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CENTRAL LIMIT THEOREM FOR THE SOLUTION
OF THE MULTIDIMENSIONAL BURGERS
EQUATION WITH RANDOM DATA

A.V. Bulinskii
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119 899 Moscow, Russia

Abstract. For multidimensional Burgers equation the potential case is considered. This
model for nonlinear diffusion is studied for shot-noise random fields as initial potentials. For the
solution # the limiting behavior of the field #(at, ay/%) is investigated as t — co (a € R4, a € R?).

The objective of this paper is to apply the Central Limit Theorem for ran-
dom fields defined on a d-dimensional lattice Z¢ to investigate the asymptotical
behavior of some integral functionals depending on random fields defined on R.
A nontrivial example of such nonlinear vector valued functionals, arising in cer-
tain physical problems, is provided by the solution of the Cauchy problem for the
multidimensional Burgers equation

a—‘
2 (3,V)F=vAT, zeRY t>0,

ot
(0, z) = vo(z),

with random initial data. Here (-,-) stands for a scalar product in R¢, and v is
some positive constant (viscosity coefficient). We are interested in the behavior
of the solution for large values of the time parameter ¢. This equation has been
widely used to model nonlinear diffusion, especially in the cases d = 1,2,3. In
particular it has been applied in astro-physical scenarios of the early Universe, see
(1], [8], [12]. The present paper continues and in some aspects extends the joint
work with S.A. Molchanov [6], see also [3], [4].

One advantage of using Burgers equation is the existence of an analytic so-
lution in a very important (from the cosmological point of view) case of motion
of potential type, i.e., ¥(t,z) = V®(t,z) and ®, being the potential of ¥y. The
well-known Hopf-Cole substitution leads to an explicit formula

1= [, o & (30 + 52 )
1
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here |-| denotes the Euclidean norm, and the integral of the vector-valued function
is taken in the usual sense.

In order to indicate the dependence of the solution on ®, and v we write
9(t,z; ®9,v). After a transformation of variables we examine the asymptotic be-
havior of the vector field

Zy(a,a; ®o,v) = U(at,a\/z-f; ®g,v), a€Ry,ac€ R? as t — oo.
Since for any v > 0

Zi(a,a;P0,v) = V2UZ, (a, a/V2v; ®o(-V2v)/2v, %),
we can consider, without loss of generality, just the case v = %
Let € > 0 be the scale parameter labelling the family of the shot-noise fields

(1) (O(2) =D tig((e —2)/6:), =R,

where ¢: R? - R is a nonrandom function, {zgs)} is the Poisson point process
on R? with values in R? and intensity function \.(z) = Xo(ez), = € R?, and
(&i,0:), i € N, is a sequence of i.d.d. random vectors with values in R xR having
the same distribution as (£,6) (here 8 > 0 a.s.) with d.f. G(-,-); all the random
objects are considered on some probability space (2, %, P). Further assumptions
on (£,6), »(+), Ao(-) are given below. The shot-noise fields are discussed e.g. in
(7], 19), (10].

Let us denote by Zt(s)(a,a), a € Ry, a € RY, the field Zi(a,a; ch,”,%)

corresponding to @gs)(x) = —((©)(z), where the minus sign is used only for the sake
of convenience. The behavior of Zt(c)(a,a) will be different for time parameters
with different dependence on the scale €.

We deal with scalings having the properties

(2) €—0, t—ooo, evt—ec, 0<c< oo

From the physical point of view it is interesting to consider a periodical func-
tion Ao(-). However, in the case 0 < ¢ < co we can proceed without this assump-
tion (see [4]).

Note that a different asymptotic problem for the Burgers equation was in-
vestigated by M.S. Rosenblatt [11]. For d = 1 and ¢t > 0 fixed he studied the
behavior of integrals with respect to z for the solution of the Burgers equation.
Special attention was paid in [11] to strongly mixing initial data ve(z) and to the
Gaussian case. It is worth emphasizing that we consider non-gaussian shot-noise
fields which in general do not possess such mixing properties even for d = 1.
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Thus, we study the vector-valued fields
Zt(e)(a,a) = Vt(s)(a,a)/Jt(E)(a,a), a€Ry,a e RY

where

2at

Kaa) = [ ew{cOw) - =Yg,

Va0 = [ ﬂt—'—yexp{d”(y)—w}d%
(3) R4 a

The analysis of the asymptotic behavior of the fields Zt(s) is based on the joint

study of the fields Vt(e) and Jt(e), various approximation schemes and limit theo-
rems for sums of dependent multi-indexed random variables.

The main result is that (under specified conditions)
@) 299, a) = 69 (o, at /4 Z,(a,a) — tY* () (a,a) D Ze(a,a),

i.e., all the finite dimensional distributions of the field Zt(e) converge weakly to the
corresponding finite dimensional distributions of a vector-valued centered Gaussian
field Z. with the covariance structure given by the matrices Tc(a,a;8,b), a,f €
R, ; a,b € R?. The value of the parameter c is defined by the limit condition (2).
Moreover, explicit formulas are obtained for T¢(a,a;8,b) and the non-random

functions é’t(s)(a,a), .//{t(e)(a,a) taking values in R and R?, respectively.
We start with the following simply verified

Lemma 1. Let h(z), M(z), = € R?, be real-valued functions such that
M(-) € L}*(R?) (with respect to the Lebesgue measure) and h(-) is continuous
and periodical with a period (Ty,...,T4). Then

M(z)h(rz)dz — (h) M(z)dz as T — 00,
R4 R4

(h) = (']j[T,-)_1 /OT/OT h(z) dz.

The next two results give us the mean values of Jt(s) and Vt(s) .

where
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Lemma 2. Suppose ¢(-) € L'(R?) N L*(R?), E6%exp { [¢|l, €]} < oo
(cf. (1)), and suppose \o(-) belongs to the class PC(R?) of periodical continuous

functions. Then EJt(E)(a,a) = td/zé’t(s)(a,a) for all « € R4, a € R?, where

) o= [ ew{ - a0)a

A9 (y) = /R/m/ Xo(e2) (exp (y‘f )} - 1) dG(u, v) d-.

Under the scaling condition (2)
& (a,0) = &.(a,0) + 9 (a,a),  with g (a,a) — 0.

Here, denoting

H=/IN/R+/R(exp {vo(z)} — 1)u? dG(u,v)dz

So(a) = (2ma)¥? exp {Xo(0)H}, c=0,
2
Ee(a,a) = fRd exp { [Lé—l + /\o(cy)H} dy, 0<c< oo,
Eno(a) = (2ma) % (exp{N\o(-)H}), ¢ = oo.
Lemma 3. Let the conditions of Lemma 2 be satisfied. Then

Evt(s)(a7 a) = t(d—l)/2//[t(€)(a, a),

we have

where
(¢) _ _l _ _ |y — a!2 (¢)
© o= [ w-gee{- Ll a0} a,
.//{,(5)(01, a) = Mc(a,a) + hge)(a, a),
and hgs)(a,a) — 0, provided (2) holds. Here

//(c(a,a)z{—é/}ld(y—a)exp{ly; af + Xo(c )H}dy, 0<c< oo,

0, c=0,c=o0.

Now we consider the cut-off fields

(Na) =D o ((z-2)/6:), =zeR

where ¢.(z) = o(z)1{|z] < r}, z € Rd, and r = r(t), t > 0. Here 1{:} is
the indicator function. Substituting ( instead of () into the expressions (3)
for J( *) and V( *) we obtain approximating fields Jt(,sr) and Vt(‘r) as the following
lemma shows.

From now on the index i to the left of the vector symbol denotes the ith
component.
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Lemma 4. Let the assumptions of Lemma 2 be strengthened by the hy-
pothesis E¢?exp {2|¢||., |€]} < co. Then for all a, t, e, r € Ry; a € RY,
1=1,...,d,

E|J{(a,a) — I (a,a)| < L(at)*R(p,r),
E[iV{?(a,a) = V{7 (@, 0)| < L(at)*"D/2R(p, 1),
where

™) Re.n) = ([

|z|>r

c,a(a:)d:z:)2)l/2

o*(z)dz + ( /|

z|>r

and L >0 is independent of ¢, t, r, a, a.

Now we introduce the following auxiliary fields

N2)= > Gpr(a—2)/6),  zeR%y>0,

i:|z—z$‘)lg~/r

and let Jt(fr)ﬂ(a,a), Vt(’i’).,(a,a) be defined according to (3) replacing ((*) by (52

Put for g e N, y € R4

(8) M(q,7) = max El¢['071{6 > 7},
=1...,q

and for s > 2
(9) qo(s) =inf {K: K > s(s —2)"!,K € N}.

Lemma 5. Let the assumptions of Lemma 2 be strengthened by the hy-
pothesis E6% exp {s ||| €|} < oo for some s € (2,3]. Then for all a, t, ¢, r,
7€R+; aGRd; i:]-?"'ada and q0 =‘10(5)

ElJt(;)(a, a) — Je

t"""

(a,a)| < k(at)** max {M(g0,7), M/ (g0,7)},
E|,V (e,a) = V) (a,a)| < k(at) @D/ max {M(go,7), MY/ ®(g0,7)},
where k > 0 is independent of €, t, r, v, a and a.

The essential part of the study of the limiting behavior of the functionals

Jt(f,.)’,y, Vt(,i,)A, consists of an analysis of the covariance structure of these fields.



16 A.V. Bulinskii

Denote for o, € Ry and a,b € R?

|z —al* |z— blz}
- - )

K, g(x;a,b) = exp { e 53

2raf\ /2 |a — b|?
(o g(a,b) = | —= -
Kas@d) = (3575) oo {3075
Lemma 6. Let the conditions of Lemma 2 be strengthened by the hypothesis
E#%? exp {2”‘19“00 |£|} < oo. Thenforall a, B, t,e, 7, y€ER;; a,b€R?

Cov (J2_(a,a), I, (8,b)) = t¥/* (0.(a, a; B,b) + ¢\ (e, a3 B, 1))

where
Ko 5(a,b)1(0), c=0,
oc(a,a;8,0) =< [ra Kap(z;a,b)I(cz)dz, 0<c< oo,
Ko,p(a,0)(I1(")), €= 00,

I(z) = exp {2)\o(2)H } /Rd f(z,w) dw,

e =exp{%<z) IACICER)
: (exp (W(T-%ﬂ)) - 1) dG(u,v)dr} _1,

and gifr)ﬁ(a,a;ﬂ,b) — 0 for each o, 3 € Ry ; a,b € R? under the condition

(10) e—0, t— o0, 6\/E—>C(OSCSOO), r(t) = oo, () =705

here v, is some positive constant.

The proof of this lemma is based on the following formulas:
Cov (49, (@, a),d 5. (8,b))
= td/2 / Ka,ﬂ(x; a, b)-H-e,r,‘y(x\/Z )De,t,r,'y(-f\/z; B, b) dr,
R4
H. . +(y) =exp {/ / / /\o(sz)(exp (v, 4(y — 2,u)) — 1) dG(u,v) dz} ,
R¢JRLJR

D€,tm‘r(y§ B, b) = /R" He,r,'y(y - w)Fe,r,.,(y,y - w)‘

w|? , W , W
ep{ - 5 (15 - 2+ ) faw,
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F. +(z,2) = exp { /;Ld/l; /R /\o(af)(exp (v, q(z —T,u)) — 1)~
. (exp (v¥r (2 —Tyu)) — 1) dG(u,v) dr} -1,

Vrsle,u) = or(2)1{J2] < 11}

Making a number of estimates of the above integrals, using the fact that for all

$,b€Rd, ﬂ,t€R+

e {5 (5 B - ) e {570

and Lemma 1 we can finish the proof of Lemma 6.

The next two lemmas can be established analogously by using, instead of (11),
the fact that for all z,b € R?; B,t e Ry; 1 =1,...,d,

s exp{ _ %(It;tl 4 (b\,;tu) _ (z\,/z;)) tln (%)}

w#0

12
< (,-:c - ,-b)2 + 4ﬂ)1/2 exp {Lz—2—’;|-—}

Lemma 7. Suppose the conditions of Lemma 6 are satisfied. Then for all
a,BERy; a,beRY; 1,k=1,...,d,

Cov (;V{(a,a), i V2 (8,8)) = t@=D/2(BEW (a,a; 8,b) + HEY (a,q;8,0)),

where for 0 < c < o00; 1,k =1,...,d,

1

BUR (0, a;8,0) = — [ (iz — ia)(kz — 1b)Ka s(z; a,b)I(cz) dz,
aﬂ Rd
and for c=0 and ¢ = o0
(12) B‘(:i’k)(ava; ﬂvb) = _ﬁ(ia - ib)(ka - kb)O’c(Ol,a;ﬂ,b), if 1 #k,
() (0 0 _ 1 _ (ia—b)? ,
(13) B."Y(a,a;8,b) = a+ﬂ<1 oy >0C(a,a,ﬂ,b),

and Hgf;fr)ﬂ(a,a; B,b) — 0 under the condition (10).
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Lemma 8. Suppose the conditions of Lemma 6 are fulfilled. Then for all
a,feRy; a,beRY; i=1,...,d,

Cov (i‘/t(,i,)'y(aa a)’ t(,er),'y(ﬂ7 b)) = t(d—l)/2 (i@c(av a; 3, b) + ilg;?,-y(av a; B, b)) )

where

—l/ (z — a)Ka,p(z;a,b)I(cz)dz, 0<c< oo,
. — a JRd
QC(a)anB,b) - ﬂ
a+ﬂ(a—b)ac(a,a;ﬂ,b), c=0, c= oo,

and lﬁf,)ﬂ(a,a; B,b) — 0 (in R?) under the condition (10).

The next step of approximation consists of transferring the integration over

R?, in expressions for Jt(fr)n and Vt(,i’).r, to the integration over the cubes Q(h) =

([—h, h])d with h = h(t). Thereby we introduce the fields Jt(,er),_r’h and V,©

t,r,v,h "
Lemma 9. Let the conditions of Lemma 6 be satisfied and let h(t)/+/t — oo
as t — oo. Then, under the condition (10), for each a € R4; a € R?; i =
1,...,d,
(a,a) — 7

t,r,v,h

t=4/2 Var (J(E)

i,y

(O(, a)) — 0,
H(=d+2)/2 y7a (,~Vt(,€)7(a,a) - in(,i,)‘r,h(a’a)) — 0.

rl
To give an exact formulation of the limiting behavior of the normalized fields
Zt(s) we have to introduce the following matrices

i d
(14) Ae(a,0:8,b) = (A7D(@, 0 8,0)); s @8 € Rajab € RYe € [0,00),
where ] .
AGB () = BEOG)  forik=1,...,d;
A (g g: 8, 5) = AN (B b o, a) = ipo(a, a; B, b),
for 1= 1,--'7d;
AWHLED () 5 ()

are defined as in Lemmas 6-8.

Let Te(a, a;8,b) = ( .:(i’k)(a,a; ﬂ,b))d

1,k=1"
TS (@, a5 8,0) = 4SO (@, 03 6,8) — iZe(or, ) ALY D (@, 058, b)
— k2B, 0) A (a, a5 8,b) + i L@, )k ZLo(B, ) AT D (a, a5 8, ),

where

(15)

and
(16) Zo(a,a) = 6 (a,a)Me(, a).
The functions &(-) and .#;(-) have been introduced in Lemmas 2 and 3.
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Remark 1. For ¢ =0 and ¢ = co we have for all a,3 € R4 ; a,b € R¢
T.(a,a; 8,b) = Bula, a; B,1).

If Ao(z) =const. then é’t(s)(a,a) = & (a), ./lt(s)(a,a) =0 forall a € R, a € RY,

and B,(;i’k)('), t,k=1,...,d, are given by (12) and (13).

Theorem 1. Let \(-) € PC(RY), let (-) € L'Y(R%) N L>*(R?) and
E6?? exp {s||¢|lo |€]} < oo for some s € (2,3]. Assume there exist functions
r(t), ¥(t), t > 0, satisfying

(17) M(go,¥(t) = o(t™/*)  for go = go(s),

(18) r(t) = oo, r(t)y(t) = ot"), K=3(s—2)(s-1)7",
and

(19) R(e,r(t)) = o(t'd/4) ast — oo.

Then under the limit condition (2) the relation (4) is valid with é”t(e) and .//lt(e) de-
fined by (5) and (6), and the covariance matrices T, are given by (14) (M(qo,7),
go(s) and R(ep,r) were introduced by (8), (9), and (7), respectively).

We indicate the main steps of the proof. At first, it is not difficult to see that
forall a, ¢, t€ Ry; a € R?

7 (a,a) = £(a, a) — Lu(a,a)n{(a,a) + A (a,a),

where

) =AY —EBV(),
() =t (I0() - BIO(),
AP = =7 (&) + ()
e - (@20 a0 )
{20 - (20O},

and the vector Z,(-) is defined by (16). Next, one verifies that

GHOR RO EX(XORT0)
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where (éc(a,a),n.(a,a)) is a (d+1)-dimensional centered Gaussian field on R4 x
R? with a covariance structure given by A.(a,a;f,b), see (14).

Using the previous lemmas and well-known properties of weak convergence
and convergence in probability it suffices to show that (10) and h(t)/vt — oo
imply

GRENOR N B (FOR XO)E
Here

(¢) h() _ t—(d+2)/4(V(€) h() _ EV(C) h('))’

t, 1,7, t,r,, t,r,Y,
O RO/ O RS 1 i O)R
We can represent Q(h) as a union of “unit” cubes. Let h(t) € N, then
Q(h) =Ujerm Kj, Kj = (j1— L] x -+~ x (ja = 1,44, T(h) C Z°.
For each n € N let us consider arbitrary fixed o, € R4 ; ap € R¢; cp € Rt
p=1,...,n. Then our problem is reduced to the CLT for the multi-indexed sums

St(,sr),-y,h = t—d/4 E (Xj(sat’ r77) - EXj(E,t, Ta7))
JET(R)
where

Xj(e, t,ryy) = /K‘ exp {¢{(y)} ¥(y,t)dy,  j € T(h),

n

d
Uyt =3 (dﬂcﬁz:,.cpM) exp {_W_-W} A~
=1

=1 ap\/i 201pt

Under the conditions (10) and h(t)/v/t — co we have

(20) Var( z X; (e,t,r,'y)) ~ b%(c)t/2,
JET(h)
The dependence of 4%(c) on a,, ap, ¢p, p = 1,...,n (see Lemmas 6-8) is not

indicated. It is enough to consider just the nontrivial case b%(c) # 0. Note that
the sums ) p(n) Xj(€,t,,7) display irregular growth of variances (i.e. nonlinear
dependence of the variance on the number of summands because h(t)/v/t — oo
as t — o). Note also that the fields X;(e,t,7,7) are not stationary.

The field X(e,t,r,7) is m(t)-dependent on the set T(h(t)) where m(t) =
27(t)r(t) + v/d. So using the CLT for the series of m(t)-dependent fields on
T(h(t)) C Z* (see [2], [5]), taking into account (20), the bound for

s\1/s
Cse,tva 7h = E|X;(e,t,r, ) € (2,3],
(et 7, h) = max (E[Xj(e,t,r,7)]") s €(2,3)
the condition (18) and also the facts that Aff)(a, a)£>0 for every a € Ry, a € R?
and é”t(e)(a,a) - &(a,a), .//lt(s)(a,a) — Mc(a,a) (see Lemmas 2, 3) under (2),
we come to the statements of Theorem 1.
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Corollary 1. Suppose \o(-) € PC(R?) and

(21) lp(@)] < co(1+12™+*) ™

for all z € R* and some ¢, § > 0, and suppose E6?? exp {s |||, [é|} < cofor
some s € (2,3]. If (17) is satisfied with y(t) = c1t™ for some 7 € [0, 1(s — 2)-
(s =1)71), ¢1 > 0, then the statements of Theorem 1 (referred in the sequel as
(4)) are valid if § > d((s—2)(s—1)"! —47’)_1 . In particular, we can choose 7 = 0
whenever 0 < 6y a.s. for some positive constant 6.

Corollary 2. Let \o(-) € PC(R?) and let ¢(-) € LY(R4)NL®(R?). Assume
that for some s € (2,3] there exists a function r(t), t > 0, with the following
properties

(22) r(t) — oo, R(p,7(t)) = o(t~%/%), r(t) = o(t") ast — 0o

and k = 3(s — 2)(s — 1)7!. If, in addition, Eexp {s]|¢|l,, |£|]} < co and 6 < 6,
a.s., then (4) holds.

Using the technique of cumulants (see Corollary 7.3 in [5]) and strengthening
the restrictions on the amplitudes £; we can relax the requirements on the function
¢: R - R.

Theorem 2. Let \(-) € PC(RY), ¢ € LYR? n L*(R?) and
E6??exp {u|€]} < oo for all 4 > 0. If the conditions (19) and, respectively,
(17) for qo = 2 are satisfied with r(t)y(t) = o(t") as t — oo for some T < %, then
(4) is valid.

Remark 2. This result can be considered as the limiting case of Theorem 1
as s — 0o.

Corollary 3. Let Ao(-) € PC(R?), Eexp{uf} < co, Eexp {p[é|} < co for
all p > 0 and let

(23) R(p,t™) = o(t™%*)  for some T < I

Then (4) is true. Furthermore, instead of (23) we can assume that (21) holds for
some ¢g >0 and 6 > d.

Remark 3. In [6] a single field {(-) of the type (1) with a Poisson point
field {z;} having the intensity function A =const. was considered and the limiting
behavior as ¢t — oo of the field Zy(1,a) = &(1)t¢tD/4Z,(1,a), a € R? (ie.
a = 1) was established (see Remark 1). In [6] also the independence of {¢;}
and {6;} was supposed. The last hypothesis was used also in [3], [4] where the
limiting behavior of Zt(s)(l,a) was investigated under the scaling condition (2)
with 0 < ¢ < co. Thus the results of [3], [4], [6] can be obtained from the results
in the present paper.

The author is grateful to Professor S.A. Molchanov for posing the problem as
well as indicating the effect of averaging (Lemma 1).
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