l!Hlfb- frl
holds with H : H(p,c) provided that k(å, x) > 712. Suppose that &(6, r) < 112.
Then I.2.2 gives

lb-"1 < Å6(r), ),:erl2 -1< 1.

Hence o and å are in the ball B : 8(r,,)6(o)). By I.5.10, f I B is ry-QS with
\ : rlv. Thus (7.L7) holds with ä : 7(1). o

7.18. Theorem. Suppose that G is a c-wiformdomaina,ndthat f : G --+ Gt
is rp-FQC. Then the following conditions are quantitatively equivilent:
(1) G' is q-uniform,
(2) f is r1-quasimöbius.

Proof. This follows from 7.16 a^nd 6.26. o

7.19. Questioir. Does 7.18 remain true if p-FQC is replaced by (M,C)-CQH
a,nd r7-QM by f -QM rel 0G?



296 Jussi Väisälå

7.20. Remarks. In Theorem 7.9 we showed that for maps between uniform
domains, CQH qua^ntitatively implies QM rel äG. The uniformity condition can
hardly be weakened. For example, conformal maps between non-uniform planar
domains may have rather bad boundary behavior.

We next turn to the converse of 7.9 and show irl,7.22 that for maps between
uniform domains, QM rel 0G quantitatively implies CQH. Here the uniformity
plays a less important role. In fact, we shall prove the result for domains which
are only QH r/-uniform. Recall from 6.8 that G is QH ry'-uniform if tl:: ll,m) -
[0, -) is a homeomorphism and if

for all a,b € G; here rc(a,b) - la
between a and b in G . For example, all
.b(t) - t.

In [Vä5] we shall prove the result for a larger class of domains including all
domains in .E".

7.2L. Lernma. suppose that 0 e G and that G is QH rlt-uniforrn. Let u
be the inversion u(a): *ll*|;2. Then uG is QH /r -uniform with l.t1 depending
only on rft.

Proof. Let arb e G and set r: r6(a,,b), r' : r6,(ua,uö), where G, : uG.
Applying Case 1 of the proof of 6.25 to the inverse map G, --+ G we obtain
r l Lg(2r, * r,r). By I.4.g, u is fully 36-QH. Thus

lc'(ua,ub) < 36k(a,b) < S6rlt(r) < 86/(18 (Zr, + ,,r)) : ,h(r,). ,

7.22. Theorem. suppose that G and G' are QH tf;-uniform domains and
that f :G -G' is a homeomorphism with f G : G' such that f is 7-eM rel 0G.
Then f I G is (M,C)-CQH with (M,C) depending only on 11 and g.

Proof. Performing auxiliary similarities we may assume that 0 € äG and
that /(0) is either 0 or m. In view of.7.21, we can use auxiliary inversions to
normalize the map so that a e 0G and /(oo) : oo. Then / is ?-QS rel 0G.

suppose that o, b e G with ,t(a, ö) < 1. By 4.8, it suffices to find an estimate

(7.23)

with Mo : Mo(ry,r/). W" may assume that 6'(fb) < 6'(f o). Choose x e 0G with
lf* - fbl <26'(fb). Then

bll(6(n) A 0(y)) is the relative distance
convex domains are QH r/ -uniform with

(7.24)



By I.2.2 we have

Free quasiconformality in Banach spaces II 297

Then, with the notation
F: tr -) H' such that

6( b)

Hence

By (7.24) this implies

la-öl +lb-"1
lb-"1

la-bl
6( ä)

r6,(f a, fb) < zq(a) *2,
which gives (7.23) with Mo : E(zrt(q + Z). o

7.25. Extension to a half space. For a Banach space .8, we consider the space

Et : E x 81 as a Banach space with the norm l(", t)l : lcl V ltl, and we identify
-E withthe subspace E x {0} of .Er. Let If be the half space E x (0,oo). Then
0H : E : E u {*}. For another Banach space E' we similarly define El and
ä'. The half spaces ä and H' are cg-uniform domains with a universal 

"o 
by

6.6. Suppose that F: H --+ ff is g-solid. Then .F extends to a homeomorphism

F:E -ri and induces an 4-QM homeomorphism /: b -- b'with r7 : Ts by
7.9.

We shall next show that conversely, every ry-QM homeomorphism /: b '- b'
can be extended to a homeomorphism F:H -- ff" ,r"h that the induced map
F; H + ä is g-solid with g : gq. In the case .E : Rn : .E', this was proved
by De-Spiller [DS] in 1970. In [TV2] we proved the stronger result that F can be
chosen to be QH and hence QC in Hn+r :.8" x (0, m). We do not know whether
this is true in the general case.

The construction of .F in the proof of.7.26 was used as a preliminary step in
[TV, ], and the solidity of F in the euclidean case can be proved by compact fam-
ilies of embeddings; see [TV3, 6.17] and [TV2, 2.13]. We shall give an elementary
but somewhat lengthy direct proof.

7.26. Theorem. Suppo se that f : E + Er it ,l-QM.
of 7.25 , there is an extension of f to a homeomorphism
F:H +Ht is g-solidwith?-?,t.

Proot.
?-QS in E.

(7.27)

Setting F(*) -F:H+Ht.We
oo we obtain an extension
show that T is the desired

By .n auxiliary inversion we may assume that /(m) : m. Then / is
Forre.Oandf)0weset

r(x,t) - sup {lfy - f*|, ly - *l S r},
F(r,t) _ (f *, r(r, ,)).

F, H - H' of f and its restriction
map.
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We first show that there are so : so(?) € (0,1/21and embeddings p,0: [0, ss]

-» [0, oo) with p(0) : A(0) : 0 depending only on 7, with the following property:
Let a6 : (co,ts) and o : (r,,t) be points in If with la-ool : sle, 0 ( s ( ss.
Then

(7.28) p(s) < lFa- laol < g(r).
r(ao) \ /

Suppose that os,a € H are as above, lo - ool : sfo, 0 ( s < ll2. Write
ro: r(ao), r: r(a). For c, ootoLt... we write y : ffr, yo: fxo, etc. Let z1
be an arbitrary point of S(a,t) C E. Choose nz €,S(c6,le) suchthat o2 lies on
the ray from rs through 11. Then either

lr, - *zl:lrz - col- lrr - rol( to -lq - rl+l* - *ol < to - t*lr - xsl

or

l*, - rrl : lrr -rol - lr, - *ol S lr, -ol + l, - *ol -ro < t-to *l* - *ol.

Hence in both cases

l*, - *rl < lt - rol + lo - usl < zsto.

By quasisymmetry we obtain

lvr-vl < lv, - yzl*lyz -yol* lyo -yl
s, (m) tr, - vzt t ro +, (#=*)wo - a,t

< r1(2s)rs * ro * r(r)ro ( ,o + 2q(2s)rs.

Since o1 € .9(c,t) is arbitrary, this implies

(7.2s) ry <zrtes).
Tg

This inequality holds for all pairs a6,a with lo - ool- sto. Changing the roles of
o and a6 gives

(7.30) ry < 2rt!stolt).
T

Now s <712 implies lt-tolSto/2, and hence to <Zt. From (2.2g) and (2.80)
we obtain

ro - r < 2a(as)(1 + zq(2s))rs : O(s)rs,

Jussi Våisålå
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where g(") - 2r1(ar) (1 * 2rt (2r)) . Hence

ffisr(f#) ar1(rtp,(')) ,

and hence

rs ,7(1 @: t,o(')'

Since lF" - ^F,rol 2 lV - Aol , this gives the first inequality "f (7.28).

Case 2. lr - ro I S pz(r)to . Since

299

(7.31)

whenever s < ll2.
On the other hand, since l* - *ol S l" - aol : sfo, we have

lf* - f*,1= r(m)V', - f*ol s r(")'o < 0(s)r6'

Hence the second inequality of (7.28) is true with this d and with so :L12.
We turn to the first inequality of (7.28). In what follows, we let pi:10,*) *

[0, *) denote homeomorphisms depending only on 4. Using the same notation
as above rve assume that os, a e H with la - ool :sf6, 0 ( s ( lf2. We may
assume that / and 1-t are r7-QS, replacing ,l(t) bv ,l(t) v ?-1(r-1)-1. Define

/,r and pz by

1 ), Pz(s) : 'l-'(4t(')) n :'l,r (s) : 
-rrp 

1 "1, 
rr (o) : 1

We consider two cases.

Case l. l, - rol > pz(s)to. Let aa be an arbitrary point of ^9(26,t6). Then

Tg

one of the inequalities

(7.32)

(7.33)

is true.

t>to(1 +s- pz(s)),

t < to(l - s + pz(s))
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Suppose first that (7.32) holds. Since p2(s) I sf 4, we have

l* - rol +to < uz(s)to*t - sto + p.2(s)to < t.

Hence B(*o,to) c B(r,t). Let as e S(oo,to) be arbitrary. Then us a^nd y belong
to f B(a,t). Hence there is Ua e f S(r,t) such that y5 e [y,ye]. Then

ffi< r(#+) < r@,(")) < p,(").

Since

l*, - rul 2 lr- xal-la-rol - l*o - rrl > t - pr(")fo -ro 2 (, - 2p,2(s))ts ) sts f2,

we have

E#=,(m) =,(:) 
:#

Since

, > lv -uel:ly -v"l* lyr - yol ) lys - yol- ly -vol*lys -yal,
these inequalities give

r-lys-yol rEl:_yul lv-yol - ,
tus - uol lvs - r.T - i;ä > tsr(s)'

since ly5 - yo I is arbitrarily close to r0 , we obtain the desired lower bound.

lFa - Faol, r - ro ) rz,(s).
Tg Tg -r^\/

Finally assume that (7.33) is true. Since

lr-rol *t< pr2(s)to *ro(t-r+pz(")) <ro(1 -s* sf2)<ts,

Yl.hu"" !(x,t) c B(c6,ts). Let 17 € ,S(u,t) be arbitrary. Since ys,y7 (
f B(*o,ts), there ir yr € "fS(ro,ts) such that y7 e [yo,ys]. Since

t ) ro - lt - ,ol Z ts - sfo ) fo f 2,

W,| a r7 (i=11 S rt (ry) { r7 (2r,,(,)) s *r (s)

we have
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lrr -*rl) lrr-rol-lro -rl-lr-*rl 2to

Consequently,

and hence

Choose ss € (0,112)

spaces II 301

uz(s)to - t 2 sts12 > stf 2.

ffi=,(ffi) =,(?) 
:;6

Since

ro 2 lve - vol = lv, - vol + lvr - wl> lv, - vl- lv -vrl * lve - uzl,

these inequalities yield
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T
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We have now proved (7.28) for all s ( ss .

From (7.28) it follows that .F' is continuous in If . If lz - ,o | ( t, then
r(x,t) 1r(rs,2f). Hence F is continuous in F. Furthermore, (7.28) implies that
F maps each ray {ro} x [0,*) homeomorphically onto the ray {f rs} x [0,oo).
From Lemma7.34 below it follows that .F' is a homeomorphism.

By (7.28), the homeomorphism F: H --+ H' is (0,ss)-relative in the sense of
I.3.6. If as,o,e I/ and lr- ool : sto with s ( se, then

lFo- Pool> p!)ro.

Since I7 is a homeomorphism, this implies that FB(as,sfe) contains the ball
B(Fas,p(")ro). Hence .t'-r is (d1,s1)-relativewith sr : p(sg),01 : pr-l. From
I.3.8 it follows that F is g-solid with g:pq.tr

7.34. Lemma. Suppose that X and Y are topological spaces and that
F: X x [0, *) ---+ Y x [0, -) is a continuous bijective map of the form F(r,t) :
(frrr(*,t)) where f: X -»Y isahomeomorpåism. ?åen F isahomeomorphism.
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Proof. Let os : (ro,ro) e X x [0,oo). We must show that F is open at
cs. supposefirstthat ts >0. Let w:u xv beaneighborhoodofas,where
[/ is open in X and to e V: (fr,rz) C [0,m). The map f e r(as,t) is a self
homeomorphism of [0,*). Choose numbers u1,u2 with

r(as,t1) ( u1 ( r(xs,tn) <u2 <r(xs,t2).

Since r is continuous, there is a neighborhood tL C tl of o6 such that o € Ur
implies r(u,tv) ( ur 3nd r(x,t2) ) u2. Since F maps the vertical segment {c} x(\,rr) onto {/r} x (r(a,t1),r(r,t2)), the set FW contains the neighbor-hood
fUt x (q,ur) of Fos.

The case to = 0 is proved by an obvious modification of the argument above.
tr

7.35. Reflection. The reflection principle in the eS theory of Rn enables us
to extend a K-QC map between balls or half spaces to a K-eC map of the whole
space .R'. We shall next present a free version of this idea. In fact, it turns out
that the principle follows easily from a general result on unions of eS maps.

suppose first that G and G' are unit balls of E and .E', respectively, and
that /: G-- G' is a g-FQC map with /(0) :0. Then / is 7-eM with 17 : q(p)
by 6.5 and 7.16. In particular, / extends to a homeomorphism j:G --d . rct
u and u' be the inversions x r+ xlplz oJ E and å', respectively. Then ure ca,n
extend j to uhomeomorphism /*: b -- it' by setting /*x': u,lux for r € ate.
We say that /* is obtained from / by reflection.

Next assume that G is a half space in E with o e 0G. This means that
aG\{m} isaclosedlinearsubspace T of. E of codimensionl. Let e € G be
a unit vector. Then .E is spanned by ? U {e}, and ihere is a unique linear map
u:E--+.8 suchthat u lT: id and ue:-e. wesaythat u isareflectionin
T . lf E is Hilbert space, lve can choose e to be orthogonal to T , and then u is
an isometry. In a Banach space, an isometric reflection does not always exist, but
for every M ) 3, there is an M-bilipschitz reflectionl see Lemma Z.B7 below. In
what follows, we assume that the reflections are 4-bilipschitz.

Supposethat G'is anotherhalf spacewith 0 €Tt: äG,\{m}.Let f: G -__+

G' be p-FQC. Again by uaiformity, f is 7-QM, q : rl(p), är,å 
"*t"rrä" to .

homeomorphism /: G - d. Suppose that /-(m) : -. U.irg reflections u and
u' in T and in ?', respectively, we extend f to u ho*eomorf,hism /*: b _, b,
with /*r : otfut for c € E \ G. we again say that /* is ottained from / by
reflection.

In both cases we have /*(oo) : *. Hence /* defines a homeomorphism
f*: E --+ E' . We want to show that this map is rp1-FeC with 91 : pr(g). Since
the inversions uru' and the reflections u,u' are rJs-eM with a universal ?0, the
T"pt /- lG and f. lE \G are,lr-QMwith a1 :rt{p). Since /.(*)': -,f. lG \ {*} is r71-QS in rhe r""or,å 

"ase, 
and f;-l n(a'[ ryr-eS in botir 

"u""r.
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From Lemma 7.38 below it follows that in the first case, /* | G is 42-QS with

nz : rtz(p). From a general result of QS theory, given as Theorem 7.39 below, it
followsthat /* is 43-QS with 43 :rtr(p). Thisimpliesthat /. is 91-FQCwith
W: p{V) by I.5.18, and we obtain the following result:

7.36. Theorem. (Reflection principle). Suppose that f*: E --+ Et is ob-

tainedfroma p-fQC map f:G --+ G' byreflection. Then f* i" 21-FQC witå

w : p{v).
7.37. Lernma. Supposethat H c E is aåalf space andthat M > 3. Then

there is an M -bilipschitz reflection of E in 0H .

such that läo - al < d(hr,T)f r. Write ht:

Let u be the reflection in ? with ue : -e. We show that the norm lul of u is at
most M.

Let t € E beaunitvector. Wecanwrite r:y+le with A €T,teRr.
Then

t : lrl ) d(*,7) : d(t",T) : ltld(e,T) > ltlr.

Hence

larl : lx - 2tel < lrl + zltl < t *2fr : M,

which implies that lr.,l < M. Since u-r : u, the map o is M-bilipschitz. o

7.38. Lemma. Suppose that G and Gt are the unit balls of E and E',
respectively, andthat f :G -d i" ur r?-QM homeomorphismwith /(0):0 and

f AG : 0G' . Then f it ,tr-QS witå ry : q{q).

Proof. Fix z1 e AG and set 22: -zt and 4:0. By [Vär, 3.12] or by
5.9,it sufficestoshow that lfzl-f"zl > Å forsome l: )(ry) > 0. Setting
z+: f-r(-/21) we have

lrt - z4llr, - 0l lfq-fzEllfzz-01 2

lr, - Z2llro - 0l lf ,, - f ,rllf ,o - ol - Vz: f ny

Proof. Setting r - zl(M - l)
Write T- AH andchoose a € T
hs-a and e-hllä, l. Then e €

and hence lf ,, - f ,zl> 2lrl(1). tr

7 .39. Theorem. Sup pose that
E - At U Az suclr that f I A, and

Tt : ryr (rl).

E E' is a homeomorpåism and that

I A, are ? -QS. Then f is ryr -QS with
f:
f



304 Jussi Våisälå

Proof. Replacing the sets At,Az with their closures, we may assume that
they are closed in .8. By I.5.5, it suffices to show that / is weakly If -QS with
H: HOI). Supposethat c, a,b aredistinctpointsin.E with l"-*l: lä-al. In
the present situation, it suffices to show that lfa - f *l < nh)lfb - f"l. We may
normalize the situation so that o:0, fa:0, and lol : läl :1: l/ö1. Then we
must find an upper bound lf"l < n(T).We may assume that 0 € ,4r a.nd that
{",b} G .41. We consider three cases.

Case L. a e Ar, b e A2. Choose x1 e A1O,t2 with frr, e [0,/å]. If
lrrl > Lf2, wehave

t/ot < r(#) v*,t sne).

Suppose that lcll <L12. Since .S(1) is connected, there is nz e S(1) n Arn A2.
Then

tr*z - r,,t < Wi# r r(V*) s,,(s),

and hence

tf ot <, (#) V*zt <?(1)(1 + ?(B)).

Case2. a€ Az, be A1. Choose az€ S(l)fl,4.r fl A2 as aboveandapoint
re € [0, a]n A1o Lz. Then

tro - r*,r < r(ffi)re#)r(H)t/åt < r.e)qe)r1g),

t/,,t < r(fil)t/ål S,r(r),

and hence lf"l < ?(1) + n!)zq(2).
Case3. a€Az,be A2. Weagainchoose rr€ArflA2 with fqe[0,/å].If lrlf 1LfZ, then

tfo- f*,t s ?(l#)vu_.f,,t<,r(3),
andhence lf"l< t+a(3). Supposethat lrll>tlz.Chooseagain ca e [0,o]ft
Ar fi Az. Then

t/,,t < ,(i#) vx,t < qe),

tr,- r,st s ?(j=#)tru- r,et<,l(1)(1+ t/,,t),

and hence lf "l 
< nQ) + ?(1)(1 + 7(2)). o
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7.40. Remark. The one-dimensional version of 7.39 is false. For example,

define f:RL + Et by fx:r for o (0 and Jx:a2 for c )0. Then / isnot
QS although it is QS in (-*,0] and in [0, m).

7.41. Hyperbolic geometry. Suppose that E is a Hilbert space and that G is a
half space of .8. Then the QH metric k of. G is the hyperbolic metric of G. Each
pair o, b e G can be joined by a unique hyperbolic segment, which is a subarc of
a semicircle or a ray which joins two points of. 0G and is orthogonal to äG. This
semicircle or ray is called a hyperbolic line. The Möbius maps preserving G are

the hyperbolic isometries of G.
Maps related to CQH maps of G have been studied by several people. For

example, Thurston [Th, 5.9] considers maps /: G -'+ G called pseudo-isometries.
They are defined by the condition

(k(*,y) - C) lu S k(f x, f y) < Mh(r,y).

Essential use has been made by the fact that the image of a hyperbolic line lies
in a hyperbolic neighborhood of another hyperbolic line. We next show that for
CQH maps, this result follows easily from the fact (Theorem 7.9) that / extends
to a map which is QM rel 0G. However, I feel that in the applications it is usually
easier to make direct use of Theorem 7.9 or the related results 7.14 and 7.15.
Moreover, these results also apply to many other domains, in which we do not
have well-defined hyperbolic lines.

The hyperbolic metric h of the unit ball A(1) is obtained with the aid of
any Möbius map of G onto B(1). Alternatively ä is defined by the density
2l(1 - lal2). Then h and the QH metric e of B(1) satisfy the inequalities
lc < h <2h.

7.42. Theorem. Suppose that G is a half space of a Hilbert space and that
f: G -+ G is (M,C)-CQH. Let 1 be a hyperbolic line in G. Then there is a
unique hyperbolic line I such that f1 lies in the hyperbolic neighborhood

tr[(z',") : {v e G : k(y,t') S r},

where r can be cåosen to depend only on (MrC).

Proof. Let o and ö be the endpointsof 7. By 7.9, f extends to ahomeomor-
phism T,-9 - G. gV auxiliary Möbius maps we may assume that a :0 : /o and
ä: oo : fb. Then 7 is the ray from 0 to oo, orthogonal to 0G. The uniqueness
of 7' is clear: we must have .y' : ^1. The neighborhood N(Z, r) is a cone with
a:cis 7. Let c € 7, and let y € 0G be the point for which /y is the orthogonal
projection of fx on 0G. Let a be the angle between the vector /r and the ray
7 . It suffices to obtain an upper bound for tan o in terms of (M ,, C) .
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By 7.9, / is 7-QM rel 0G with 7 depending only on (M,C). Applied to the
quadruple (y,0,r,m) this gives

tanc:#=r(h) sntr).

This proves the theorem. From the formulas in [Vu2, p.22) we can obtain the
explicit bound r : ln (H +'fr + Hr-) with ä : 7(1). o

8. Distortion
8.1. Introduction to §ection 8. This section was inspired by a manuscript

[Co] of D. Cooper. Let B" be the open unit ball of -R,, and let f : Bn ---+ Bn
be (M, C) -CQH. Cooper considered the distortion of hyperbolic spheres under /.
By auxiliary Möbius homeomorphisms of. B" we reduce the problem to the case
where /(0) : 0 and the center of the sphere is the origin. We can then consider
the QH sphere

where k
radius s

(8.2)

, k(r,0) : ,),
also a euclidean sphere S(r) with

for all z e ^93(r). Examples show that for any r > 0, k(fa,O) may have the
order of magnitude of. Mr or rf M at certain points of ^S1(r). Cooper made the
importa^nt new observation that for large r, this can happen only in a set of small
area, provided that n ) 3. Indeed, the multiplicative bounds in (8.2) can be
replaced by the additive bounds

is the QH metric of Bn . This sphere is

(8.3)

for r €,s1(r) except for a subset whose area has an upper bound e(arMrc,n)
which tends to zero as a --+ oo . Observe that e does not depend on r.

I have not been able to follow all details of Cooper's proof. The purpose of
this section is to give a new proof for this result. In fact, we prove in Theorem
8.7 that the first inequality of (8.3) also holds for n:2. To prove the second
inequality we need the absolute continuity of the boundary map ,S"-1 -+ Sa-r.
This requires n ) 3; the result is given as Theorem 8.9.

Since we are working in -R", this section differs from the preceding sections.
However, our proof is based on Theorem 2.15 on relative quasisymmetry. On the
other hand, the result is also new for QC maps of 8". A reader interested only in
this special case can skip the preceding sections, since a /(-ec map /: Bn ---+ B,
with /(0) :0 is well known to be 7-QS with 7 : \K. For example, reflect .f toA" and use [AVV, 5.23].
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8.4. Notation. Supposethat f:X--+ Y isamap. For x€X and r)0 we

set ,9(r, r) : ?B(x,r) and

L(r,f ,r): sup {ltv - f ,l,y e ,S(c,r)},

l(r, f,r) : inf {lty - f*|, y € S(o,r)}'

The n-dimensional outer measure of a set A C ,9' : 1Bn+r is written as m"(A).
For o € S", 0 ( r ( 2, we let U(x,r) be the cap,S" iB(r,r). There are positive
numbers an l bo such that

a,rn 3m,(tl(a,r)) < ä,r"

for all r e S" and 0 ( r ( 2. We also write wn: mn(S").

8.5. Lemma. Suppose that n ) 7 and that f: ^9' -+ ,S" is a homeomor-
phism. Suppose also that 0 < r I 2, that , > 0 and that A C S" is sucå
that

l(r,f,r))tr
for all a e A. Then mn(A) 3 p(t,n) where p(t,n) -+ 0 as t -+ oo.

Proof. The proof is based on a simple packing argument. Choose a maximal
set .F C ä withthepropertythat l*-yl ) 2r whenever o,y e F with a ly.
\Mrite & : cardF. Since A is covered by the caps [/(4,2r), a € F, we have
*"(A) < lcb"(2r)". Hence it suffices to find an estimate

(8.6)

Since

f U (o,r) I u (f 
", 

t(o, /, ')) f u (f a,tr)

for a e F and since the sets fu(o,t) are disjoint, w€ have

en : rnn(s") > D *.(7u1o,r)) > ka*(tr)".
a€.F

This gives (8.6) with p(t,n) : u,/antn. o

8.7. Theorem. Suppose that n ) 2, that f , B" --+ B' is (M,C)-CQH,
that f(0):0, andthat 0 < a < r. Suppose aJsothat A is a subset of the QH
sphere .S3(r) sucå that k(f x,0) S , - a for aJl x e A. Then

Trln-r (A) 1 el (0 , M, C,n)

where €1( d, M, C,n) 0 as e + oo .
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Proof. By 7.15, / extends to a homeomorphism TrB" --8" which is A-QS
rel ^9"-1 with 4 : qM,c. Let /s: ^S'-1 --r 5"-r be the restriction of /. Writirrg
as usual 6(c) : d(a,08"): I - lcl we have 6(o) : e-t and 6(/o) ) eo-r for
aJl o € A. Let p: R \ {0} - ^9"-r be the radial projection px : a/lrl. We first
show that

(8.8) l(po, fo,"-') 2 ""-' /rt(l)
for each a € A. Let y e,S"-l with ly - p"l : e-t. Then l" - p"l : ly - pal, arld
hence

eo-' I 6(f") ! lf" - fop"l < rt!)lfov - fopal.
This proves (8.8). By Lemma 8.5 we obtain

*"-r(A) <. mna(pA) S p("" /rl(1),, - 1) : e1(o, M,C,n). a

8.9. Theorem. Suppose that n) 3, that f: B. --+ Bn is (M,C)-CQH,
that f(0):0 andthatr )0, a)0. Supposealsothat A isasubsef oftåeQH
sphere,Sl(r) sucå that k(f r,0) > , * a for all r € A. Then

*.-r(A) 1e2(a,,M,C,n)
where e2(a,MrCrn) -- 0 as o --+ oo.

Proof.Let a €4. Usingthenotationof theproof of S.Twefirstshowthat
(8.10) L(po, fo,"-') < ce-'-o
with c:c(M,C). Assumethat Ue S"-t with ly-pal: e-,. Set ,:firpfo.
Since

l, - p"l < lz - al + la - pal < 2lz - al,
the relative 7-quasisymmetry of / gives

lfo, - fopal Srt!)lfo, - f"l.
This implies

llo - fopols (r + q(2))lfo, - fol < (t + ne»"-r-a.
Since ly - pal: l" - pol, we have

lfov - fopal < n(G)lf" - fopal.
These estimates yield (8.10) with c : ?(1)(1 + nQ)).

From (8.10) it follows that

l(b, ff'r""-'-o) 2 e-'
for each b e fspA. Hence Lemma 8.5 gives

m"-{fopA) < pG' I "," - 1) : €t(q, M,C,n),
and e3 --+ 0 as o -) oo. The theorem now follows easily from the absolute
continuity of QC maps. This is the point where the condition n ) B is needed.
We give the required result as Lemma 8.11 below. o
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8.11. Lemma. §uppose that n ) 2 and that f:,S' ---+ ,9" is * ry-QS
homeomorphism. Then for each A C S" we have mn(f A) < e(m,(A),q,n),
where e(t,,rl,n) -r 0 as t --+ 0.

Proof. Let g:5'-r J?" be the stereographic projection with g(er-.'.1): oo.
Then <p maps the lower hemisphere Iy' onto B" . Let Q CB" be a closed n-cube
with vertices on ,9'-1. Since there is an integer Ic : k(n) such that ,9' can be

coveredby & rotationsof g-rQ,wemayassumethat A Cp-'Q. Wemayalso
assume that /e,n.r-1 : antr. The map g : gf g-t: il" -. E" is a K-QC map
with 9(m) : oo a.nd K : q(7)"-1. From the 4-quasisymmetry of / we obtain
alowerbound lf*-"n+rl 2 q: q!l)> 0 foreach x e H. Indeed,setting
y : f-r(-en+r) we have

ly - "n+rl <2 < Jil* - ez+l1,

and hence
Z : lfy - f "n+rl S rt(rt)ff * - ".+rl.

It follows that m(gQ) has an upper bound depending only on 7 and n. From

[Re, Corollary, p.262) we obtain an estimate

where eo(t,rlrn) ---+ 0 as I --+ 0. This proves the lemma, since g is .t-bilipschitz
in.9"\B(r,+r,q) with L: L(q,n). o

References

tAU Alestll,o, P.J.: Kvasisymmetria tuloavaruuksissa ja uniformiset alueet. - Licentiate's
thesis, University of Helsinki, 1991 (unpublished).

[AVV] ANoonsoN, G.D., M.K. VaulNluuRrsv and M. VuouNeN: Dimension-free quasicon-
formal distortion in n-space. - tans. Åmer. Math. Soc. 297, 1986, 687-706.

[Co] Cooeen, D.: Quasi-isometries of hyperbolic space are almost isometries. - Manuscript,
1988.

[DS] Do-SrtlloR, D.A.: Equimorphisms and quasi-conformal mappings of the absolute. - So-
viet Math. Dokl. 11, 1970, 1324-1328.

[ET] ErnstdovrcH, V.4., and E.S. TIuotvtIRovr.: Equimorphisms of hyperbolic spaces. - Izv.
Akad. Nauk SSSR 28, 1964, 1139-1144 (Russian).

tG"] GenRtNc, F.W.: Uniform domains and the ubiquitous quasidisk. - Jahresber. Deutsch.
Math.-Verein. 89, 1987, 88-103.

[GO] Geuur.lc, F.W., and B.G. Oscooo: Uniform domains and the quasi-hyperbolic metric.
- J. Analyse Math. 36, L979,50-74.

tcd Gnouov, M.: Hyperbolic manifolds, groups and actions. - Riemann surfaces and related
topics, Ann. of Math. Stud. 97, Princeton University Press, 1.981., 183-213.

tJ.] JoNEs, P.W.: Extension theorems for BMO. - Indiana Univ. Math. J. 29, 1980, 41-66.

*(g? A) ( 6o (*(? A), \ ,, n)



310 Jussi Våisålå

tM.l MlRtIo, O.: Definitions for uniform domains. - Ann. Acad. Sci. Fenn. Ser. A I Math. 5,
1980, 197-205.

[MS] MeRTIo, O., and J. SaRvas: Injectivity theorems in plane and space. - Ann. Acad. Sci.
Fenn. Ser. A I Math. 4,L979,383-401.

[R"] RuIulNN, H.M.: Functions of bounded mean oscillation and quasiconformal mappings. -
Comment. Math. Helv. 49, L974,260-276.

tsd ScuÄrrun, J.J.: Inner diameter, perimeter, and girth of spheres. - Math. Ann. 173, 1967,
59-82.

[Th] THunsroN, W.P.: The geometry and topology of three.manifolds. - Mimeographed notes,
Princeton University, 1980.

[TV r ] Tuxu., P., and J. VÄrsÅlÅ: Quasisymmetric embeddings of metric spaces. - Ann. Acad.
Sci. Fenn. Ser. A I Math. 5, 1980,97-114.

[TVr] TuKu., P., and J. VÄrsÅr,Ä: Quasiconformal extension from dimension n to n + 1.
- Ann. of Math. 115, 1982, 331-348.

[TVal TUKIA, P., and J. VÄrsÄr,Å: Lipschitz and quasiconformal approximation and extension.
- Ann. Acad. Sci. Fenn. Ser. A I Math. 6, 1981,303-342.

Fär] VÅrsÄr,Å, J.: Quasimöbius maps. - J. Analyse Math. 44, 198b, 218-284.

Fär] VÅlsÅr,Ä, J.: Uniform domains. - Tdhoku Math. J. 40, 1988, 101-118.

Färl VÅlsÅlÄ, J.: Quasiconformal concordance. - Monatsh. Math. 102, 1989, 1bb-168.

[Vän j VÄtsÅr,Ä, J.: F]ee quasiconformality in Banach spaces I. - Ann. Acad. Sci. Fenn. Ser. A I
Math. 15, 1990, 355-379.

[Väu] VÄtsÅr,Å, J.: Free quasiconformality in Banach spaces III. - In preparation.

[V"r] VuoRtNoN, M.: Conformal invariants and quasiregular mappings. - J. Analyse Math. 45,
1985,69-115.

[Vor] VuontNnN, M.: Conformal geometry and quasiregular mappings. - Lecture Notes in Math-
ematics 1319, Springer-Verlag, 1.988.

Helsingin yliopisto
Matematiikan laitos
Hallituskatu 15

SF-00100 Helsinki
Finland

Received 16 October 1990


